Energy consumption and constitutive relationship of interface between corrugated steel plate and concrete
-
摘要: 为了研究波纹钢板-混凝土的界面粘结滑移性能,考虑混凝土保护层厚度、混凝土强度、锚固长度及配箍率,完成了12个波纹钢板-混凝土试件的推出试验,对试件的破坏形态进行归纳分析,基于界面粘结滑移机制分析了不同阶段界面粘结力的组成,并从界面耗能角度对波纹钢板-混凝土的粘结性能进行了研究。结果表明:波谷处的混凝土裂缝由外向内发展,波脊处的混凝土在界面压应力和箍筋拉力作用下,裂缝与波脊延伸线呈45°;界面的极限粘结强度在0.99~1.86 MPa之间,残余粘结强度在0.25~0.63 MPa之间;增大锚固长度可提高界面的弹性变形能,使界面的极限粘结强度得到有效提高。最后考虑4个影响因素提出了波纹钢板-混凝土界面粘结应力-滑移本构关系表达式,并通过有限元分析对其进行验证,发现模拟所得曲线与试验曲线吻合度较高,表明所提出的本构关系表达式较为合理准确,可为波纹钢板-混凝土结构的有限元分析提供参考依据。Abstract: To study the interface bonding and sliding performance of corrugated steel plate concrete, considering the thickness of concrete cover, concrete strength, embedded length and stirrup ratio, the push out tests of 12 corrugated steel plate concrete specimens were completed, the failure modes of the specimens were analyzed and summarized, the composition of interfacial bonding force at different stages was analyzed based on the interfacial bonding slip mechanism, and the bonding performance of corrugated steel plate concrete was studied from the perspective of interface energy consumption. The results show that the concrete cracks at the trough develop from the outside to the inside. Under the action of interfacial compressive stress and stirrup tension, the crack of concrete at wave ridge is 45° with the extension line of wave ridge. The ultimate bond strength of the interface is between 0.99 and 1.86 MPa, and the residual bond strength is between 0.25 and 0.63 MPa. Increasing the embedded length can improve the elastic deformation energy of the interface and the ultimate bond strength of the interface. Finally, considering the four influencing factors, the bond stress-slip constitutive relation expression of the interface between corrugated steel plate concrete was proposed and verified by finite element analysis. It is found that the simulated curve is in good agreement with the experimental curve, which shows that the proposed constitutive relation expression is reasonable and accurate, and can provide a reference for the finite element analysis of corrugated steel plate concrete structure.
-
图 6 波纹钢板-混凝土试件的典型粘结应力-滑移曲线
Figure 6. Typical bond stress-slip curve of corrugated steel plate-concrete specimens
τ ─Bond stress; S─Slip value; τs─Initial bond strength; τu─Ultimate bond strength; τr─Residual bond strength; Ss─Slip value at initial bond strength; Su─Slip value at ultimate bond strength; Sr─Slip value Ss─Slip value at initial bond strength; Su─Slip value at ultimate bond strength; Sr─Slip value at residual bond strength
图 13 波纹钢板-混凝土粘结强度的拟合效果
Figure 13. Fitting effect of corrugated steel plate-concrete bond strength
τsc─Calculated value of initial bond strength; τuc─Calculated value of ultimate bond strength; τrc─Calculated value of residual bond strength; τic ─Calculated value of characteristic bond strength ; τi ─Test value of characteristic bond strength
