Recent progress in special infiltrating nanocellulose-based aerogel for oil-water separation
-
摘要: 随着石油化工、纺织工业、钢铁等行业的飞速发展,产生了大量的含油废水而严重破坏了人类的生存环境,并造成了水资源短缺问题的加剧。在碳达峰、碳中和全球共识下,如何有效分离油水混合物成为当前的研究热点。特殊浸润性纳米纤维素基气凝胶具有对油水两相浸润性不同的特点,同时有高效的油水分离效果,在油水分离领域有广阔的应用前景。本文系统总结了几种浸润模型和基本作用机制,重点围绕纳米纤维素基气凝胶在油水分离领域的应用和制备工艺进行分析和介绍,探讨了当前特殊浸润性纳米纤维素基气凝胶在研发中面临的问题,并对其未来的发展趋势做出展望。Abstract: The development of petrochemical, textile industry, steel and other industries has produced oily wastewater that has seriously damaged the eco-logical environment of humans and has aggravated the shortage of water resources. How to effectively separate oil-water mixture has become a current research hotspot under the global consensus of carbon peaking and carbon neutral. The special infiltrating nanocellulose-based aerogel has the characteristics of different infiltration to oil and water phases and has high efficiency of oil-water separation, so it has a broad application prospect in the field of oil-water separation. This article systematically summarized several infiltration models and basic action mechanisms, focusing on detailed analysis of nanocellulose-based aerogels in oil-water separation field and preparation process. Finally, the existing problems of special infiltrating nanocellulose-based aerogels are discussed with looking forward to their future development.
-
图 4 三嗪衍生物活化反应构建生物质气凝胶的策略: (a) 羧甲基纤维素(CMCs)和纤维素纺锤(CNF)在4-(4, 6-二甲氧基三嗪-2-基)-4-甲基吗啉盐酸盐(DMTMM)存在下的反应方案和凝胶化机制;(b)干燥气凝胶的示意图(包括交联、冷冻、乙醇解冻和丙酮溶剂交换);(c)干燥制备的气凝胶; (d)干燥气凝胶的形貌;(e)气凝胶可承受其质量的2 500倍,并在装卸后显示出良好的回收性[35]
TEMPO—2, 2, 6, 6-tetramethylpiperidine-1-oxyl); m—Mass; ρ—Density; D—Diameter
Figure 4. Strategy to construct biomass aerogels through a triazine derivative activated reaction at ambient conditions: (a) Proposed reaction scheme and gelation mechanism of carboxymethyl cellulose (CMCs) and cellulose nanofibrils (CNF) in the presence of 4-(4, 6-dimethoxy-1, 3, 5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM); (b) Schematic illustration of preparing aerogel for ambient drying, including cross-linking, freezing, ethanol thawing, and acetone solvent exchange; (c) Aerogels prepared by ambient-drying and freeze-drying aerogel prepared in the same size tubes to show approximate size; (d) Photographs of seven ambient-dried aerogels with a cylinder shape and one aerogel on top of two flower petals; (e) An ambient-dried aerogel withstands 2 500 times its mass and shows good recoverability following loading and unloading[35]
图 7 (a) 油用油红、水用亚甲基蓝在L-海藻酸钠-纤维素纳米纤丝(L-SA/CN)气凝胶表面(插图为L-SA/CN气凝胶的油和水接触角图像);(b) 用于测量L-SA/CN气凝胶油和有机溶剂的质量吸收能力;(c) 溶剂吸收变化[43]
CA—Contact angle
Figure 7. (a) Oil colored with oil red and water colored with methylene blue and then spotted on the surface of L-sodium alginate-cellulose nanofibers (L-SA/CN) aerogel (The insets were the oil and water contact angle images of the L-SA/CN aerogel); (b) Measuring the mass absorption capacity of L-SA/CN aerogel for oil and organic solvents; (c) Solvent absorption change[43]
表 1 纳米纤维素的化学制备方法
Table 1. Chemical preparation method of nanocellulose
Preparation method Benefit Drawback Hydrogen peroxide oxidation High product yield, simple environmental
procedures and lower costEasy incomplete oxidation, poor stability Carboxymethylation Lower preparation cost, milder preparation
conditions and less pollutionPreparation process is more complex, it requires a significant amount of water for dialysis Acid hydrolysis High and stable product yield, simple preparation
