留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含缩醛结构环氧树脂的固化行为及其碳纤维复合材料的制备与性能

郑波 贾红丽 颜春 祝颖丹 蒲浩 刘东 徐海兵 刘小青 代金月

郑波, 贾红丽, 颜春, 等. 含缩醛结构环氧树脂的固化行为及其碳纤维复合材料的制备与性能[J]. 复合材料学报, 2024, 41(5): 2374-2384. doi: 10.13801/j.cnki.fhclxb.20230918.003
引用本文: 郑波, 贾红丽, 颜春, 等. 含缩醛结构环氧树脂的固化行为及其碳纤维复合材料的制备与性能[J]. 复合材料学报, 2024, 41(5): 2374-2384. doi: 10.13801/j.cnki.fhclxb.20230918.003
ZHENG Bo, JIA Hongli, YAN Chun, et al. Curing behavior of epoxy resin with acetal structure and preparation and properties ofits carbon fiber composites[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2374-2384. doi: 10.13801/j.cnki.fhclxb.20230918.003
Citation: ZHENG Bo, JIA Hongli, YAN Chun, et al. Curing behavior of epoxy resin with acetal structure and preparation and properties ofits carbon fiber composites[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2374-2384. doi: 10.13801/j.cnki.fhclxb.20230918.003

含缩醛结构环氧树脂的固化行为及其碳纤维复合材料的制备与性能

doi: 10.13801/j.cnki.fhclxb.20230918.003
基金项目: 国家自然科学基金(U1909220);宁波市科技创新2025重大专项(2023Z024;2022Z102)
详细信息
    通讯作者:

    颜春,博士,高级工程师,硕士生导师,研究方向为树脂基复合材料的制备及性能研究 E-mail: yanchun@nimte.ac.cn

    祝颖丹,博士,研究员,博士生导师,研究方向为复合材料设计、制造和装备技术等基础研究与应用工作 E-mail: y.zhu@nimte.ac.cn

  • 中图分类号: TB332

Curing behavior of epoxy resin with acetal structure and preparation and properties ofits carbon fiber composites

Funds: National Natural Science Foundation of China (U1909220); Ningbo Key Projects of Science and Technology Innovation 2025 Plan (2023Z024; 2022Z102)
  • 摘要: 针对含缩醛结构生物基环氧树脂体系的工艺性能开展研究,采用旋转流变仪和非等温DSC对缩醛环氧树脂体系的流变性能和固化行为进行了分析,确定了其注胶温度约为40℃。采用自催化模型结合n级模型的分段模型获得其固化动力学参数,分段模型拟合得到的曲线与实验曲线吻合较好,表明该模型在2.5~20 K/min的升温速率下能较好地描述含缩醛结构环氧树脂体系的固化反应过程。通过外推法确定了树脂体系的优化固化工艺条件,制备出的含缩醛结构环氧树脂的拉伸强度和弯曲强度分别为79 MPa和130 MPa。进一步研究了碳纤维与环氧树脂之间的界面粘结性能和力学性能,发现碳纤维/缩醛环氧树脂复合材料的界面剪切强度和力学性能与碳纤维/商用环氧树脂复合材料的基本相当,表明可降解的缩醛环氧树脂可以替代商用环氧树脂,具有广泛的应用前景。另外,碳纤维/缩醛环氧树脂复合材料具有较好的降解性能,回收碳纤维的单丝拉伸强度与原始碳纤维的相当,可以有效回收高质量的碳纤维。

     

  • 图  1  环氧树脂、稀释剂和固化剂的化学结构式

    IPDA—Isophorone diamine

    Figure  1.  Chemical structure formula of epoxy resin, diluent and curing agent

    图  2  环氧树脂体系的化学流变性能:(a) 温度扫描曲线;(b) 时间扫描曲线

    Figure  2.  Chemical rheological properties of epoxy resin system: (a) Temperature sweep curves; (b) Time scan curves

    图  3  缩醛环氧树脂体系在不同升温速率下的DSC曲线

    Figure  3.  DSC curves of acetal epoxy resin system at different heating rates

    图  4  不同升温速率下的固化度(α)和温度(T)的关系

    Figure  4.  Relationship between curing degree (α) and temperature (T) at different heating rates

