留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维边角料增强TPU纳米复合材料的制备与电热性能

崔晓凤 郑茂林 张娜 黄明 高国利

崔晓凤, 郑茂林, 张娜, 等. 碳纤维边角料增强TPU纳米复合材料的制备与电热性能[J]. 复合材料学报, 2024, 41(4): 1862-1869. doi: 10.13801/j.cnki.fhclxb.20230915.001
引用本文: 崔晓凤, 郑茂林, 张娜, 等. 碳纤维边角料增强TPU纳米复合材料的制备与电热性能[J]. 复合材料学报, 2024, 41(4): 1862-1869. doi: 10.13801/j.cnki.fhclxb.20230915.001
CUI Xiaofeng, ZHENG Maolin, ZHANG Na, et al. Preparation and electrothermal performance of TPU nanocomposite materials reinforced by carbon fiber scraps[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1862-1869. doi: 10.13801/j.cnki.fhclxb.20230915.001
Citation: CUI Xiaofeng, ZHENG Maolin, ZHANG Na, et al. Preparation and electrothermal performance of TPU nanocomposite materials reinforced by carbon fiber scraps[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1862-1869. doi: 10.13801/j.cnki.fhclxb.20230915.001

碳纤维边角料增强TPU纳米复合材料的制备与电热性能

doi: 10.13801/j.cnki.fhclxb.20230915.001
基金项目: 河南省重大科技专项(221100240400);深圳市科技计划(CJGJZD20210408092602006)
详细信息
    通讯作者:

    张娜,博士,副教授,硕士生导师,研究方向为纤维增强复合材料的制备与应用 E-mail: nazhang@zzu.edu.cn

  • 中图分类号: TB332

Preparation and electrothermal performance of TPU nanocomposite materials reinforced by carbon fiber scraps

Funds: Major Science and Technology Project of Henan Province (221100240400); Shenzhen Science and Technology Program (CJGJZD20210408092602006)
  • 摘要: 随着碳纤维(CF)需求量的增加,CF边角料急剧增多,造成了极大的资源浪费。为解决这一问题,采用抽滤法将CF边角料制备成短切碳纤维(SCF)毡,以碳纳米管(CNT)作为二次填料,通过真空热压工艺制备了CF边角料增强热塑性聚氨酯(TPU)纳米复合电热材料(CNTx-SCF/TPU)。通过SEM、TGA、DSC等对复合材料进行测试分析,探究了CNT的最佳浓度,研究了 CNTx-SCF/TPU复合材料的力学性能和电热性能等。结果表明:采用克重为 60 g/m2的 SCF毡、CNT浓度为1.0 g/mL时制备的CNT1.0-SCF/TPU复合材料具有最高的电导率,达到417.84 S/m,与不添加CNT的SCF/TPU相比其电导率提高了34.78%;CNT1.0-SCF/TPU复合材料在3.5 V低电压下,240 s内即能达到约165℃的高温,具有优异电热性能,并具备电热温度可控、电热性能稳定等优点。

     

  • 图  1  ((a), (a1)) SCF丙酮处理前后的SEM图像;((b), (b1)) TPU无纺布的SEM图像;喷涂浓度1.0 mg/mL (c)和1.2 mg/mL (c1)的CNT后TPU无纺布的SEM图像

    Figure  1.  ((a), (a1)) SEM images of SCF before and after acetone treatment; ((b), (b1)) SEM images of TPU non-woven fabric before spraying CNT; SEM images of TPU non-woven fabric after spraying CNT concentration of 1.0 mg/mL (c) and 1.2 mg/mL (c1)

    图  2  CNTx-SCF/TPU复合材料的TGA曲线

    Figure  2.  TGA curves of CNTx-SCF/TPU composites

    T10wt%—Temperature with mass loss 10wt%

    图  3  CNTx-SCF/TPU复合材料的DSC曲线

    Figure  3.  DSC curves of CNTx-SCF/TPU composites

    图  4  CNTx-SCF/TPU复合材料的应力-应变曲线(a)、拉伸强度和断裂伸长率(b)

    Figure  4.  Stress-strain curves (a), tensile strength and elongation at break (b) of CNTx-SCF/TPU composites