process and easy operationProduction of waste acids and residual impurities in the
reaction system, difficult to achieve recyclingPickering emulsion High product yield, exhibits good thermal stability Limited experimental environment, longer production cycles Ionic liquid Production process is environmentally green Most ionic liquids have high toxicity, they are
expensive and have high recycling costsAVAP Production cost is low, crystallinity is high, and chemical substances can be recycled SO2 is required during the pretreatment process,
limitations to the production conditionsNote: AVAP—Ethanol and SO2. 表 2 特殊浸润性纳米纤维素基气凝胶的水接触角(WCA)和油接触角(OCA)
Table 2. Water contact angle (WCA) and oil contact angle (OCA) of special wetting nanocellulose based aerogel
Raw materials WCA/(°) OCA/(°) Ref. Cellulose nanocrystal/Methyltrichlorosilane 148.5 0 [42] α-cellulose/Polylactic acid/1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane 146.7 0 [44] α-cellulose/Polylactic acid/Methylhydrosiloxane 141.0 0 [45] α-cellulose/Dimethicone 160.0 0 [46] α-cellulose/Dodecanol 149.0 0 [47] α-cellulose/Methyltrimethoxysilane 132.6 0 [48] Cellulose nanocrystal/Polyvinyl alcohol/Methyltrichlorosilane 144.5 0 [49] α-cellulose/Trimethoxymethylsilane 160.0 0 [50] Nanofibrillated cellulose/Polydopamine/Dioctadecylamine 152.5 0 [32] Regenerated cellulose silica/Methyltrichlorosilane 160 0 [51] α-cellulose/Sodium sulfite sulfonation 0 150.0 [52] α-cellulose/Isocyanic acid/ Fluorocarbon surfactant 0 118.0 [53] Nanofibrillated cellulose/Sodium alginate 0 162.0 [54] -
[1] DONG B, GUO Y, SUN S, et al. Shish–kebab-structured UHMWPE coating for efficient and cost-effective oil–water separation[J]. ACS Applied Materials & Interfaces, 2020, 12(52): 58252-58262. [2] QIAO A, HUANG R, PENKOVA A, et al. Superhydrophobic, elastic and anisotropic cellulose nanofiber aerogels for highly effective oil/water separation[J]. Separation and Purification Technology, 2022, 295: 121266. doi: 10.1016/j.seppur.2022.121266 [3] YANG S, XU Z, ZHANG T, et al. Emulsion-templated, hydrophilic-oleophobic aerogels with flexibility, stretchability and recyclability[J]. Polymer, 2022, 250: 124886. doi: 10.1016/j.polymer.2022.124886 [4] XING T, DONG C, HU X, et al. Cellulose membranes via a top-down approach from loofah for oil/water separation[J]. Biomass Conversion and Biorefinery, 2023: 1-9. https//doi.org/10.1007/s13399-023-03766-0. [5] FAN Q, LU T, DENG Y, et al. Bio-based materials with special wettability for oil-water separation[J]. Separation and Purification Technology, 2022, 297: 121445. [6] YANG S, XU Z, ZHAO T, et al. Emulsion-templated, hydrophilic and underwater oleophobic PVA aerogels with enhanced mechanical property[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 653: 129979. doi: 10.1016/j.colsurfa.2022.129979 [7] YAN Z, ZHU K, LI X, et al. Recyclable bacterial cellulose aerogel for oil and water separation[J]. Journal of Polymers and the Environment, 2022, 30(7): 2774-2784. doi: 10.1007/s10924-021-02369-y [8] CHENG Z, DU M, LAI H, et al. From petal effect to lotus effect: A facile solution immersion process for the fabrication of super-hydrophobic surfaces with controlled adhesion[J]. Nanoscale, 2013, 5(7): 2776-2783. doi: 10.1039/c3nr34256e [9] SUN T L, FENG L, GAO X F, et al. Bioinspired surfaces with special wettability[J]. Accounts of Chemical Research, 2005, 38(8): 644-652. doi: 10.1021/ar040224c [10] 郭志光, 刘维民. 