表 1 波纹钢板-混凝土试件的基本参数
Table 1. Parameters of corrugated steel plate-concrete specimens
Specimen Cs/mm f/MPa Le/mm ρsv/% CSP-C/CS 85 C50 400 0.30 CSP-C/Cs(70) 70 C50 400 0.30 CSP-C/Cs(55) 55 C50 400 0.30 CSP-C/Cs(40) 40 C50 400 0.30 CSP-C/f (30) 85 C30 400 0.30 CSP-C/f (60) 85 C60 400 0.30 CSP-C/f (40) 85 C40 400 0.30 CSP-C/Le(300) 85 C50 300 0.30 CSP-C/Le(350) 85 C50 350 0.30 CSP-C/Le(450) 85 C50 450 0.30 CSP-C/ρsv(0.20) 85 C50 400 0.20 CSP-C/ρsv(0.25) 85 C50 400 0.25 Notes: CSP-C─Corrugated steel plate-concrete; CS─Control specimen; Cs─Thickness of concrete cover; f─Concrete strength; Le─Embedded length; ρsv─Stirrup ratio. 表 2 混凝土材料性能数据
Table 2. Mechanical properties of concrete
Concrete strength fcu/MPa ft/MPa Ec/MPa C30 31.88 2.28 30410 C40 45.48 2.73 33750 C50 56.38 3.02 35520 C60 67.62 3.19 36860 Notes: fcu─Compressive strength; ft─Tension strength; Ec─Elastic modulus. 表 3 波纹钢板-混凝土试件的耗能指标
Table 3. Energy dissipation index of corrugated steel plate-concrete specimens
Specimen W/(kN·mm) ζ η CSP-C/CS 1428.86 0.16 0.48 CSP-C/Cs(70) 1620.34 0.33 0.48 CSP-C/Cs(55) 883.84 0.05 0.43 CSP-C/Cs(40) 621.92 0.25 0.33 CSP-C/f (30) 1243.97 0.05 0.60 CSP-C/f (60) 1289.11 0.14 0.36 CSP-C/f (40) 1168.20 0.17 0.42 CSP-C/Le(300) 994.37 0.10 0.65 CSP-C/Le(350) 1138.41 0.08 0.63 CSP-C/Le(450) 1404.40 0.23 0.38 CSP-C/ρsv(0.20) 1430.25 0.09 0.49 CSP-C/ρsv(0.25) 1428.09 0.12 0.42 表 4 波纹钢板-混凝土粘结强度的试验值与计算值对比
Table 4. Comparison of experimental values and calculated values of bond strength between corrugated steel plate-concrete
Specimen τs/MPa τsc/MPa τsc/τs τu/MPa τuc/MPa τuc/τu τr/MPa τrc/MPa τrc/τr CSP-C/CS 1.20 1.24 1.03 1.55 1.57 1.01 0.34 0.50 1.46 CSP-C/Cs(70) 1.55 1.10 0.71 1.74 1.42 0.81 0.63 0.46 0.73 CSP-C/Cs(55) 0.52 0.93 1.79 1.07 1.23 1.15 0.37 0.40 1.07 CSP-C/Cs(40) 0.77 0.71 0.93 0.99 0.99 1.00 0.25 0.26 1.04 CSP-C/f (30) 0.72 0.59 0.82 1.09 1.18 1.09 0.45 0.50 1.10 CSP-C/f (60) 1.54 1.36 0.88 1.86 1.72 0.92 0.54 0.50 0.92 CSP-C/f (40) 1.27 1.11 0.88 1.45 1.41 0.97 0.44 0.50 1.13 CSP-C/Le(300) 0.56 0.47 0.85 1.06 1.02 0.96 0.54 0.53 0.98 CSP-C/Le(350) 0.62 0.98 1.58 1.08 1.30 1.21 0.47 0.51 1.09 CSP-C/Le(450) 1.41 1.39 0.99 1.70 1.83 1.07 0.43 0.48 1.11 CSP-C/ρsv(0.20) 1.12 1.08 0.96 1.51 1.53 1.01 0.53 0.62 1.16 CSP-C/ρsv(0.25) 1.10 1.16 1.06 1.57 1.55 0.99 0.44 0.53 1.20 Average value 1.04 1.02 1.08 表 5 波纹钢板-混凝土界面本构的关键参数
Table 5. Key parameters of the interface constitutive of corrugated steel plate-concrete
Specimen k1 k2 b α β CSP-C/CS 1.11 1.50 −0.44 2.22 −2.11 CSP-C/Cs(70) 0.97 1.34 −0.42 2.39 −2.32 CSP-C/Cs(55) 0.79 1.17 −0.44 2.80 −2.84 CSP-C/Cs(40) 0.59 0.96 −0.46 4.41 −5.13 CSP-C/f (30) 1.03 1.70 −0.38 2.14 −1.19 CSP-C/f (60) 1.02 2.12 −1.46 2.24 −2.49 CSP-C/f (40) 1.24 1.09 0.14 2.19 −1.72 CSP-C/Le(300) 0.92 1.04 −0.06 1.98 −1.04 CSP-C/Le(350) 1.14 0.94 0.17 2.09 −1.58 CSP-C/Le(450) 1.05 3.38 −3.11 2.35 −2.64 CSP-C/ρsv(0.20) 1.71 10.05 −5.26 1.71 −0.71 CSP-C/ρsv(0.25) 1.47 8.40 −5.47 2.01 −1.14 Note: k1, k2, b, α, β─Key parameters of constitutive relation expression. -
