Preparation and electrothermal performance of TPU nanocomposite materials reinforced by carbon fiber scraps
-
摘要: 随着碳纤维(CF)需求量的增加,CF边角料急剧增多,造成了极大的资源浪费。为解决这一问题,采用抽滤法将CF边角料制备成短切碳纤维(SCF)毡,以碳纳米管(CNT)作为二次填料,通过真空热压工艺制备了CF边角料增强热塑性聚氨酯(TPU)纳米复合电热材料(CNTx-SCF/TPU)。通过SEM、TGA、DSC等对复合材料进行测试分析,探究了CNT的最佳浓度,研究了 CNTx-SCF/TPU复合材料的力学性能和电热性能等。结果表明:采用克重为 60 g/m2的 SCF毡、CNT浓度为1.0 g/mL时制备的CNT1.0-SCF/TPU复合材料具有最高的电导率,达到417.84 S/m,与不添加CNT的SCF/TPU相比其电导率提高了34.78%;CNT1.0-SCF/TPU复合材料在3.5 V低电压下,240 s内即能达到约165℃的高温,具有优异电热性能,并具备电热温度可控、电热性能稳定等优点。Abstract: With the increase in the demand for carbon fiber (CF), CF scraps have increased dramatically, resulting in a great waste of resources. To solve this problem, CNTx-SCF/TPU electrothermal nanocomposite materials were prepared by using short carbon fiber (SCF) felt fabricated by CF scraps through filtration method, with carbon nanotubes (CNT) as secondary filler and thermoplastic polyurethane (TPU) as the matrix, via vacuum hot pressing process. The composite materials were tested and analyzed using SEM, TGA, DSC, etc., and the optimal concentration of CNT was investigated. The mechanical and electrothermal properties of CNTx-SCF/TPU composite materials were studied. The results show that CNT1.0-SCF/TPU composite material exhibits highest electrical conductivity of 417.84 S/m using 60 g/m2 SCF felt and a CNT concentration of 1.0 g/mL, representing a 34.78% improvement compared to the SCF/TPU without CNT. CNT1.0-SCF/TPU composite exhibit significantly improved electrothermal performance at a low voltage of 3.5 V, reaching a temperature of approximately 165℃ in 240 s. It also represents advantages such as precise and stable electrothermal temperature control.
-
图 1 ((a), (a1)) SCF丙酮处理前后的SEM图像;((b), (b1)) TPU无纺布的SEM图像;喷涂浓度1.0 mg/mL (c)和1.2 mg/mL (c1)的CNT后TPU无纺布的SEM图像
Figure 1. ((a), (a1)) SEM images of SCF before and after acetone treatment; ((b), (b1)) SEM images of TPU non-woven fabric before spraying CNT; SEM images of TPU non-woven fabric after spraying CNT concentration of 1.0 mg/mL (c) and 1.2 mg/mL (c1)
表 1 CNTx-短切碳纤维(SCF)/热塑性聚氨酯(TPU)复合材料中碳纳米管(CNT)含量
Table 1. Carbon nanotubes (CNT) contents of CNTx-short carbon fiber (SCF)/thermoplastic polyurethane (TPU) composites
Sample Mass fraction of CNT/wt% SCF/TPU 0.00 CNT0.6-SCF/TPU 0.46 CNT0.8-SCF/TPU 0.61 CNT1.0-SCF/TPU 0.76 CNT1.2-SCF/TPU 0.91 表 2 CNTx-SCF/TPU复合材料电导率测试结果
Table 2. Conductivity test results of CNTx-SCF/TPU composites
Sample σ/(S·m−1) Relatively
increasing
value/%Before
spraying
CNTAfter
spraying
CNTCNT0.6-SCF/TPU 282.66 300.32 6.25 CNT0.8-SCF/TPU 276.84 315.83 14.08 CNT1.0-SCF/TPU 310.01 417.84 34.78 CNT1.2-SCF/TPU 297.67 352.21 18.32 Note: σ—Conductivity of CNTx-SCF/TPU composites. -
[1] 林刚. 碳纤维产业“聚”变发展—2020全球碳纤维复合材料市场报告[J]. 纺织科学研究, 2021, 32(5): 27-49.LIN Gang. Carbon fiber industry "convergent" development—2020 global carbon fiber composites market report[J]. Textile Science Research, 2021, 32(5): 27-49(in Chinese). [2] 包建文, 蒋诗才, 张代军. 航空碳纤维树脂基复合材料的发展现状和趋势[J]. 科技导报, 2018, 36(19): 52-63.BAO Jianwen, JIANG Shicai, ZHANG Daijun. Current status and trends of aeronautical resin matrix composites reinforced by carbon fiber[J]. Science & Technology Review, 2018, 36(19): 52-63(in Chinese). [3] 严瑛, 陈燕. 碳纤维技术发展趋势及应用[J]. 合成材料老化与应用, 2018, 47(5): 134-138.YAN Ying, CHEN Yan. Discussion on the development trend and application of carbon fiber technology[J]. Synthetic Materials Aging and Application, 2018, 47(5): 134-138(in Chinese). [4] 罗国昕. 高取向度短切碳纤维连续毡的制备及其复合材料性能评价研究[D]. 