    图  5  4 V电压下CNTx-SCF/TPU复合材料的温升曲线

    Figure  5.  Temperature-rise curves of CNTx-SCF/TPU composites at 4 V voltage

    图  6  CNTx-SCF/TPU复合材料电流与电压的关系

    Figure  6.  Relationship of CNTx-SCF/TPU composites between current and voltage

    图  7  电压从1 V递增至3.5 V并降到0 V时CNT1.0-SCF/TPU复合材料实时表面温度

    Figure  7.  Real-time surface temperature of CNT1.0-SCF/TPU composite with applied voltage gradually increasing from 1 V to 3.5 V anddropping to 0 V

    图  8  3 V周期性循环电压下,CNT1.0-SCF/TPU复合材料实时表面温度 (a)、周期性循环下的相对电阻R/R0和稳态温度(b)

    Figure  8.  Real-time surface temperature under 3 V cyclic voltage (a), the relative resistance R/R0 under cyclic voltage and the steady-state temperature (b) of CNT1.0-SCF/TPU composite

    表  1  CNTx-短切碳纤维(SCF)/热塑性聚氨酯(TPU)复合材料中碳纳米管(CNT)含量

    Table  1.   Carbon nanotubes (CNT) contents of CNTx-short carbon fiber (SCF)/thermoplastic polyurethane (TPU) composites

    Sample Mass fraction of CNT/wt%
    SCF/TPU 0.00
    CNT0.6-SCF/TPU 0.46
    CNT0.8-SCF/TPU 0.61
    CNT1.0-SCF/TPU 0.76
    CNT1.2-SCF/TPU 0.91
    下载: 导出CSV

    表  2  CNTx-SCF/TPU复合材料电导率测试结果

    Table  2.   Conductivity test results of CNTx-SCF/TPU composites

    Sample σ/(S·m−1) Relatively
    increasing
    value/%
    Before
    spraying
    CNT
    After
    spraying
    CNT
    CNT0.6-SCF/TPU 282.66 300.32 6.25
    CNT0.8-SCF/TPU 276.84 315.83 14.08
    CNT1.0-SCF/TPU 310.01 417.84 34.78
    CNT1.2-SCF/TPU 297.67 352.21 18.32
    Note: σ—Conductivity of CNTx-SCF/TPU composites.
    下载: 导出CSV
  • [1] 林刚. 碳纤维产业“聚”变发展—2020全球碳纤维复合材料市场报告[J]. 纺织科学研究, 2021, 32(5): 27-49.

    LIN Gang. Carbon fiber industry "convergent" development—2020 global carbon fiber composites market report[J]. Textile Science Research, 2021, 32(5): 27-49(in Chinese).
    [2] 包建文, 蒋诗才, 张代军. 航空碳纤维树脂基复合材料的发展现状和趋势[J]. 科技导报, 2018, 36(19): 52-63.

    BAO Jianwen, JIANG Shicai, ZHANG Daijun. Current status and trends of aeronautical resin matrix composites reinforced by carbon fiber[J]. Science & Technology Review, 2018, 36(19): 52-63(in Chinese).
    [3] 严瑛, 陈燕. 碳纤维技术发展趋势及应用[J]. 合成材料老化与应用, 2018, 47(5): 134-138.

    YAN Ying, CHEN Yan. Discussion on the development trend and application of carbon fiber technology[J]. Synthetic Materials Aging and Application, 2018, 47(5): 134-138(in Chinese).
    [4] 罗国昕. 高取向度短切碳纤维连续毡的制备及其复合材料性能评价研究[D]. 北京: 北京化工大学, 2018.

    LUO Guoxin. Preparation of short carbon fibers continuous mats with high fiber alignment degree and properties of mat-based composites[D]. Beijing: Beijing University of Chemical Technology, 2018(in Chinese).
    [5] SINGH H, SINGH T. Effect of fillers of various sizes on mechanical characterization of natural fiber polymer hybrid composites: A review[J]. Materials Today: Proceedings, 2019, 18: 5345-5350. doi: 10.1016/j.matpr.2019.07.560
    [6] DUAN N M, SHI Z Y, WANG Z H, et al. Mechanically robust Ti3C2T x MXene/carbon fiber fabric/thermoplastic polyurethane composite for efficient electromagnetic interference shielding applications[J]. Materials & Design, 2022, 214: 110382.
    [7] 石嵩, 张传琪, 张达, 等. 碳纳米管填充聚合物基导热复合材料的研究进展[J]. 科学通报, 2022, 67(30): 3531-3545. doi: 10.1360/TB-2022-0318

    SHI Song, ZHANG Chuanqi, ZHANG Da, et al. Progress on carbon nanotube filled polymer-based thermal conductive composites[J]. Chinese Science Bulletin, 2022, 67(30): 3531-3545(in Chinese). doi: 10.1360/TB-2022-0318
    [8] 高珠怡, 陶瑞祥, 尚梦瑶, 等. 聚合物基碳纳米管电磁屏蔽复合材料研究进展[J]. 塑料工业, 2021, 49(5): 20-23, 64.

