留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波纹钢板-混凝土界面能耗及其本构关系

王威 李鹏洛 林忠良 米佳鑫 王小飞 续鉴 贾煜

王威, 李鹏洛, 林忠良, 等. 波纹钢板-混凝土界面能耗及其本构关系[J]. 复合材料学报, 2024, 41(3): 1588-1600. doi: 10.13801/j.cnki.fhclxb.20230919.001
引用本文: 王威, 李鹏洛, 林忠良, 等. 波纹钢板-混凝土界面能耗及其本构关系[J]. 复合材料学报, 2024, 41(3): 1588-1600. doi: 10.13801/j.cnki.fhclxb.20230919.001
WANG Wei, LI Pengluo, LIN Zhongliang, et al. Energy consumption and constitutive relationship of interface between corrugated steel plate and concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1588-1600. doi: 10.13801/j.cnki.fhclxb.20230919.001
Citation: WANG Wei, LI Pengluo, LIN Zhongliang, et al. Energy consumption and constitutive relationship of interface between corrugated steel plate and concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1588-1600. doi: 10.13801/j.cnki.fhclxb.20230919.001

波纹钢板-混凝土界面能耗及其本构关系

doi: 10.13801/j.cnki.fhclxb.20230919.001
基金项目: 国家自然科学基金(52278214);中国地震局工程力学研究所基本科研业务费专项资助项目(2021D04);陕西省自然科学基础研究计划重点项目(2022JZ-21)
详细信息
    通讯作者:

    王威,博士,教授,博士生导师,研究方向为钢-混组合结构与混合结构 E-mail: wangwgh1972@163.com

  • 中图分类号: TU398.9;TB333

Energy consumption and constitutive relationship of interface between corrugated steel plate and concrete

Funds: National Natural Science Foundation of China (52278214); Scientific Research Fund of Institute of Engineering Mechanics, China Earthquake Administration (2021D04); Key Project of Nature Science Foundation Program of Shaanxi Province (2022JZ-21)
  • 摘要: 为了研究波纹钢板-混凝土的界面粘结滑移性能,考虑混凝土保护层厚度、混凝土强度、锚固长度及配箍率,完成了12个波纹钢板-混凝土试件的推出试验,对试件的破坏形态进行归纳分析,基于界面粘结滑移机制分析了不同阶段界面粘结力的组成,并从界面耗能角度对波纹钢板-混凝土的粘结性能进行了研究。结果表明:波谷处的混凝土裂缝由外向内发展,波脊处的混凝土在界面压应力和箍筋拉力作用下,裂缝与波脊延伸线呈45°;界面的极限粘结强度在0.99~1.86 MPa之间,残余粘结强度在0.25~0.63 MPa之间;增大锚固长度可提高界面的弹性变形能,使界面的极限粘结强度得到有效提高。最后考虑4个影响因素提出了波纹钢板-混凝土界面粘结应力-滑移本构关系表达式,并通过有限元分析对其进行验证,发现模拟所得曲线与试验曲线吻合度较高,表明所提出的本构关系表达式较为合理准确,可为波纹钢板-混凝土结构的有限元分析提供参考依据。

     

  • 图  1  波纹钢板-混凝土试件的尺寸示意图(单位:mm)

    Figure  1.  Dimensions of corrugated steel plate-concrete specimens(Unit: mm)

    C—Length; K—Width; L—Height

    图  2  试验加载装置

    Figure  2.  Test setup

    图  3  波纹钢板-混凝土试件的粘结应力-滑移曲线

    Figure  3.  Bond stress-slip curves of corrugated steel plate-concrete specimens

    图  4  CSP-C/Le(300)的破坏形态

    Figure  4.  Failure model of CSP-C/Le(300)

    图  5  波纹钢板-混凝土试件的裂缝受力机制

    Figure  5.  Crack loading mechanism of corrugated steel plate-concrete specimen

    图  6  波纹钢板-混凝土试件的典型粘结应力-滑移曲线

    Figure  6.  Typical bond stress-slip curve of corrugated steel plate-concrete specimens