仿生超疏水性表面的研究进展[J]. 化学进展, 2006, 18(6): 721. doi: 10.3321/j.issn:1005-281X.2006.06.005GUO Zhiguang, LIU Weimin. Research progress of biomimetic superhydrophobic surface[J]. Progress in Chemistry, 2006, 18(6): 721(in Chinese). doi: 10.3321/j.issn:1005-281X.2006.06.005 [11] LIU K, JIANG L. Metallic surfaces with special wettability[J]. Nanoscale, 2011, 3(3): 825-838. doi: 10.1039/c0nr00642d [12] YANG J, ZHANG Z, XU X, et al. Superhydrophilic–superoleophobic coatings[J]. Journal of Materials Chemistry, 2012, 22(7): 2834-2837. doi: 10.1039/c2jm15987b [13] SHENG Z, LIU Z, HOU Y, et al. The rising aerogel fibers: Status, challenges, and opportunities[J]. Advance Science, 2023, 10(9): 2205762. [14] LIU C, FANG Y, MIAO X, et al. Facile fabrication of superhydrophobic polyurethane sponge towards oil-water separation with exceptional flame-retardant performance[J]. Separation and Purification Technology, 2019, 229: 115801. doi: 10.1016/j.seppur.2019.115801 [15] CHEN Y, ZHANG L, YANG Y, et al. Recent progress on nanocellulose aerogels: Preparation, modification, composite fabrication, applications[J]. Advanced Materials, 2021, 33(11): 2005569. doi: 10.1002/adma.202005569 [16] LIU J, FANG X, ZHU C, et al. Fabrication of superhydrophobic coatings for corrosion protection by electrodeposition: A comprehensive review[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607: 125498. doi: 10.1016/j.colsurfa.2020.125498 [17] WANG C, GUO Z. A comparison between superhydrophobic surfaces (SHS) and slippery liquid-infused porous surfaces (SLIPS) in application[J]. Nanoscale, 2020, 12(44): 22398-22424. doi: 10.1039/D0NR06009G [18] WU Z, CHEN S, LI J, et al. Insights into hierarchical structure-property-application relationships of advanced bacterial cellulose materials[J]. Advanced Functional Materials, 2023, 33(12): 2214327. [19] ROL F, KARAKASHOV B, NECHYPORCHUK O, et al. Pilot-scale twin screw extrusion and chemical pretreatment as an energy-efficient method for the production of nanofibrillated cellulose at high solid content[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6524-6531. [20] DUFRESNE A. Preparation and properties of cellulose nanomaterials[J]. Paper and Biomaterials, 2020, 5(3): 1-13. [21] LIU P, PANG B, TIAN L, et al. Efficient, self-terminating isolation of cellulose nanocrystals through periodate oxidation in pickering emulsions[J]. ChemSusChem, 2018, 11(20): 3581-3585. doi: 10.1002/cssc.201801678 [22] NELSON K, RETSINA T, IAKOVLEV M, et al. American process: Production of low cost nanocellulose for renewable, advanced materials applications[J]. Materials Research for Manufacturing: An Industrial Perspective of Turning Materials into New Products, 2016, 224: 267-302. [23] 邹竹帆, 杨翔皓, 王慧, 等. 酸水解法制备纤维素纳米晶体的研究进展[J]. 中国造纸, 2019, 38(3): 61-69. doi: 10.11980/j.issn.0254-508X.2019.03.011ZOU Zhufan, YANG Xianghao, WANG Hui, et al. Research progress of cellulose nanocrystals prepared by acid hydrolysis[J]. China Paper Making, 2019, 38(3): 61-69(in Chinese). doi: 10.11980/j.issn.0254-508X.2019.03.011 [24] MIAO J, YU Y, JIANG Z, et al. One-pot preparation of hydrophobic cellulose nanocrystals in an ionic liquid[J]. Cellulose, 2016, 23: 1209-1219. doi: 10.1007/s10570-016-0864-7 [25] GAO M, LI J, BAO Z, et al. A natural in situ fabrication method of functional bacterial cellulose using a microorganism[J]. Nature Communications, 2019, 10(1): 437. doi: 10.1038/s41467-018-07879-3 [26] ZHANG H, XU X, CHEN C, et al. In