    图  5  (a) 0.2≤α≤0.8区间的$ \mathrm{ln}\left(\mathrm{d}\alpha/\mathrm{d}t\right) $与$ 1/T $的线性拟合曲线;(b) 活化能Eaα的变化关系

    Figure  5.  (a) Linear fitting curves of ln(dα/dt) and 1/T within the range of 0.2≤α≤0.8; (b) Variations of activation energy (Ea) versus α

    图  6  Malek判定方程y(α)和z(α)随α的变化关系

    Figure  6.  Variations of Malek determination equation y(α) and z(α) versus α

    图  7  ln[(dα/dt)ex]和ln[αP (1−α)]的关系曲线

    x—Reduced activation energy; P—Kinetic parameter ratio

    Figure  7.  Relationship between ln[(dα/dt)ex] and ln[αP (1−α)]

    图  8  缩醛环氧树脂DSC曲线实验值与自催化模型计算值的对比

    Figure  8.  Comparison of DSC curves of acetal epoxy resin between experimental values and calculated values of autocatalytic model

    图  9  缩醛环氧树脂DSC曲线实验值与分段模型计算值的对比

    Figure  9.  Comparison of DSC curves of acetal epoxy resin between experimental values and calculated values of piecewise model

    图  10  固化放热峰特征温度与升温速率的线性拟合曲线

    Ti—Initial temperature of the curing exothermic peak; TP—Peak temperature of the curing exothermic peak; Tf—Final temperature of the curing exothermic peak

    Figure  10.  Linear fitting curves of characteristic curing temperatures and heating rates

    图  11  环氧树脂的TGA曲线(a)和DTG曲线(b)

    Td5%—Onset degradation temperature; Tmax—Maximum mass loss temperature

    Figure  11.  TGA (a) and DTG (b) curves of epoxy resins

    图  12  碳纤维(CF)/环氧树脂界面剪切强度(IFSS) (a)及脱粘后碳纤维表面形貌:(b) CF/商用环氧树脂;(c) CF/缩醛环氧树脂

    Figure  12.  Interfacial shear strength (IFSS) (a) of carbon fiber (CF)/epoxy resin and surface morphology of CF after debonding:(b) CF/commercial EP; (c) CF/acetal EP

    图  13  缩醛环氧树脂和商用环氧树脂复合材料的力学性能对比:(a)层间剪切强度(ILSS);(b)拉伸强度与模量;(c)弯曲强度与模量

    Figure  13.  Comparison of mechanical properties of acetal epoxy resin and commercial epoxy resin composites: (a) Interlaminar shear strength (ILSS);(b) Tensile strength and modulus; (c) Flexural strength and modulus

    图  14  CF/商用环氧树脂(a)和CF/缩醛环氧树脂(b)的层间剪切破坏断裂面的SEM图像

    Figure  14.  SEM images of interlaminar shear fracture surface of CF/commercial EP composites (a) and CF/acetal EP composites (b)

    图  15  回收碳纤维的表面形貌(a)、原始碳纤维和回收碳纤维的拉曼光谱(b)及单丝拉伸应力-应变曲线(c)

    Figure  15.  Surface morphology of recycled CFs (a), Raman spectra (b) and representative tensile stress-strain curves of the virgin CF and recycled CF monofilaments (c)

    表  1  由DSC分析得到的αpαM和$\alpha_{\mathrm{p}}^{\infty} $值

    Table  1.   Values of αp, αM and $\alpha_{\mathrm{p}}^{\infty} $ obtained by DSC

    Heating rate/(K·min−1) αp αM $\alpha_{\mathrm{p}}^{\infty} $
    2.5 0.43 0.036 0.92
    5 0.46 0.041 0.92
    10 0.47 0.042 0.93
    15 0.49 0.031 0.92
    20 0.51 0.047 0.89
    Notes: αp―Curing degree at the maximum values of heat flow; αM―Curing degree at the maximum values of y(α); $\alpha_{\mathrm{p}}^{\infty} $―Curing degree at the maximum values of z(α).
    下载: 导出CSV

    表  2  缩醛环氧树脂体系自催化模型固化动力学参数

    Table  2.   Curing kinetic parameters of autocatalytic model of acetal epoxy resin system