    τ ─Bond stress; S─Slip value; τs─Initial bond strength; τu─Ultimate bond strength; τr─Residual bond strength; Ss─Slip value at initial bond strength; Su─Slip value at ultimate bond strength; Sr─Slip value Ss─Slip value at initial bond strength; Su─Slip value at ultimate bond strength; Sr─Slip value at residual bond strength

    图  7  波纹钢板-混凝土试件的界面粘结应力发展示意图

    Figure  7.  Interfacial bonding stress development of corrugated steel plate-concrete specimens

    Ls─Slip section; Lf─Fixed bond diffusion section; Lb─Bonding section; P─Load

    图  8  波纹钢板-混凝土试件的抗滑移刚度K变化趋势

    Figure  8.  Trend of anti-slip stiffness K of corrugated steel plate-concrete specimens

    图  9  波纹钢板-混凝土试件的界面粘结能W

    Figure  9.  Interface bonding energy W of corrugated steel plate-concrete specimens

    图  10  波纹钢板-混凝土试件的弹性变形能系数ζ、粘结耗能因子η计算示意图

    Figure  10.  Calculation diagram of elastic deformation energy coefficient ζ and bonding energy consumption factor η of corrugated steel plate-concrete specimens

    Pu─Ultimate load; We─Elastic deformation energy

    图  11  波纹钢板-混凝土试件的弹性变形能系数

    Figure  11.  Elastic deformation energy coefficient of corrugated steelplate-concrete specimens

    图  12  波纹钢板-混凝土试件的粘结耗能因子

    Figure  12.  Bonding energy consumption factor of corrugated steel plate-concrete specimens

    图  13  波纹钢板-混凝土粘结强度的拟合效果

    Figure  13.  Fitting effect of corrugated steel plate-concrete bond strength

    τsc─Calculated value of initial bond strength; τuc─Calculated value of ultimate bond strength; τrc─Calculated value of residual bond strength; τic ─Calculated value of characteristic bond strength ; τi ─Test value of characteristic bond strength

    图  14  波纹钢板-混凝土的有限元模型

    Figure  14.  Finite element model of corrugated steel plate-concrete

    图  15  波纹钢板-混凝土试件的P-S曲线对比

    Figure  15.  Comparison of P-S curves between corrugated steel plate-concrete specimens

    表  1  波纹钢板-混凝土试件的基本参数

    Table  1.   Parameters of corrugated steel plate-concrete specimens

    Specimen Cs/mm f/MPa Le/mm ρsv/%
    CSP-C/CS 85 C50 400 0.30
    CSP-C/Cs(70) 70 C50 400 0.30
    CSP-C/Cs(55) 55 C50 400 0.30
    CSP-C/Cs(40) 40 C50 400 0.30
    CSP-C/f (30) 85 C30 400 0.30
    CSP-C/f (60) 85 C60 400 0.30
    CSP-C/f (40) 85 C40 400 0.30
    CSP-C/Le(300) 85 C50 300 0.30
    CSP-C/Le(350) 85 C50 350 0.30
    CSP-C/Le(450) 85 C50 450 0.30
    CSP-C/ρsv(0.20) 85 C50 400 0.20
    CSP-C/ρsv(0.25) 85 C50 400 0.25
    Notes: CSP-C─Corrugated steel plate-concrete; CS─Control specimen; Cs─Thickness of concrete cover; f─Concrete strength; Le─Embedded length; ρsv─Stirrup ratio.
    下载: 导出CSV

    表  2  混凝土材料性能数据

    Table  2.   Mechanical properties of concrete

    Concrete strength fcu/MPa ft/MPa Ec/MPa
    C30 31.88 2.28 30410
    C40 45.48 2.73 33750
    C50 56.38 3.02 35520
    C60 67.62 3.19 36860
    Notes: fcu─Compressive strength; ft─Tension strength; Ec─Elastic modulus.
    下载: 导出CSV

    表  3  波纹钢板-混凝土试件的耗能指标

    Table  3.   Energy dissipation index of corrugated steel plate-concrete specimens