situ controllable fabrication of porous bacterial cellulose[J]. Materials Letters, 2019, 249: 104-107. doi: 10.1016/j.matlet.2019.04.026 [27] MENG C, HU J, GOURLAY K, et al. Controllable synthesis uniform spherical bacterial cellulose and their potential applications[J]. Cellulose, 2019, 26: 8325-8336. doi: 10.1007/s10570-019-02446-5 [28] SEO C, LEE H W, SURESH A, et al. Improvement of fermentative production of exopolysaccharides from Aureobasidium pullulans under various conditions[J]. Korean Journal of Chemical Engineering, 2014, 31: 1433-1437. doi: 10.1007/s11814-014-0064-9 [29] OHKAWA K, HAYASHI S, NISHIDA A, et al. Preparation of pure cellulose nanofiber via electrospinning[J]. Textile Research Journal, 2009, 79(15): 1396-1401. doi: 10.1177/0040517508101455 [30] ZHANG H, LIU Y, CUI S, et al. Cellulose nanofibers electrospun from aqueous conditions[J]. Cellulose, 2020, 27: 8695-8708. doi: 10.1007/s10570-020-03366-5 [31] JIN Y, HUANG L, ZHENG K, et al. Blending electrostatic spinning fabrication of superhydrophilic/underwater superoleophobic polysulfonamide/polyvinylpyrrolidone nanofibrous membranes for efficient oil–water emulsion separation[J]. Langmuir, 2022, 38(27): 8241-8251. doi: 10.1021/acs.langmuir.2c00640 [32] GAO R, XIAO S, GAN W, et al. Mussel adhesive-inspired design of superhydrophobic nanofibrillated cellulose aerogels for oil/water separation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(7): 9047-9055. [33] ZANINI M, LAVORATTI A, LAZZARI L K, et al. Producing aerogels from silanized cellulose nanofiber suspension[J]. Cellulose, 2017, 24: 769-779. doi: 10.1007/s10570-016-1142-4 [34] WU Z, ZHANG T, ZHANG H, et al. One-pot fabrication of hydrophilic-oleophobic cellulose nanofiber-silane composite aerogels for selectively absorbing water from oil-water mixtures[J]. Cellulose, 2021, 28: 1443-1453. doi: 10.1007/s10570-020-03610-y [35] TANG S, MA M, ZHANG X, et al. Covalent cross-links enable the formation of ambient-dried biomass aerogels through the activation of a triazine derivative for energy storage and generation[J]. Advanced Functional Materials, 2022, 32(36): 2205417. doi: 10.1002/adfm.202205417 [36] OWENS D K, WENDT R C. Estimation of the surface free energy of polymers[J]. Journal of Applied Polymer Science, 1969, 13(8): 1741-1747. doi: 10.1002/app.1969.070130815 [37] MA Z, HAN Y, XING X, et al. Highly efficient oil-water separation of superhydrophobic cellulose II aerogel based on dissolution and regeneration of cotton in lithium bromide system[J]. Journal of Molecular Liquids, 2022, 367: 120543. doi: 10.1016/j.molliq.2022.120543 [38] CHEN Y, YU Z, YE Y, et al. Superelastic, hygroscopic, and ionic conducting cellulose nanofibril monoliths by 3D printing[J]. ACS Nano, 2021, 15(1): 1869-1879. doi: 10.1021/acsnano.0c10577 [39] WANG X, ZHANG Y, WANG S, et al. Synthesis and characterization of amine-modified spherical nanocellulose aerogels[J]. Journal of Materials Science, 2018, 53: 13304-13315. doi: 10.1007/s10853-018-2595-7 [40] QIN H, ZHANG Y, JIANG J, et al. Multifunctional superelastic cellulose nanofibrils aerogel by dual ice-templating assembly[J]. Advanced Functional Materials, 2021, 31(46): 2106269. doi: 10.1002/adfm.202106269 [41] CHEN Y, ZHOU L, CHEN L, et al. Anisotropic nanocellulose aerogels with ordered structures fabricated by directional freeze-drying for fast liquid transport[J]. Cellulose, 2019, 26: 6653-6667. doi: 10.1007/s10570-019-02557-z [42] WANG X, XIE Z, CHEN Z, et al. Hydrophobic and lipophilic cellulose nanocrystal aerogel prepared by methyltrichlorosilane via vapor-phase reaction[J]. Journal of Applied Polymer Science, 2022, 139(43): e53045. doi: 10.1002/app.53045 [43] YANG J, XIA Y, XU P, et al. Super-elastic and highly hydrophobic/superoleophilic sodium alginate/cellulose aerogel for oil/water separation[J]. Cellulose, 2018, 25: 3533-3544. doi: 10.1007/s10570-018-1801-8 [44] 李明星, 谢慧红, 李帅, 等. 