    Heating rate/(K·min−1) Ea/(kJ·mol−1) lnA m n
    2.5 66.19 16.31 0.049 1.33
    5 16.34 0.057 1.34
    10 16.30 0.059 1.36
    15 16.26 0.044 1.36
    20 16.19 0.064 1.28
    Notes: Ea―Activation energy; A―Pre-exponential factor; m, n―Reaction order.
    下载: 导出CSV

    表  3  缩醛环氧树脂体系分段模型固化动力学参数

    Table  3.   Curing kinetic parameters for piecewise model of acetal epoxy resin system

    Heating rate/(K·min−1) Ea/(kJ·mol−1) Autocatalytic model
    (α<0.825)
    n-order model (α≥0.825) Correlation index R2
    lnA m n lnA n
    2.5 66.19 16.63 0.071 1.83 15.71 1.26 0.9925
    5 16.62 0.071 1.83 15.95 1.42 0.9976
    10 16.53 0.066 1.70 15.89 1.33 0.9995
    15 16.48 0.087 1.65 15.91 1.34 0.9992
    20 16.35 0.061 1.58 15.96 1.37 0.9997
    下载: 导出CSV

    表  4  环氧树脂(EP)的力学性能

    Table  4.   Mechanical properties of epoxy resins (EP)

    Sample Tensile
    strength/
    MPa
    Tensile
    modulus/
    GPa
    Flexural
    strength/
    MPa
    Flexural
    modulus/
    GPa
    Acetal EP 79 2.5 130 2.8
    Commercial EP 76 2.2 115 2.4
    下载: 导出CSV
  • [1] ZHANG J, LIN G, VAIDYA U, et al. Past, present and future prospective of global carbon fibre composite developments and applications[J]. Composites Part B: Engineering, 2023, 250: 110463. doi: 10.1016/j.compositesb.2022.110463
    [2] 张洋, 张隽爽, 马崇攀, 等. 碳纤维增强含酯键环氧树脂基复合材料的化学降解与回收[J]. 复合材料学报, 2023, 40(9): 5026-5034.

    ZHANG Yang, ZHANG Junshuang, MA Chongpan, et al. Chemical degradation and recovery of carbon fiber reinforced epoxy resin matrix composites containing ester bond[J]. Acta Materiae Compositae Sinica, 2023, 40(9): 5026-5034(in Chinese).
    [3] LIU Y L, WANG B B, MA S Q, et al. Catalyst-free malleable, degradable, bio-based epoxy thermosets and its application in recyclable carbon fiber composites[J]. Composites Part B: Engineering, 2021, 211: 108654. doi: 10.1016/j.compositesb.2021.108654
    [4] LI J H, WENG Z H, CAO Q, et al. Synthesis of an aromatic amine derived from biomass and its use as a feedstock for versatile epoxy thermoset[J]. Chemical Engineering Journal, 2022, 433: 134512.
    [5] LI P Y, MA S Q, WANG B B, et al. Degradable benzyl cyclic acetal epoxy monomers with low viscosity: Synthesis, structure-property relationships, application in recyclable carbon fiber composite[J]. Composites Science and Technology, 2022, 219: 109243. doi: 10.1016/j.compscitech.2021.109243
    [6] TRATNIK N, TANGUY N R, YAN N. Recyclable, self-strengthening starch-based epoxy vitrimer facilitated by exchangeable disulfide bonds[J]. Chemical Engineering Journal, 2023, 451: 138610.
    [7] PATIL A S, MOHEIMANI R, DALIR H. Thermomechanical analysis of composite plates curing process using ANSYS composite cure simulation[J]. Thermal Science and Engineering Progress, 2019, 14: 100419. doi: 10.1016/j.tsep.2019.100419
    [8] 杨旭静, 张良胜, 李茂君, 等. 超声振动对快速固化环氧树脂体系固化动力学特性的影响[J]. 复合材料学报, 2022, 39(5): 2470-2481.