北京: 北京化工大学, 2018.LUO Guoxin. Preparation of short carbon fibers continuous mats with high fiber alignment degree and properties of mat-based composites[D]. Beijing: Beijing University of Chemical Technology, 2018(in Chinese). [5] SINGH H, SINGH T. Effect of fillers of various sizes on mechanical characterization of natural fiber polymer hybrid composites: A review[J]. Materials Today: Proceedings, 2019, 18: 5345-5350. doi: 10.1016/j.matpr.2019.07.560 [6] DUAN N M, SHI Z Y, WANG Z H, et al. Mechanically robust Ti3C2T x MXene/carbon fiber fabric/thermoplastic polyurethane composite for efficient electromagnetic interference shielding applications[J]. Materials & Design, 2022, 214: 110382. [7] 石嵩, 张传琪, 张达, 等. 碳纳米管填充聚合物基导热复合材料的研究进展[J]. 科学通报, 2022, 67(30): 3531-3545. doi: 10.1360/TB-2022-0318SHI Song, ZHANG Chuanqi, ZHANG Da, et al. Progress on carbon nanotube filled polymer-based thermal conductive composites[J]. Chinese Science Bulletin, 2022, 67(30): 3531-3545(in Chinese). doi: 10.1360/TB-2022-0318 [8] 高珠怡, 陶瑞祥, 尚梦瑶, 等. 聚合物基碳纳米管电磁屏蔽复合材料研究进展[J]. 塑料工业, 2021, 49(5): 20-23, 64.GAO Zhuyi, TAO Ruixiang, SHANG Mengyao, et al. Research progress of carbon nanotubes/polymer electromagnetic shielding composites[J]. China Plastics Industry, 2021, 49(5): 20-23, 64(in Chinese). [9] 李天舒, 王绍凯, 顾轶卓, 等. 碳纳米管膜层间改性碳纤维/双马来酰亚胺复合材料的结构调控及性能[J]. 复合材料学报, 2021, 38(6): 1784-1794.LI Tianshu, WANG Shaokai, GU Yizhuo, et al. Structure adjustment and properties of carbon nanotube film interlaminar modified carbon fiber/bismaleimide composites[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1784-1794(in Chinese). [10] GOMIS J, GALAO O, GOMIS V, et al. Self-heating and deicing conductive cement: Experimental study and modeling[J]. Construction and Building Materials, 2015, 75: 442-449. doi: 10.1016/j.conbuildmat.2014.11.042 [11] TAO X, TIAN D X, LIANG S Q, et al. Research progress on the preparation of flexible and green cellulose-based electrothermal composites for Joule heating applications[J]. ACS Applied Energy Materials, 2022, 5(11): 13096-13112. doi: 10.1021/acsaem.2c02171 [12] WANG Y D, JIANG H Q, TAO Y F, et al. Polypyrrole/poly(vinyl alcohol-co-ethylene) nanofiber composites on polyethylene terephthalate substrate as flexible electric heating elements[J]. Composites Part A: Applied Science and Manufacturing, 2016, 81: 234-242. doi: 10.1016/j.compositesa.2015.11.011 [13] 韩志勇, 王晓梅, 左进奎, 等. 碳纤维树脂基复合材料电热损伤温度场研究[J]. 中国民航大学学报, 2013, 31(2): 63-66.HAN Zhiyong, WANG Xiaomei, ZUO Jinkui, et al. Research on temperature field of CFRP electric-thermal damage[J]. Journal of Civil Aviation University of China, 2013, 31(2): 63-66(in Chinese). [14] 赵中国, 艾桃桃, 刘国瑞, 等. 多壁碳纳米管-聚氨酯/聚丙烯复合材料导电网络结构的演变与性能调控[J]. 复合材料学报, 2021, 38(3): 770-779.ZHAO Zhongguo, AI Taotao, LIU Guorui, et al. Evolution of conductive network and property regulation of multiwall carbon nanotubes-polyurethane/polypropylene composites[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 770-779(in Chinese). [15] YOON Y H, SONG J W, KIM D, et al. Transparent film heater using single-walled carbon nanotubes[J]. Advanced Materials, 2007, 19(23): 4284-4287. doi: 10.1002/adma.200701173 [16] RASHID T, LIANG H L, TAIMUR M, et al. Roll to roll coating of carbon nanotube films for electro thermal heating[J]. Cold Regions Science and Technology, 2021, 182: 103210. doi: 10.1016/j.coldregions.2020.103210 [17] YANG B, DING X Y, ZHANG M Y, et al. Scalable electric heating paper based on CNT/aramid fiber with superior mechanical and electric heating properties[J]. Composites Part B: Engineering, 2021, 224: 109242. [18] HAO Y N, TIAN M W, ZHAO H T, et al. High efficiency electrothermal graphene/tourmaline composite fabric Joule heater with durable abrasion resistance via a spray coating route[J]. Industrial & Engineering Chemistry Research, 2018, 57(40): 13437-13448. [19] 郑林宝, 王延相, 陈纪强, 等. CF-CNTs多尺度增强体的制备及CF-CNTs/环氧树脂复合材料力学性能[J]. 