留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机械辊子上纤维束展宽模型的建立

徐然 许文翀 王明欢 任峰 信春玲 何亚东

徐然, 许文翀, 王明欢, 等. 机械辊子上纤维束展宽模型的建立[J]. 复合材料学报, 2024, 41(5): 2704-2712. doi: 10.13801/j.cnki.fhclxb.20230918.004
引用本文: 徐然, 许文翀, 王明欢, 等. 机械辊子上纤维束展宽模型的建立[J]. 复合材料学报, 2024, 41(5): 2704-2712. doi: 10.13801/j.cnki.fhclxb.20230918.004
XU Ran, XU Wenchong, WANG Minghuan, et al. Establishment of fiber tow spreading model on mechanical rollers[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2704-2712. doi: 10.13801/j.cnki.fhclxb.20230918.004
Citation: XU Ran, XU Wenchong, WANG Minghuan, et al. Establishment of fiber tow spreading model on mechanical rollers[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2704-2712. doi: 10.13801/j.cnki.fhclxb.20230918.004

机械辊子上纤维束展宽模型的建立

doi: 10.13801/j.cnki.fhclxb.20230918.004
基金项目: 中石油“新能源与新材料创新联合体”重点项目
详细信息
    通讯作者:

    何亚东,博士,教授,博士生导师,研究方向为高分子材料加工原理及装备 E-mail: heyd@mail.buct.edu.cn

  • 中图分类号: TB332

Establishment of fiber tow spreading model on mechanical rollers

Funds: Key Projects of CNPC's "New Energy and New Materials Innovation Consortium"
  • 摘要: 制备预浸带需要将纤维束铺展变宽以便于树脂浸润,而牵引张力是纤维束展宽的动力来源,当前纤维束的展宽模型少有涉及牵引张力的影响效果。针对纤维束在机械棍子上的牵引展宽过程,结合受力分析得出纤维束运动系统的输入功及沿轴向、横向上的摩擦消耗功,依据能量守恒原理建立纤维束展宽模型。利用实验室自行搭建的机械棍子预分散装置,对展宽模型进行对比验证与分析。结果表明:牵引张力是纤维束展宽的重要原因,机械辊子个数、半径、光滑程度及纤维束与辊子间的包角都会影响纤维束的展宽,相较于Wilson展宽模型,能量平衡展宽模型能够更好地预测纤维的展开宽度,可用于指导纤维束的预分散过程。

     

  • 图  1  纤维束展宽过程示意图

    Figure  1.  Schematic diagram of fiber tow spreading process

    $ {T}_{0} $—Unwinding tension of fiber tow; $ {T}_{1} $—Traction tension of fiber tow; $ f_{\mathrm{\mathit{x}}} $—Axial friction force of fiber tow; $ \overline{F}_{\mathrm{f}\mathrm{\mathit{y}}} $—Transverse friction force of fiber tow

    图  2  运动系统前后状态

    Figure  2.  Front and rear state diagram of motion system

    $ {L}_{\mathrm{f}} $—Distance that the fiber tow pulled

    图  3  绳绕圆柱的摩擦力分析

    $\phi_1 $—Total wrapping angle of the rope around the cylinder at a given time

    Figure  3.  Analysis of friction force of rope wrapping around a cylinder

    图  4  机械辊子上纤维束受到的轴向摩擦

    Figure  4.  Axial friction of fiber bundles on the rollers

    $ {f}_{x\_1} $, $ {f}_{x\_2} $, $ {f}_{x\_3} $—Axial friction on each roller, respectively

    图  5  纤维束横向滑移示意图

    Figure  5.  Schematic diagram of fiber bundles slip laterally

    图  6  辊子顶部纤维束的受力分析

    Figure  6.  Stress analysis of fiber bundle at the top of dispersion roller

    $ {\alpha }_{\mathrm{f}} $—Angle between the fiber tows on both sides of the roller; $ \phi $—Wrap angle of the fiber tow on the roller; $ {N}_{\mathrm{f}} $—Number of fiber monofilament; $ T_{\mathrm{\mathrm{g}}} $—Force exerted on each fiber monofilament at the vertex of the roller