    GAO Zhuyi, TAO Ruixiang, SHANG Mengyao, et al. Research progress of carbon nanotubes/polymer electromagnetic shielding composites[J]. China Plastics Industry, 2021, 49(5): 20-23, 64(in Chinese).
    [9] 李天舒, 王绍凯, 顾轶卓, 等. 碳纳米管膜层间改性碳纤维/双马来酰亚胺复合材料的结构调控及性能[J]. 复合材料学报, 2021, 38(6): 1784-1794.

    LI Tianshu, WANG Shaokai, GU Yizhuo, et al. Structure adjustment and properties of carbon nanotube film interlaminar modified carbon fiber/bismaleimide composites[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1784-1794(in Chinese).
    [10] GOMIS J, GALAO O, GOMIS V, et al. Self-heating and deicing conductive cement: Experimental study and modeling[J]. Construction and Building Materials, 2015, 75: 442-449. doi: 10.1016/j.conbuildmat.2014.11.042
    [11] TAO X, TIAN D X, LIANG S Q, et al. Research progress on the preparation of flexible and green cellulose-based electrothermal composites for Joule heating applications[J]. ACS Applied Energy Materials, 2022, 5(11): 13096-13112. doi: 10.1021/acsaem.2c02171
    [12] WANG Y D, JIANG H Q, TAO Y F, et al. Polypyrrole/poly(vinyl alcohol-co-ethylene) nanofiber composites on polyethylene terephthalate substrate as flexible electric heating elements[J]. Composites Part A: Applied Science and Manufacturing, 2016, 81: 234-242. doi: 10.1016/j.compositesa.2015.11.011
    [13] 韩志勇, 王晓梅, 左进奎, 等. 碳纤维树脂基复合材料电热损伤温度场研究[J]. 中国民航大学学报, 2013, 31(2): 63-66.

    HAN Zhiyong, WANG Xiaomei, ZUO Jinkui, et al. Research on temperature field of CFRP electric-thermal damage[J]. Journal of Civil Aviation University of China, 2013, 31(2): 63-66(in Chinese).
    [14] 赵中国, 艾桃桃, 刘国瑞, 等. 多壁碳纳米管-聚氨酯/聚丙烯复合材料导电网络结构的演变与性能调控[J]. 复合材料学报, 2021, 38(3): 770-779.

    ZHAO Zhongguo, AI Taotao, LIU Guorui, et al. Evolution of conductive network and property regulation of multiwall carbon nanotubes-polyurethane/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 770-779(in Chinese).
    [15] YOON Y H, SONG J W, KIM D, et al. Transparent film heater using single-walled carbon nanotubes[J]. Advanced Materials, 2007, 19(23): 4284-4287. doi: 10.1002/adma.200701173
    [16] RASHID T, LIANG H L, TAIMUR M, et al. Roll to roll coating of carbon nanotube films for electro thermal heating[J]. Cold Regions Science and Technology, 2021, 182: 103210. doi: 10.1016/j.coldregions.2020.103210
    [17] YANG B, DING X Y, ZHANG M Y, et al. Scalable electric heating paper based on CNT/aramid fiber with superior mechanical and electric heating properties[J]. Composites Part B: Engineering, 2021, 224: 109242.
    [18] HAO Y N, TIAN M W, ZHAO H T, et al. High efficiency electrothermal graphene/tourmaline composite fabric Joule heater with durable abrasion resistance via a spray coating route[J]. Industrial & Engineering Chemistry Research, 2018, 57(40): 13437-13448.
    [19] 郑林宝, 王延相, 陈纪强, 等. CF-CNTs多尺度增强体的制备及CF-CNTs/环氧树脂复合材料力学性能[J]. 复合材料学报, 2017, 34(11): 2428-2436.