    Specimen W/(kN·mm) ζ η
    CSP-C/CS 1428.86 0.16 0.48
    CSP-C/Cs(70) 1620.34 0.33 0.48
    CSP-C/Cs(55) 883.84 0.05 0.43
    CSP-C/Cs(40) 621.92 0.25 0.33
    CSP-C/f (30) 1243.97 0.05 0.60
    CSP-C/f (60) 1289.11 0.14 0.36
    CSP-C/f (40) 1168.20 0.17 0.42
    CSP-C/Le(300) 994.37 0.10 0.65
    CSP-C/Le(350) 1138.41 0.08 0.63
    CSP-C/Le(450) 1404.40 0.23 0.38
    CSP-C/ρsv(0.20) 1430.25 0.09 0.49
    CSP-C/ρsv(0.25) 1428.09 0.12 0.42
    下载: 导出CSV

    表  4  波纹钢板-混凝土粘结强度的试验值与计算值对比

    Table  4.   Comparison of experimental values and calculated values of bond strength between corrugated steel plate-concrete

    Specimen τs/MPa τsc/MPa τsc/τs τu/MPa τuc/MPa τuc/τu τr/MPa τrc/MPa τrc/τr
    CSP-C/CS 1.20 1.24 1.03 1.55 1.57 1.01 0.34 0.50 1.46
    CSP-C/Cs(70) 1.55 1.10 0.71 1.74 1.42 0.81 0.63 0.46 0.73
    CSP-C/Cs(55) 0.52 0.93 1.79 1.07 1.23 1.15 0.37 0.40 1.07
    CSP-C/Cs(40) 0.77 0.71 0.93 0.99 0.99 1.00 0.25 0.26 1.04
    CSP-C/f (30) 0.72 0.59 0.82 1.09 1.18 1.09 0.45 0.50 1.10
    CSP-C/f (60) 1.54 1.36 0.88 1.86 1.72 0.92 0.54 0.50 0.92
    CSP-C/f (40) 1.27 1.11 0.88 1.45 1.41 0.97 0.44 0.50 1.13
    CSP-C/Le(300) 0.56 0.47 0.85 1.06 1.02 0.96 0.54 0.53 0.98
    CSP-C/Le(350) 0.62 0.98 1.58 1.08 1.30 1.21 0.47 0.51 1.09
    CSP-C/Le(450) 1.41 1.39 0.99 1.70 1.83 1.07 0.43 0.48 1.11
    CSP-C/ρsv(0.20) 1.12 1.08 0.96 1.51 1.53 1.01 0.53 0.62 1.16
    CSP-C/ρsv(0.25) 1.10 1.16 1.06 1.57 1.55 0.99 0.44 0.53 1.20
    Average value 1.04 1.02 1.08
    下载: 导出CSV

    表  5  波纹钢板-混凝土界面本构的关键参数

    Table  5.   Key parameters of the interface constitutive of corrugated steel plate-concrete

    Specimen k1 k2 b α β
    CSP-C/CS 1.11 1.50 −0.44 2.22 −2.11
    CSP-C/Cs(70) 0.97 1.34 −0.42 2.39 −2.32
    CSP-C/Cs(55) 0.79 1.17 −0.44 2.80 −2.84
    CSP-C/Cs(40) 0.59 0.96 −0.46 4.41 −5.13
    CSP-C/f (30) 1.03 1.70 −0.38 2.14 −1.19
    CSP-C/f (60) 1.02 2.12 −1.46 2.24 −2.49
    CSP-C/f (40) 1.24 1.09 0.14 2.19 −1.72
    CSP-C/Le(300) 0.92 1.04 −0.06 1.98 −1.04
    CSP-C/Le(350) 1.14 0.94 0.17 2.09 −1.58
    CSP-C/Le(450) 1.05 3.38 −3.11 2.35 −2.64
    CSP-C/ρsv(0.20) 1.71 10.05 −5.26 1.71 −0.71
    CSP-C/ρsv(0.25) 1.47 8.40 −5.47 2.01 −1.14
    Note: k1, k2, b, α, β─Key parameters of constitutive relation expression.
    下载: 导出CSV
  • [1] 李立峰, 侯立超, 孙君翠. 波形钢腹板抗剪性能的研究[J]. 湖南大学学报(自然科学版), 2015, 42(11): 56-63. doi: 10.16339/j.cnki.hdxbzkb.2015.11.028

    LI Lifeng, HOU Lichao, SUN Juncui. Research on shear mechanical property of corrugated steel webs[J]. Journal of Hunan University (Natural Sciences), 2015, 42(11): 56-63(in Chinese). doi: 10.16339/j.cnki.hdxbzkb.2015.11.028
    [2] 张紫辰, 金学军, 甘亚南. 波纹腹板钢箱组合梁竖向弯曲力学性能[J]. 中国铁道科学, 2019, 40(6): 52-59.