    图  7  纤维束展宽前后示意图

    Figure  7.  Schematic diagram of fiber bundle before and after spreading

    $ {w}_{0} $, $ {w}_{1} $—Widths of the fiber tow before and after spreading, respectively; $ {\Delta S}_{0} $—Distance at which the centroid of half the fiber tow is offset

    图  8  纤维束展宽过程中横向位移示意图

    Figure  8.  Schematic diagram of lateral displacement during fiber spreading

    $ v $—Traction speed of the fiber tow; $ {L}_{0} $—Fiber tow per unit length; $ r $—Radius of the roller

    图  9  纤维束在分散辊处展宽的工艺流程

    Figure  9.  Process flow of fiber spreading at the dispersion roll

    图  10  牵引张力对纤维束展宽的影响

    Figure  10.  Effect of traction tension on fiber spreading

    图  11  碳纤维束在不同大小张力牵引时的分散效果

    Figure  11.  Dispersion effect of carbon fiber bundle under different tension traction

    图  12  不同模型关于单辊包角的验证试验

    Figure  12.  Validation experiments on wrap angle using different models

    图  13  不同模型关于辊子个数的验证试验

    Figure  13.  Validation experiments on number of rollers using different models

    图  14  机械辊子半径对纤维束展宽的影响

    Figure  14.  Effect of roller radius on fiber spreading

    图  15  摩擦系数对纤维束展宽的影响

    Figure  15.  Effect of friction coefficient on fiber spreading

    表  1  SE4849玻璃纤维展宽比例系数测试结果

    Table  1.   Test results of spreading scale coefficient of glass fiber SE4849

    $ {T}_{0} $/N $ {w}_{1} $/mm $ {k}_{1} $
    8 13.8 4.7177
    9 12.6 4.6826
    10 11.6 4.5526
    11 10.6 4.4310
    12 9.5 4.4042
    13 8.7 4.1135
    Note: $ {k}_{1} $—Scale coefficient of spreading width.
    下载: 导出CSV

    表  2  HF30 F碳纤维展宽比例系数测试结果

    Table  2.   Test results of spreading scale coefficient of carbon fiber HF30 F

    $ {T}_{0} $/N $ {w}_{1} $/mm $ {k}_{2} $
    8 12.3 8.5298
    9 11.5 8.4465
    10 10.8 8.2479
    11 9.6 9.1960
    12 9.0 8.9906
    13 8.5 8.4642
    下载: 导出CSV
  • [1] ALTIN KARATAŞ M, GÖKKAYA H. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials[J]. Defence Technology, 2018, 14(4): 318-326 doi: 10.1016/j.dt.2018.02.001
    [2] DAS T K, GHOSH P, DAS N C. Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: A review[J]. Advanced Composites and Hybrid Materials, 2019, 2(2): 214-233. doi: 10.1007/s42114-018-0072-z
    [3] 胡侨乐, 端玉芳, 刘志, 等. 碳纤维增强聚合物基复合材料回收再利用现状[J]. 复合材料学报, 2022, 39(1): 64-76. doi: 10.13801/j.cnki.fhclxb.20210615.003

    HU Qiaole, DUAN Yufang, LIU Zhi, et al. Current status of carbon fiber reinforced polymer composites recycling and re-manufacturing[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 64-76(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210615.003
    [4] SHIRVANIMOGHADDAM K, HAMIM S U, KARBALAEI AKBARI M, et al. Carbon fiber reinforced metal matrix composites: Fabrication processes and properties[J]. Composites Part A: Applied Science and Manufacturing, 2017, 92: 70-96. doi: 10.1016/j.compositesa.2016.10.032
    [5] LIU X, YAN B R, REN F, et al. Isothermal crystallisation ATP process for thermoplastic composites with semi-crystalline matrices using automated tape placement machine[J]. Composites Part B: Engineering, 2021, 227: 109381. doi: 10.1016/j.compositesb.2021.109381
    [6] 罗云烽, 孙永春, 段跃新, 等. 薄层化大丝束碳纤维复合材料性能研究[J]. 航空制造技术, 2010, 53(20): 75-78. doi: 10.3969/j.issn.1671-833X.2010.20.015