高疏水型纤维素纳米纤/聚乳酸杂化气凝胶用于高效油水分离[J]. 高分子材料科学与工程, 2022, 38(8): 104-112.LI Mingxing, XIE Huihong, LI Shuai, et al. High hydrophobic cellulose nanofiber/polylactic acid hybrid aerogel for efficient separation of oil and water[J]. Polymer Materials Science and Engineering, 2022, 38(8): 104-112(in Chinese). [45] 谢沛颖, 谢慧红, 李帅, 等. Pickering乳液凝胶法构筑高疏水型纤维素纳米纤/聚乳酸复合气凝胶[J]. 高分子材料科学与工程, 2022, 38(6): 125-131.XIE Peiying, XIE Huihong, LI Shuai, et al. Preparation of highly hydrophobic cellulose nanofiber/polylactic acid composite aerogel by Pickering emulsion gel method[J]. Polymer Materials Science and Engineering, 2022, 38(6): 125-131(in Chinese). [46] 陈扣琴, 王黎明, 郝慧敏, 等. 花生壳纳米纤维素超疏水气凝胶的制备及在棉织物上的应用[J]. 功能材料, 2022, 53(2): 2107-2113.CHEN Kouqin, WANG Liming, HAO Huimin, et al. Preparation and application of Peanut Shell nanocelluloses superhydrophobic aerogel on cotton fabric[J]. Journal of Functional Materials, 2022, 53(2): 2107-2113(in Chinese). [47] GAO R, SHANG Y, JIAO P, et al. Polydopamine induced wettability switching of cellulose nanofibers/n-dodecanethiol composite aerogels[J]. International Journal of Polymer Science, 2022, 2022: 1-9. [48] SI R, LUO H, ZHANG T, et al. High hydrophobic ZIF-8@cellulose nanofibers/chitosan double network aerogel for oil adsorbent and oil/water separation[J]. International Journal of Biological Macromolecules, 2023, 238: 124008. [49] GONG X, WANG Y, ZENG H, et al. Highly porous, hydrophobic, and compressible cellulose nanocrystals/poly (vinyl alcohol) aerogels as recyclable absorbents for oil-water separation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11118-11128. [50] CHEN K, WANG L, XU L, et al. Preparation of peanut shell cellulose nanofibrils and their superhydrophobic aerogels and their application on cotton fabrics[J]. Journal of Porous Materials, 2023, 30(2): 471-483. doi: DOI:10.1007/s10934-022-01354-7 [51] PANDA D, GANGAWANE K M. Recycled cellulose-silica hybrid aerogel for effective oil adsorption: Optimization and kinetics study[J]. Sādhanā, 2023, 48(3): 110. doi: DOI:10.1007/s12046-023-02161-9 [52] SUN F, LIU W, DONG Z, et al. Underwater superoleophobicity cellulose nanofibril aerogel through regioselective sulfonation for oil/water separation[J]. Chemical Engineering Journal, 2017, 330: 774-782. doi: 10.1016/j.cej.2017.07.142 [53] CHEN J, ZHANG Y, CHEN C, et al. Cellulose sponge with superhydrophilicity and high oleophobicity both in air and under water for efficient oil-water emulsion separation[J]. Macromolecular Materials and Engineering, 2017, 302(9): 1700086. doi: 10.1002/mame.201700086 [54] LI Y, ZHANG H, FAN M, et al. A robust salt-tolerant superoleophobic aerogel inspired by seaweed for efficient oil-water separation in marine environments[J]. Physical Chemistry Chemical Physics, 2016, 18(36): 25394-25400. doi: 10.1039/C6CP04284H [55] FU B, YANG Q, YANG F. Flexible underwater oleophobic cellulose aerogels for efficient oil/water separation[J]. ACS Omega, 2020, 5(14): 8181-8187. doi: 10.1021/acsomega.0c00440