    YANG Xujing, ZHANG Liangsheng, LI Maojun, et al. Influence of ultrasonic vibration on curing kinetics of rapid curing epoxy resin system[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2470-2481(in Chinese).
    [9] MA Z H, WANG X, LI J R, et al. Isoconversional models toward the curing kinetics of self-healable epoxy resin TGDDM and acid anhydride[J]. Journal of Applied Polymer Science, 2022, 139(31): e52718. doi: 10.1002/app.52718
    [10] 韦君, 颜春, 祝颖丹, 等. 生物基可降解环氧树脂体系固化反应动力学研究[J]. 热固性树脂, 2021, 36(5): 25-30. doi: 10.13650/j.cnki.rgxsz.2021.05.005

    WEI Jun, YAN Chun, ZHU Yingdan, et al. Curing kinetics of bio-based degradable epoxy resin system[J]. Thermosetting Resin, 2021, 36(5): 25-30(in Chinese). doi: 10.13650/j.cnki.rgxsz.2021.05.005
    [11] 张雨晴, 张锋锋, 王锦艳, 等. 非等温DSC法研究TSPZ-EP环氧树脂的固化动力学[J]. 高分子材料科学与工程, 2021, 37(11): 77-85. doi: 10.16865/j.cnki.1000-7555.2021.0274

    ZHANG Yuqing, ZHANG Fengfeng, WANG Jinyan, et al. Curing kinetics of TSPZ-EP epoxy resin characterized by non-isothermal DSC[J]. Polymer Materials Science and Engineering, 2021, 37(11): 77-85(in Chinese). doi: 10.16865/j.cnki.1000-7555.2021.0274
    [12] MA Z L, QI L, HE W, et al. A novel approach on the study of cure kinetics for rheological isothermal and non-isothermal methods[J]. Composites Part B: Engineering, 2019, 162: 242-249.
    [13] MOHAJERI S, VAFAYAN M, GHANBARALIZADEH R, et al. Advanced isoconversional cure kinetic analysis of epoxy/poly(furfuryl alcohol) bio-resin system[J]. Journal of Applied Polymer Science, 2017, 134(42): 45432. doi: 10.1002/app.45432
    [14] CHEN Y H, XI Z H, ZHAO L. Curing kinetics of bio-based epoxy resin based on epoxidized soybean oil and green curing agent[J]. AIChE Journal, 2017, 63(1): 147-153. doi: 10.1002/aic.15486
    [15] FACHE M, BOUTEVIN B, CAILLOL S. Epoxy thermosets from model mixtures of the lignin-to-vanillin process[J]. Green Chemistry, 2016, 18(3): 712-725. doi: 10.1039/C5GC01070E
    [16] ASTM. Standard test method for tensile properties of plastics: ASTM D638[S]. West Conshohocken: ASTM International, 2014.
    [17] ASTM. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: ASTM D790[S]. West Conshohocken: ASTM International, 2017.
    [18] ASTM. Standard test method for tensile properties of polymer matrix composites: ASTM D3039[S]. West Conshohocken: ASTM International, 2014.
    [19] ASTM. Standard test method for flexural properties of polymer matrix composite materials: ASTM D7264[S]. West Conshohocken: ASTM International, 2015.
    [20] ASTM. Standard test method for short-beam strength of polymer matrix composite materials and their laminates: ASTM D2344[S]. West Conshohocken: ASTM International, 2016.
    [21] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 碳纤维单丝拉伸性能的测定: GB/T 31290—2014[S]. 北京: 中国标准出版社, 2014.

    General Administration of Quality Supervision Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Carbon fibre—Determination of the tensile properties of single-filament specimens: GB/T 31290—2014[S]. Beijing: China Standards Press, 2014(in Chinese).
    [22] MÁLEK J. Kinetic analysis of crystallization processes in amorphous materials[J]. Thermochimica Acta, 2000, 355(1-2): 239-253.
    [23] 陈刚, 徐海兵, 刘东, 等. 快速RTM成型工艺用环氧树脂化学流变及固化行为研究[J]. 高科技纤维与应用, 2016, 41(1): 45-50. doi: 10.3969/j.issn.1007-9815.2016.01.008