    LUO Yunfeng, SUN Yongchun, DUAN Yuexin, et al. Study on property of spreaded large tow carbon fiber composites[J]. Aeronautical Manufacturing Technology, 2010, 53(20): 75-78(in Chinese). doi: 10.3969/j.issn.1671-833X.2010.20.015
    [7] 袁满, 何亚东, 李锐, 等. 连续纤维增强热塑性复合材料熔融浸渍模型[J]. 塑料科技, 2019, 47(7): 12-17. doi: 10.15925/j.cnki.issn1005-3360.2019.07.003

    YUAN Man, HE Yadong, LI Rui, et al. Melt impregnation model of continuous fiber reinforced thermoplastic composites[J]. Plastics Science and Technology, 2019, 47(7): 12-17(in Chinese). doi: 10.15925/j.cnki.issn1005-3360.2019.07.003
    [8] 李杰, 徐然, 任峰, 等. 连续玻纤增强聚丙烯预浸带熔融浸渍过程纤维断裂研究[J]. 中国塑料, 2022, 36(6): 69-76.

    LI Jie, XU Ran, REN Feng, et al. Fiber fracture of continuous glass fiber-reinforced polypropylene prepreg tapes during melt impregnation[J]. China Plastics, 2022, 36(6): 69-76(in Chinese).
    [9] 王勇, 于伟东, 王府梅. 在线展丝环锭复合纺纱技术及设备[J]. 纺织学报, 2016, 37(12): 160-166. doi: 10.13475/j.fzxb.20151200507

    WANG Yong, YU Weidong, WANG Fumei. Composite spinning technology and equipment based on multifilament online-spreading method using ring spinning system[J]. Journal of Textile Research, 2016, 37(12): 160-166(in Chinese). doi: 10.13475/j.fzxb.20151200507
    [10] EL-DESSOUKY H M, LAWRENCE C A. Ultra-lightweight carbon fibre/thermoplastic composite material using spread tow technology[J]. Composites Part B: Engineering, 2013, 50: 91-97. doi: 10.1016/j.compositesb.2013.01.026
    [11] SIHN S, KIM R Y, KAWABE K, et al. Experimental studies of thin-ply laminated composites[J]. Composites Science and Technology, 2007, 67(6): 996-1008. doi: 10.1016/j.compscitech.2006.06.008
    [12] 马丕波, 蒋高明, 高哲, 等. 一种碳纤维的超声波展纤方法: 中国, ZL 201310187189.5[P]. 2023-09-03.

    MA Pibo, JIANG Gaoming, GAO Zhe, et al. A method of ultrasonic fiber expansion for carbon fibers: Chinese patent, ZL 201310187189.5[P]. 2023-09-03(in Chinese).
    [13] 陈金良. 大丝束碳纤维展纤机理及实验研究 [D]. 天津: 天津工业大学, 2020.

    CHEN Jinliang. Mechanism and experimental study on fiber spreading of large bundle carbon fibers[D]. Tianjin: Tianjin Polytechnic University, 2020(in Chinese).
    [14] 郝傲松. 碳纤维展纤纱及展纤织物复合材料制备与性能研究 [D]. 上海: 东华大学, 2018.