    ZHANG Zichen, JIN Xuejun, GAN Yanan. Vertical bending mechanical properties of box composite girder with corrugated steel webs[J]. China Railway Science, 2019, 40(6): 52-59(in Chinese).
    [3] 张峰, 刘佳琪, 高磊, 等. 波形钢腹板PC组合箱梁内衬混凝土部位温度分布研究[J]. 应用基础与工程科学学报, 2020, 28(1): 123-133. doi: 10.16058/j.issn.1005-0930.2020.01.011

    ZHANG Feng, LIU Jiaqi, GAO Lei, et al. Temperature distribution of lining concrete part of the PC composed bridge with corruagted steel webs[J]. Journal of Basic Science and Engineering, 2020, 28(1): 123-133(in Chinese). doi: 10.16058/j.issn.1005-0930.2020.01.011
    [4] 赵秋红, 邱静, 郝博超, 等. 两边连接竖向波纹钢板剪力墙的抗侧性能[J]. 天津大学学报, 2019, 52(S2): 46-53.

    ZHAO Qiuhong, QIU Jing, HAO Bochao, et al. Lateral behavior of vertically-corrugated steel plate shear walls connected with beams only[J]. Journal of TianJin Univeisity, 2019, 52(S2): 46-53(in Chinese).
    [5] 谭平, 魏瑶, 李洋, 等. 波纹钢板剪力墙抗震性能试验研究[J]. 土木工程学报, 2018, 51(5): 8-15. doi: 10.15951/j.tmgcxb.2018.05.002

    TAN Ping, WEI Yao, LI Yang, et al. Experimental investigation on performance of corrugated steel plate shear wall[J]. China Civil Engineering Journal, 2018, 51(5): 8-15(in Chinese). doi: 10.15951/j.tmgcxb.2018.05.002
    [6] GHODRATIAN-KASHAN S M, MALEKI S. Numerical investi-gation of double corrugated steel plate shear walls[J]. Journal of Civil Engineering and Construction, 2021, 10(1): 44-58. doi: 10.32732/jcec.2021.10.1.44
    [7] CHEN L H, DAI J X, JIN Q L, et al. Refining bond-slip constitutive relationship between checkered steel tube and concrete[J]. Construction and Building Materials, 2015, 79: 153-164. doi: 10.1016/j.conbuildmat.2014.12.058
    [8] 陈宗平, 郑华海, 徐金俊. 型钢混凝土不同界面的黏结性能及锚固设计[J]. 应用基础与工程科学学报, 2015, 23(3): 596-607. doi: 10.16058/j.issn.1005-0930.2015.03.018

    CHEN Zongping, ZHENG Huahai, XU Jinjun. Anchorage design method and interfaces bond behavior of steel encased concrete member[J]. Journal of Basic Science and Engineering, 2015, 23(3): 596-607(in Chinese) . doi: 10.16058/j.issn.1005-0930.2015.03.018
    [9] 王威, 高敬宇, 苏三庆, 等. 波形钢板剪力墙抗侧性能的有限元分析[J]. 西安建筑科技大学学报(自然科学版), 2017, 49(5): 630-636. doi: 10.15986/j.1006-7930.2017.05.003

    WANG Wei, GAO Jingyu, SU Sanqing, et al. Lateral resisting behavior finite element analysis of corrugated steel plate shear wall[J]. Journal of Xian University of Architecture & Technology (Nature Science Edition), 2017, 49(5): 630-636(in Chinese). doi: 10.15986/j.1006-7930.2017.05.003
    [10] 王磊, 李威, 陈爽, 等. 海水浸泡对FRP筋-珊瑚混凝土粘结性能的影响[J]. 复合材料学报, 2018, 35(12): 3458-3465. doi: 10.13801/j.cnki.fhclxb.20180211.001

    WANG Lei, LI Wei, CHEN Shuang, et al. Effects of sea water soaking on bonding properties of FRP bars-coral concrete[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3458-3465(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180211.001
    [11] 高婧, 范凌云. CFRP筋与海水海砂混凝土粘结性能试验与机制分析[J]. 复合材料学报, 2022, 39(3): 1194-1204.