[1] 李立峰, 侯立超, 孙君翠. 波形钢腹板抗剪性能的研究[J]. 湖南大学学报(自然科学版), 2015, 42(11): 56-63. doi: 10.16339/j.cnki.hdxbzkb.2015.11.028LI Lifeng, HOU Lichao, SUN Juncui. Research on shear mechanical property of corrugated steel webs[J]. Journal of Hunan University (Natural Sciences), 2015, 42(11): 56-63(in Chinese). doi: 10.16339/j.cnki.hdxbzkb.2015.11.028 [2] 张紫辰, 金学军, 甘亚南. 波纹腹板钢箱组合梁竖向弯曲力学性能[J]. 中国铁道科学, 2019, 40(6): 52-59.ZHANG Zichen, JIN Xuejun, GAN Yanan. Vertical bending mechanical properties of box composite girder with corrugated steel webs[J]. China Railway Science, 2019, 40(6): 52-59(in Chinese). [3] 张峰, 刘佳琪, 高磊, 等. 波形钢腹板PC组合箱梁内衬混凝土部位温度分布研究[J]. 应用基础与工程科学学报, 2020, 28(1): 123-133. doi: 10.16058/j.issn.1005-0930.2020.01.011ZHANG Feng, LIU Jiaqi, GAO Lei, et al. Temperature distribution of lining concrete part of the PC composed bridge with corruagted steel webs[J]. Journal of Basic Science and Engineering, 2020, 28(1): 123-133(in Chinese). doi: 10.16058/j.issn.1005-0930.2020.01.011 [4] 赵秋红, 邱静, 郝博超, 等. 两边连接竖向波纹钢板剪力墙的抗侧性能[J]. 天津大学学报, 2019, 52(S2): 46-53.ZHAO Qiuhong, QIU Jing, HAO Bochao, et al. Lateral behavior of vertically-corrugated steel plate shear walls connected with beams only[J]. Journal of TianJin Univeisity, 2019, 52(S2): 46-53(in Chinese). [5] 谭平, 魏瑶, 李洋, 等. 波纹钢板剪力墙抗震性能试验研究[J]. 土木工程学报, 2018, 51(5): 8-15. doi: 10.15951/j.tmgcxb.2018.05.002TAN Ping, WEI Yao, LI Yang, et al. Experimental investigation on performance of corrugated steel plate shear wall[J]. China Civil Engineering Journal, 2018, 51(5): 8-15(in Chinese). doi: 10.15951/j.tmgcxb.2018.05.002 [6] GHODRATIAN-KASHAN S M, MALEKI S. Numerical investi-gation of double corrugated steel plate shear walls[J]. Journal of Civil Engineering and Construction, 2021, 10(1): 44-58. doi: 10.32732/jcec.2021.10.1.44 [7] CHEN L H, DAI J X, JIN Q L, et al. Refining bond-slip constitutive relationship between checkered steel tube and concrete[J]. Construction and Building Materials, 2015, 79: 153-164. doi: 10.1016/j.conbuildmat.2014.12.058 [8] 陈宗平, 郑华海, 徐金俊. 型钢混凝土不同界面的黏结性能及锚固设计[J]. 应用基础与工程科学学报, 2015, 23(3): 596-607. doi: 10.16058/j.issn.1005-0930.2015.03.018CHEN Zongping, ZHENG Huahai, XU Jinjun. Anchorage design method and interfaces bond behavior of steel encased concrete member[J]. Journal of Basic Science and Engineering, 2015, 23(3): 596-607(in Chinese) . doi: 10.16058/j.issn.1005-0930.2015.03.018 [9] 王威, 高敬宇, 苏三庆, 等. 波形钢板剪力墙抗侧性能的有限元分析[J]. 西安建筑科技大学学报(自然科学版), 2017, 49(5): 630-636. doi: 10.15986/j.1006-7930.2017.05.003WANG Wei, GAO Jingyu, SU Sanqing, et al. Lateral resisting behavior finite element analysis of corrugated steel plate shear wall[J]. Journal of Xian University of Architecture & Technology (Nature Science Edition), 2017, 49(5): 630-636(in Chinese). doi: 10.15986/j.1006-7930.2017.05.003 [10] 王磊, 李威, 陈爽, 等. 