    HAO Aosong. Study on preparation and properties of spread tow and spread tow fbric composites[D]. Shanghai: Donghua University, 2018(in Chinese).
    [15] ZHOU Q H, WU G Z, WANG Z X, et al. Analysis and prediction of the width of spreading carbon fiber tow based on gray system theory[J]. Journal of Applied Polymer Science, 2021, 138(12): e50069.
    [16] WILSON S D R. Lateral spreading of fibre tows[J]. Journal of Engineering Mathematics, 1997, 32(1): 19-26. doi: 10.1023/A:1004253531061
    [17] WEUSTINK A P D. Development of a rapid thermoplastic impregnation device[M]. Delft: Technische Universiteit Delft, 2007: 55-58.
    [18] IRFAN M S, MACHAVARAM V R, MAHENDRAN R S, et al. Lateral spreading of a fiber bundle via mechanical means[J]. Journal of Composite Materials, 2012, 46(3): 311-330.
    [19] 冯一川, 傅增祥, 曹兵妥, 等. 纤维束展开宽度的理论计算[J]. 科学技术与工程, 2012, 12(7): 1489-1491, 507. doi: 10.3969/j.issn.1671-1815.2012.07.005

    FENG Yichuan, FU Zengxiang, CAO Bingtuo, et al. Theoretical calculation of fibre bundle spreading width[J]. Science Technology and Engineering, 2012, 12(7): 1489-1491, 507(in Chinese). doi: 10.3969/j.issn.1671-1815.2012.07.005
    [20] 陈剑昭. 连续纤维增强聚丙烯预浸带设备与工艺研究 [D]. 北京: 北京化工大学, 2021.

    CHEN Jianzhao. Research on equipment and process of continuous glass fiber reinforced polypropylene prepreg tape[D]. Beijing: Beijing University of Chemical Technology, 2021(in Chinese).
    [21] 王伟民. 绳绕圆柱体的摩擦力分析[J]. 物理教师, 2014, 35(10): 65-66. doi: 10.3969/j.issn.1002-042X.2014.10.030

    WANG Weimin. Analysis of friction force of rope wrapped cylinder[J]. Physics Teacher, 2014, 35(10): 65-66(in Chinese). doi: 10.3969/j.issn.1002-042X.2014.10.030
    [22] VENKATARAMAN M, MILITKÝ J, SAMKOVÁ A, et al. Hybrid prepreg tapes for composite manufacturing: A case study[J]. Materials, 2022, 15(2): 619.
    [23] VENKATARAMAN M, MILITKÝ J, SAMKOVÁ A, et al. Hybrid prepreg tapes for composite manufacturing: A case study[J]. Materials, 2022, 15: 619.
    [24] 李元帅, 贺磊, 薛德波, 等. 干式碳纤维编织套管磨损特性试验研究[J]. 现代制造工程, 2023(4): 81-86.

    LI Yuanshuai, HE Lei, XUE Debo, et al. Experimental investigation on wear characteristics of dry carbon fibre braided sleeves[J]. Modern Manufacturing Engineering, 2023(4): 81-86(in Chinese).
    [25] XUE D B, HE L, CHENG X, et al. Study on wear characteristics of carbon fiber at needle end in prefabricated composite weaving[J]. Journal of Materials Research and Technology, 2021, 13: 1045-1055. doi: 10.1016/j.jmrt.2021.05.023
    [26] PETERS S T. Composite filament winding [M]. Ohio: ASM International, 2011: 65-80.
    [27] 李潭, 顾轶卓, 王绍凯, 等. 碳纤维丝束起毛量测试方法[J]. 材料工程, 2017, 45(7): 84-90. doi: 10.11868/j.issn.1001-4381.2015.001362

    LI Tan, GU Yizhuo, WANG Shaokai, et al. Measuring method for fuzz mass of carbon fiber tow[J]. Journal of Materials Engineering, 2017, 45(7): 84-90(in Chinese). doi: 10.11868/j.issn.1001-4381.2015.001362
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  325
  • HTML全文浏览量:  240
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-17
  • 修回日期:  2023-09-05
  • 录用日期:  2023-09-11
  • 网络出版日期:  2023-09-19
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回