    GAO Jing, FAN Lingyun. Experiment on bond performance between CFRP bar and seawater sea sand concrete and its working mechanism[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1194-1204(in Chinese).
    [12] 白国良, 尹玉光, 刘超, 等. 型钢再生混凝土黏结滑移性能试验分析[J]. 建筑结构学报, 2016, 37(S2): 135-142. doi: 10.14006/j.jzjgxb.2016.s2.020

    BAI Guoliang, YIN Yuguang, LIU Chao, et al. Experimental study on bond-slip behavior between section steel and recycled aggregate concrete in steel reinforced recycled concrete structures[J]. Journal of Building Structures, 2016, 37(S2): 135-142(in Chinese). doi: 10.14006/j.jzjgxb.2016.s2.020
    [13] 明铭, 郑山锁, 郑淏, 等. 型钢高性能纤维混凝土粘结滑移性能试验研究[J]. 工程力学, 2020, 37(8): 148-157. doi: 10.6052/j.issn.1000-4750.2019.09.0555

    MING Ming, ZHENG Shansuo, ZHENG Hao, et al. Experimental study on bond-slip behavior between encased steel and high-performance-fiber concrete[J]. Engineering Mechanics, 2020, 37(8): 148-157(in Chinese). doi: 10.6052/j.issn.1000-4750.2019.09.0555
    [14] 李俊华, 邱栋梁, 俞凯, 等. 高温后型钢混凝土粘结滑移性能研究[J]. 工程力学, 2015, 32(2): 190-200,206.

    LI Junhua, QIU Dongliang, YU Kai, et al. Study on bond-slip behavior between spaped steel and concrete in SRC structures after exposed to high temperature[J]. Engineering Mechanics, 2015, 32(2): 190-200,206(in Chinese).
    [15] 陈宗平, 周济, 陈建佳, 等. 高温喷水冷却后圆钢管高强混凝土的界面黏结性能试验研究[J]. 湖南大学学报(自然科学版), 2021, 48(3): 75-87. doi: 10.16339/j.cnki.hdxbzkb.2021.03.008

    CHEN Zongping, ZHOU Ji, CHEN Jianjia, et al. Experimental study on interface bond behavior of high strength concrete filled circle steel tube after elevated temperatures and water cooling[J]. Journal of Hunan University (Natural Sciences), 2021, 48(3): 75-87(in Chinese). doi: 10.16339/j.cnki.hdxbzkb.2021.03.008
    [16] 王威, 李元刚, 苏三庆, 等. 波形钢板混凝土黏结滑移性能试验研究与数值模拟分析[J]. 土木工程学报, 2019, 52(11): 13-24, 44. doi: 10.15951/j.tmgcxb.2019.11.002

    WANG Wei, LI Yuangang, SU Sanqing, et al. Experimental study and numerical simulation on bond-slip behavior between corrugated steel plate and concrete[J]. China Civil Engineering Journal, 2019, 52(11): 13-24, 44(in Chinese). doi: 10.15951/j.tmgcxb.2019.11.002
    [17] 王威, 张龙旭, 苏三庆, 等. 波形钢板-混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2018, 39(10): 75-84. doi: 10.14006/j.jzjgxb.2018.10.009

    WANG Wei, ZHANG Longxu, SU Sanqing, et al. Experimental research on seismic behavior of corrugated steel plate-concrete composite shear walls[J]. Journal of Building Structures, 2018, 39(10): 75-84(in Chinese). doi: 10.14006/j.jzjgxb.2018.10.009
    [18] 王义俊, 汪梦甫. 高阻尼混凝土钢板暗支撑双肢剪力墙数值分析[J]. 湖南大学学报(自然科学版), 2015, 42(5): 14-20. doi: 10.16339/j.cnki.hdxbzkb.2015.05.003