    ZHENG Linbao, WANG Yanxiang, CHEN Jiqiang, et al. Preparation of CF-CNTs multi-scale reinforcement and mechanical properties of CF-CNTs/epoxy composites[J]. Acta Materiae Compositae Sinica, 2017, 34(11): 2428-2436(in Chinese).
    [20] 郭妙才, 黑艳伟, 李斌太, 等. 石墨烯/碳纳米管共改性碳纤维复合材料的结构、力学、导电和雷击性能[J]. 复合材料学报, 2022, 39(9): 4354-4365.

    GUO Miaocai, HEI Yanwei, LI Bintai, et al. Structure, mechanical property, electrical conductivity and lightning strike damage behavior of graphene/carbon nanotube co-modified CFRPs[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4354-4365(in Chinese).
    [21] 代少伟, 周玉敬, 李伟东, 等. 氧化石墨烯-碳纳米管复合膜层间增韧碳纤维/环氧树脂复合材料[J]. 复合材料学报, 2023, 40(7): 3862-3873.

    DAI Shaowei, ZHOU Yujing, LI Weidong, et al. Interlaminar toughening of carbon fiber/epoxy composites with graphene oxide-carbon nanotube composite film[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3862-3873(in Chinese).
    [22] ASTM. Standard test method for tensile properties of polymer matrix: ASTM D3039/D3039M—2000[S]. West Conshohocken: ASTM International, 2000.

    ASTM. Standard test method for tensile properties of polymer matrix: ASTM D3039/D3039M—2000[S]. West Conshohocken: ASTM International, 2000.
    [23] 刘艳艳, 邱伟峰, 马全胜, 等. 上浆剂含量对碳纤维性能的影响[J]. 化工新型材料, 2023, 51(7): 111-116.

    LIU Yanyan, QIU Weifeng, MA Quansheng, et al. Effect of sizing agent content on properties of domestic high-strength middle-mode carbon fiber[J]. New Chemical Materials, 2023, 51(7): 111-116(in Chinese).
    [24] 张淑斌, 顾红星, 彭飞, 等. 上浆剂对碳纤维预浸料层压板性能的影响[J]. 化工新型材料, 2023, 51(2): 169-171, 183.

    ZHANG Shubin, GU Hongxing, PENG Fei, et al. Effect of sizing agent on performance of carbon fiber prepreg laminate[J]. New Chemical Materials, 2023, 51(2): 169-171, 183(in Chinese).
    [25] 王臣辉. 碳纤维上浆剂对复合材料界面性能的影响研究进展[J]. 化工与医药工程, 2023, 44(2): 1-7.

    WANG Chenhui. Research progress on the influence of carbon fiber sizing agents on the interfacial properties of composites[J]. Chemical and Pharmaceutical Engineering, 2023, 44(2): 1-7(in Chinese).
    [26] TANG X Z, MU C Z, ZHU W Y, et al. Flexible polyurethane composites prepared by incorporation of polyethylenimine-modified slightly reduced graphene oxide[J]. Carbon, 2016, 98: 432-440. doi: 10.1016/j.carbon.2015.11.030
    [27] BORA C, BHARALI P, BAGLARI S, et al. Strong and conductive reduced graphene oxide/polyester resin composite films with improved mechanical strength, thermal stability and its antibacterial activity[J]. Composites Science and Technology, 2013, 87: 1-7. doi: 10.1016/j.compscitech.2013.07.025
    [28] MA Y J, FANG M, HUANG M, et al. Simultaneously improved solid particle erosion resistant and strength of graphene nanoplates/carbon nanotube enhanced thermoplastic polyurethane films[J]. Journal of Applied Polymer Science, 2021, 138(36): 50924.
    [29] SUI D, HUANG Y, HUANG L, et al. Flexible and transparent electrothermal film heaters based on graphene materials[J]. Small, 2011, 7(22): 3186-3192. doi: 10.1002/smll.201101305
    [30] ZHOU B, HAN X Q, LI L, et al. Ultrathin, flexible transparent Joule heater with fast response time based on single-walled carbon nanotubes/poly(vinyl alcohol) film[J]. Composites Science and Technology, 2019, 183: 107796. doi: 10.1016/j.compscitech.2019.107796
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  585
  • HTML全文浏览量:  285
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-01
  • 修回日期:  2023-09-01
  • 录用日期:  2023-09-04
  • 网络出版日期:  2023-09-18
  • 刊出日期:  2024-04-01

目录

    /

    返回文章
    返回