    CHEN Gang, XU Haibing, LIU Dong, et al. Studies on the chemical rheological behavior and curing of epoxy resin in rapid RTM process[J]. Hi-Tech Fiber and Application, 2016, 41(1): 45-50(in Chinese). doi: 10.3969/j.issn.1007-9815.2016.01.008
    [24] MÁLEK J. The kinetic analysis of non-isothermal data[J]. Thermochimica Acta, 1992, 200: 257-269. doi: 10.1016/0040-6031(92)85118-F
    [25] SENUM G I, YANG R T. Rational approximations of the integral of the Arrhenius function[J]. Journal of Thermal Analysis, 1977, 11(3): 445-447. doi: 10.1007/BF01903696
    [26] ZHANG Y C, FANG R, XUE H Y, et al. Investigation of DSC curing kinetic model fitting and rheological behavior of urushiol/IPDI system[J]. Thermochimica Acta, 2022, 711: 179210. doi: 10.1016/j.tca.2022.179210
    [27] JIA H L, ZHU Y D, YAN C, et al. Reliability evaluation of a new method developed for DSC curing kinetic model of epoxy resin[J]. Journal of Applied Polymer Science, 2023, 140(26): e53986. doi: 10.1002/app.53986
    [28] PASTARNOKIENĖ L, JONIKAITĖ-ŠVĖGŽDIENĖ J, LAPINSKAITĖ N, et al. The effect of reactive diluents on curing of epoxy resins and properties of the cured epoxy coatings[J]. Journal of Coatings Technology and Research, 2023, 20(4): 1207-1221.
    [29] 姚红伟, 钟盛根, 李显华, 等. CNTs强化碳纤维/环氧复合材料界面过渡层及其对界面性能的影响[J]. 材料工程, 2016, 44(12): 13-21. doi: 10.11868/j.issn.1001-4381.2016.12.003

    YAO Hongwei, ZHONG Shenggen, LI Xianhua, et al. Strengthening interface transition layer of carbon fiber/epoxy composites with CNTs and its effect on interfacial performance[J]. Journal of Materials Engineering, 2016, 44(12): 13-21(in Chinese). doi: 10.11868/j.issn.1001-4381.2016.12.003
    [30] YUAN W C, MA S Q, WANG S, et al. Synthesis of fully bio-based diepoxy monomer with dicyclo diacetal for high-performance, readily degradable thermosets[J]. European Polymer Journal, 2019, 117: 200-207. doi: 10.1016/j.eurpolymj.2019.05.028
    [31] 张策, 徐志伟, 郭兴峰. 基于微波等离子体方法生长的纳米碳对碳纤维/环氧树脂复合材料界面性能的影响[J]. 复合材料学报, 2018, 35(11): 2994-3000. doi: 10.13801/j.cnki.fhclxb.20180409.003

    ZHANG Ce, XU Zhiwei, GUO Xingfeng. Effect of nanocarbon on interfacial properties of carbon fiber/epoxy composites based on microwave plasma enhanced chemical vapor deposition[J]. Acta Materiae Compositae Sinica, 2018, 35(11): 2994-3000(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180409.003
    [32] 闫民杰, 刘梁森, 陈莉, 等. 基于碳纳米管界面改性的碳纤维复合材料抗γ辐射性能研究[J]. 材料导报, 2019, 33(24): 4174-4180. doi: 10.11896/cldb.18120140

    YAN Minjie, LIU Liangsen, CHEN Li, et al. Anti-gamma radiation properties of carbon fiber composites modified by carbon nanotubes in interface[J]. Materials Reports, 2019, 33(24): 4174-4180(in Chinese). doi: 10.11896/cldb.18120140
    [33] MA S Q, WEI J J, JIA Z, et al. Readily recyclable, high-performance thermosetting materials based on a lignin-derived spiro diacetal trigger[J]. Journal of Materials Chemistry A, 2019, 7(3): 1233-1243. doi: 10.1039/C8TA07140C
    [34] YAN C, WEI J, ZHU Y D, et al. Preparation and properties of carbon fiber reinforced bio-based degradable acetal-linkage-containing epoxy resin composites by RTM process[J]. Polymer Composites, 2023, 44(7):4081-4094.
    [35] 冯浩洋, 胡靖媛, 陈青, 等. 生物基胺固化的可降解、可再加工环氧树脂的合成及性能[J]. 精细化工, 2022, 39(12): 2577-2584.

    FENG Haoyang, HU Jingyuan, CHEN Qing, et al. Synthesis and properties of degradable and recycled bio-based amine cured epoxy resin[J]. Fine Chemicals, 2022, 39(12): 2577-2584(in Chinese).
  • 加载中
图(15) / 表(4)
计量
  • 文章访问数:  467
  • HTML全文浏览量:  246
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-13
  • 修回日期:  2023-08-20
  • 录用日期:  2023-08-27
  • 网络出版日期:  2023-09-19
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回