    WANG Yijun, WANG Mengfu. Numerical simulation of high damping concrete coupled shear walls with steel plate concealed bracing[J]. Journal of Hunan University (Natural Sciences), 2015, 42(5): 14-20(in Chinese). doi: 10.16339/j.cnki.hdxbzkb.2015.05.003
    [19] 徐金俊, 陈宗平, 薛建阳, 等. 圆钢管再生混凝土界面黏结失效的推出试验研究[J]. 建筑结构学报, 2013, 34(7): 148-157. doi: 10.14006/j.jzjgxb.2013.07.018

    XU Jinjun, CHEN Zongping, XUE Jianyang, et al. Failure mechanism of interface bond behavior between circular steel tuble and recycled aggregate concrete by push-out test[J]. Journal of Building Structures, 2013, 34(7): 148-157(in Chinese). doi: 10.14006/j.jzjgxb.2013.07.018
    [20] 伍凯, 陈峰, 徐方媛, 等. 型钢与钢纤维混凝土界面黏结性能及损伤耗能试验研究[J]. 土木工程学报, 2019, 52(3): 1-11, 19. doi: 10.15951/j.tmgcxb.2019.03.001

    WU Kai, CHEN Feng, XU Fangyuan, et al. Experimental study on interfacial bonding property and energy dissipation capacity between shape steel and steel fiber reinforced concrete[J]. China Civil Engineering Journal, 2019, 52(3): 1-11, 19(in Chinese). doi: 10.15951/j.tmgcxb.2019.03.001
    [21] WU K, CHEN F, LIN J F, et al. Experimental study on the interfacial bond strength and energy dissipation capacity of steel and steel fibre reinforced concrete (SSFRC) structures[J]. Engineering Structures, 2021, 235: 112094. doi: 10.1016/j.engstruct.2021.112094
    [22] 王明年, 张艺腾, 于丽, 等. 锈蚀工字形型钢与混凝土黏结滑移特性及损伤本构模型研究[J]. 土木工程学报, 2022, 55(1): 64-74. doi: 10.15951/j.tmgcxb.2022.01.005

    WANG Mingnian, ZHANG Yiteng, YU Li, et al. Study on bond-slip characteristics and damage constitutive model for interface between corroded I-shaped steel and concrete[J]. China Civil Engineering Journal, 2022, 55(1): 64-74(in Chinese). doi: 10.15951/j.tmgcxb.2022.01.005
    [23] 郑山锁, 邓国专, 杨勇, 等. 型钢混凝土结构粘结滑移性能试验研究[J]. 工程力学, 2003, 20(5): 63-69. doi: 10.3969/j.issn.1000-4750.2003.05.012

    ZHENG Shansuo, DENG Guozhuan, YANG Yong, et al. Experimental study of bond-slip performance between steel and concrete in SRC structures[J]. Engineering Mechanics, 2003, 20(5): 63-69(in Chinese). doi: 10.3969/j.issn.1000-4750.2003.05.012
    [24] 王博, 白国良, 代慧娟, 等. 再生混凝土与钢筋粘结滑移性能的试验研究及力学分析[J]. 工程力学, 2013, 30(10): 54-64. doi: 10.6052/j.issn.1000-4750.2012.06.0396

    WANG Bo, BAI Guoliang, DAI Huijuan, et al. Experimental and mechanical analysis of bond-slip performance between recycled concrete and rebar[J]. Engineering Mechanics, 2013, 30(10): 54-64(in Chinese). doi: 10.6052/j.issn.1000-4750.2012.06.0396
    [25] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Design code for concrete structures: GB 50010—2010[S]. Beijing: China Building Industry Press, 2010(in Chinese).
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  354
  • HTML全文浏览量:  161
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-16
  • 修回日期:  2023-08-29
  • 录用日期:  2023-09-08
  • 网络出版日期:  2023-09-19
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回