海水浸泡对FRP筋-珊瑚混凝土粘结性能的影响[J]. 复合材料学报, 2018, 35(12): 3458-3465. doi: 10.13801/j.cnki.fhclxb.20180211.001WANG Lei, LI Wei, CHEN Shuang, et al. Effects of sea water soaking on bonding properties of FRP bars-coral concrete[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3458-3465(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180211.001 [11] 高婧, 范凌云. CFRP筋与海水海砂混凝土粘结性能试验与机制分析[J]. 复合材料学报, 2022, 39(3): 1194-1204.GAO Jing, FAN Lingyun. Experiment on bond performance between CFRP bar and seawater sea sand concrete and its working mechanism[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1194-1204(in Chinese). [12] 白国良, 尹玉光, 刘超, 等. 型钢再生混凝土黏结滑移性能试验分析[J]. 建筑结构学报, 2016, 37(S2): 135-142. doi: 10.14006/j.jzjgxb.2016.s2.020BAI Guoliang, YIN Yuguang, LIU Chao, et al. Experimental study on bond-slip behavior between section steel and recycled aggregate concrete in steel reinforced recycled concrete structures[J]. Journal of Building Structures, 2016, 37(S2): 135-142(in Chinese). doi: 10.14006/j.jzjgxb.2016.s2.020 [13] 明铭, 郑山锁, 郑淏, 等. 型钢高性能纤维混凝土粘结滑移性能试验研究[J]. 工程力学, 2020, 37(8): 148-157. doi: 10.6052/j.issn.1000-4750.2019.09.0555MING Ming, ZHENG Shansuo, ZHENG Hao, et al. Experimental study on bond-slip behavior between encased steel and high-performance-fiber concrete[J]. Engineering Mechanics, 2020, 37(8): 148-157(in Chinese). doi: 10.6052/j.issn.1000-4750.2019.09.0555 [14] 李俊华, 邱栋梁, 俞凯, 等. 高温后型钢混凝土粘结滑移性能研究[J]. 工程力学, 2015, 32(2): 190-200,206.LI Junhua, QIU Dongliang, YU Kai, et al. Study on bond-slip behavior between spaped steel and concrete in SRC structures after exposed to high temperature[J]. Engineering Mechanics, 2015, 32(2): 190-200,206(in Chinese). [15] 陈宗平, 周济, 陈建佳, 等. 高温喷水冷却后圆钢管高强混凝土的界面黏结性能试验研究[J]. 湖南大学学报(自然科学版), 2021, 48(3): 75-87. doi: 10.16339/j.cnki.hdxbzkb.2021.03.008CHEN Zongping, ZHOU Ji, CHEN Jianjia, et al. Experimental study on interface bond behavior of high strength concrete filled circle steel tube after elevated temperatures and water cooling[J]. Journal of Hunan University (Natural Sciences), 2021, 48(3): 75-87(in Chinese). doi: 10.16339/j.cnki.hdxbzkb.2021.03.008 [16] 王威, 李元刚, 苏三庆, 等. 波形钢板混凝土黏结滑移性能试验研究与数值模拟分析[J]. 土木工程学报, 2019, 52(11): 13-24, 44. doi: 10.15951/j.tmgcxb.2019.11.002WANG Wei, LI Yuangang, SU Sanqing, et al. Experimental study and numerical simulation on bond-slip behavior between corrugated steel plate and concrete[J]. China Civil Engineering Journal, 2019, 52(11): 13-24, 44(in Chinese). doi: 10.15951/j.tmgcxb.2019.11.002 [17] 王威, 张龙旭, 苏三庆, 等. 波形钢板-混凝土组合剪力墙抗震性能试验研究[J]. 建筑结构学报, 2018, 39(10): 75-84. doi: 10.14006/j.jzjgxb.2018.10.009WANG Wei, ZHANG Longxu, SU Sanqing, et al. Experimental research on seismic behavior of corrugated steel plate-concrete composite shear walls[J]. Journal of Building Structures, 2018, 39(10): 75-84(in Chinese). doi: 10.14006/j.jzjgxb.2018.10.009 [18] 王义俊, 汪梦甫. 