复合材料学报, 2017, 34(11): 2428-2436.ZHENG Linbao, WANG Yanxiang, CHEN Jiqiang, et al. Preparation of CF-CNTs multi-scale reinforcement and mechanical properties of CF-CNTs/epoxy composites[J]. Acta Materiae Compositae Sinica, 2017, 34(11): 2428-2436(in Chinese). [20] 郭妙才, 黑艳伟, 李斌太, 等. 石墨烯/碳纳米管共改性碳纤维复合材料的结构、力学、导电和雷击性能[J]. 复合材料学报, 2022, 39(9): 4354-4365.GUO Miaocai, HEI Yanwei, LI Bintai, et al. Structure, mechanical property, electrical conductivity and lightning strike damage behavior of graphene/carbon nanotube co-modified CFRPs[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4354-4365(in Chinese). [21] 代少伟, 周玉敬, 李伟东, 等. 氧化石墨烯-碳纳米管复合膜层间增韧碳纤维/环氧树脂复合材料[J]. 复合材料学报, 2023, 40(7): 3862-3873.DAI Shaowei, ZHOU Yujing, LI Weidong, et al. Interlaminar toughening of carbon fiber/epoxy composites with graphene oxide-carbon nanotube composite film[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3862-3873(in Chinese). [22] ASTM. Standard test method for tensile properties of polymer matrix: ASTM D3039/D3039M—2000[S]. West Conshohocken: ASTM International, 2000.ASTM. Standard test method for tensile properties of polymer matrix: ASTM D3039/D3039M—2000[S]. West Conshohocken: ASTM International, 2000. [23] 刘艳艳, 邱伟峰, 马全胜, 等. 上浆剂含量对碳纤维性能的影响[J]. 化工新型材料, 2023, 51(7): 111-116.LIU Yanyan, QIU Weifeng, MA Quansheng, et al. Effect of sizing agent content on properties of domestic high-strength middle-mode carbon fiber[J]. New Chemical Materials, 2023, 51(7): 111-116(in Chinese). [24] 张淑斌, 顾红星, 彭飞, 等. 上浆剂对碳纤维预浸料层压板性能的影响[J]. 化工新型材料, 2023, 51(2): 169-171, 183.ZHANG Shubin, GU Hongxing, PENG Fei, et al. Effect of sizing agent on performance of carbon fiber prepreg laminate[J]. New Chemical Materials, 2023, 51(2): 169-171, 183(in Chinese). [25] 王臣辉. 碳纤维上浆剂对复合材料界面性能的影响研究进展[J]. 化工与医药工程, 2023, 44(2): 1-7.WANG Chenhui. Research progress on the influence of carbon fiber sizing agents on the interfacial properties of composites[J]. Chemical and Pharmaceutical Engineering, 2023, 44(2): 1-7(in Chinese). [26] TANG X Z, MU C Z, ZHU W Y, et al. Flexible polyurethane composites prepared by incorporation of polyethylenimine-modified slightly reduced graphene oxide[J]. Carbon, 2016, 98: 432-440. doi: 10.1016/j.carbon.2015.11.030 [27] BORA C, BHARALI P, BAGLARI S, et al. Strong and conductive reduced graphene oxide/polyester resin composite films with improved mechanical strength, thermal stability and its antibacterial activity[J]. Composites Science and Technology, 2013, 87: 1-7. doi: 10.1016/j.compscitech.2013.07.025 [28] MA Y J, FANG M, HUANG M, et al. Simultaneously improved solid particle erosion resistant and strength of graphene nanoplates/carbon nanotube enhanced thermoplastic polyurethane films[J]. Journal of Applied Polymer Science, 2021, 138(36): 50924. [29] SUI D, HUANG Y, HUANG L, et al. Flexible and transparent electrothermal film heaters based on graphene materials[J]. Small, 2011, 7(22): 3186-3192. doi: 10.1002/smll.201101305 [30] ZHOU B, HAN X Q, LI L, et al. Ultrathin, flexible transparent Joule heater with fast response time based on single-walled carbon nanotubes/poly(vinyl alcohol) film[J]. Composites Science and Technology, 2019, 183: 107796. doi: 10.1016/j.compscitech.2019.107796