高阻尼混凝土钢板暗支撑双肢剪力墙数值分析[J]. 湖南大学学报(自然科学版), 2015, 42(5): 14-20. doi: 10.16339/j.cnki.hdxbzkb.2015.05.003WANG Yijun, WANG Mengfu. Numerical simulation of high damping concrete coupled shear walls with steel plate concealed bracing[J]. Journal of Hunan University (Natural Sciences), 2015, 42(5): 14-20(in Chinese). doi: 10.16339/j.cnki.hdxbzkb.2015.05.003 [19] 徐金俊, 陈宗平, 薛建阳, 等. 圆钢管再生混凝土界面黏结失效的推出试验研究[J]. 建筑结构学报, 2013, 34(7): 148-157. doi: 10.14006/j.jzjgxb.2013.07.018XU Jinjun, CHEN Zongping, XUE Jianyang, et al. Failure mechanism of interface bond behavior between circular steel tuble and recycled aggregate concrete by push-out test[J]. Journal of Building Structures, 2013, 34(7): 148-157(in Chinese). doi: 10.14006/j.jzjgxb.2013.07.018 [20] 伍凯, 陈峰, 徐方媛, 等. 型钢与钢纤维混凝土界面黏结性能及损伤耗能试验研究[J]. 土木工程学报, 2019, 52(3): 1-11, 19. doi: 10.15951/j.tmgcxb.2019.03.001WU Kai, CHEN Feng, XU Fangyuan, et al. Experimental study on interfacial bonding property and energy dissipation capacity between shape steel and steel fiber reinforced concrete[J]. China Civil Engineering Journal, 2019, 52(3): 1-11, 19(in Chinese). doi: 10.15951/j.tmgcxb.2019.03.001 [21] WU K, CHEN F, LIN J F, et al. Experimental study on the interfacial bond strength and energy dissipation capacity of steel and steel fibre reinforced concrete (SSFRC) structures[J]. Engineering Structures, 2021, 235: 112094. doi: 10.1016/j.engstruct.2021.112094 [22] 王明年, 张艺腾, 于丽, 等. 锈蚀工字形型钢与混凝土黏结滑移特性及损伤本构模型研究[J]. 土木工程学报, 2022, 55(1): 64-74. doi: 10.15951/j.tmgcxb.2022.01.005WANG Mingnian, ZHANG Yiteng, YU Li, et al. Study on bond-slip characteristics and damage constitutive model for interface between corroded I-shaped steel and concrete[J]. China Civil Engineering Journal, 2022, 55(1): 64-74(in Chinese). doi: 10.15951/j.tmgcxb.2022.01.005 [23] 郑山锁, 邓国专, 杨勇, 等. 型钢混凝土结构粘结滑移性能试验研究[J]. 工程力学, 2003, 20(5): 63-69. doi: 10.3969/j.issn.1000-4750.2003.05.012ZHENG Shansuo, DENG Guozhuan, YANG Yong, et al. Experimental study of bond-slip performance between steel and concrete in SRC structures[J]. Engineering Mechanics, 2003, 20(5): 63-69(in Chinese). doi: 10.3969/j.issn.1000-4750.2003.05.012 [24] 王博, 白国良, 代慧娟, 等. 再生混凝土与钢筋粘结滑移性能的试验研究及力学分析[J]. 工程力学, 2013, 30(10): 54-64. doi: 10.6052/j.issn.1000-4750.2012.06.0396WANG Bo, BAI Guoliang, DAI Huijuan, et al. Experimental and mechanical analysis of bond-slip performance between recycled concrete and rebar[J]. Engineering Mechanics, 2013, 30(10): 54-64(in Chinese). doi: 10.6052/j.issn.1000-4750.2012.06.0396 [25] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2010.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Design code for concrete structures: GB 50010—2010[S]. Beijing: China Building Industry Press, 2010(in Chinese).