留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静电纺P(VDF-TrFE)纳米纤维在柔性压电传感与能量收集领域的研究进展

屈展 夏广波 方剑

屈展, 夏广波, 方剑. 静电纺P(VDF-TrFE)纳米纤维在柔性压电传感与能量收集领域的研究进展[J]. 复合材料学报, 2024, 41(3): 1141-1152. doi: 10.13801/j.cnki.fhclxb.20230914.001
引用本文: 屈展, 夏广波, 方剑. 静电纺P(VDF-TrFE)纳米纤维在柔性压电传感与能量收集领域的研究进展[J]. 复合材料学报, 2024, 41(3): 1141-1152. doi: 10.13801/j.cnki.fhclxb.20230914.001
QU Zhan, XIA Guangbo, FANG Jian. Research progress of electrospun P(VDF-TrFE) nanofibers in the field of flexible piezoelectric sensing and energy harvesting[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1141-1152. doi: 10.13801/j.cnki.fhclxb.20230914.001
Citation: QU Zhan, XIA Guangbo, FANG Jian. Research progress of electrospun P(VDF-TrFE) nanofibers in the field of flexible piezoelectric sensing and energy harvesting[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1141-1152. doi: 10.13801/j.cnki.fhclxb.20230914.001

静电纺P(VDF-TrFE)纳米纤维在柔性压电传感与能量收集领域的研究进展

doi: 10.13801/j.cnki.fhclxb.20230914.001
基金项目: 国家自然科学基金面上项目(52173059);江苏省高校自然科学研究项目重大项目(21KJA540002)
详细信息
    通讯作者:

    方剑,博士,教授,博士生导师,研究方向为电活性纤维材料和柔性智能可穿戴纺织品 E-mail:jian.fang@suda.edu.cn

  • 中图分类号: TN384;TB332

Research progress of electrospun P(VDF-TrFE) nanofibers in the field of flexible piezoelectric sensing and energy harvesting

Funds: National Natural Science Foundation of China (52173059); Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions (21KJA540002)
  • 摘要: 压电聚合物聚偏氟乙烯-三氟乙烯(P(VDF-TrFE)) 作为聚偏氟乙烯(PVDF)典型的共聚物,具有优异的压电性能、机械性能及生物相容性。因此基于P(VDF-TrFE) 静电纺压电网膜的柔性压电传感器与能量收集器在可穿戴电子设备、智能纺织品及医疗健康系统等领域有着广阔的前景,能够将触觉/压力、应变、声波甚至生理微振动等信号转换为电学信号或低功率的电能。本文旨在深入分析P(VDF-TrFE) 压电性能的机制,总结各种提升静电纺P(VDF-TrFE) 纳米纤维压电性的策略,全面概述P(VDF-TrFE) 基柔性压电传感与能量收集方面的应用,特别是在压力与触觉传感、声传感、生物组织传感、生理微振动传感及能量收集等领域的研究进展。阐述了静电纺压电聚合物纳米纤维的新兴应用场景,并讨论了该领域目前的挑战和未来前景。

     

  • 图  1  P(VDF-TrFE)在受到机械作用时的压电性机制

    E—Electromotive force

    Figure  1.  Piezoelectric mechanism of P(VDF-TrFE) under mechanical action

    图  2  (a) P(VDF-TrFE)共聚物中VDF摩尔含量与剩余极化(Pr)的关系[27];(b) P(VDF-TrFE)共聚物的相图[28]

    PTrFE—Polytrifluoroethylene; VDF—Vinylidene fluoride; PVDF—Poly(vinylidene fluoride); Tm—Melting temperature; Tc—Curie temperature

    Figure  2.  (a) Relationship between VDF molar content and remanent polarization (Pr) of P(VDF-TrFE) copolymers[27]; (b) Phase diagram for a P(VDF-TrFE) copolymer[28]

    图  3  P(VDF-TrFE)与BaTiO3 (a)、MXene (b)、BaTiO3与MXene (c) 的作用机制[41, 43]

    Figure  3.  Mechanism diagram of P(VDF-TrFE) and BaTiO3 (a), MXene (b), BaTiO3 and MXene (c) [41, 43]

    图  4  静电纺聚偏氟乙烯-三氟乙烯(P(VDF-TrFE))纳米纤维在传感和能量收集领域的应用[37-41]

    PENG—Piezoelectric nanogenerator

    Figure  4.  Application of electrospinning poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)) nanofibers in sensing and energy harvesting[37-41]

    图  5  基于自供电智能步态传感个人步态监测系统[14]

    Figure  5.  Scheme diagram of personal gait judgment system based on self-powered sensor[14]

    图  6  生理微振动传感示意图[53]

    Figure  6.  Scheme diagram of physiological micro-vibration sensing[53]

    表  1  静电纺丝法制备的P(VDF-TrFE) 纳米纤维应用总结

    Table  1.   Summary of application of P(VDF-TrFE) nanofibers prepared by electrospinning

    Application Mole ratio F(β)/% Xc/% Special processing Performance Year Ref.
    Pressure sensor 70/30 Spray on PEDOT-CNT/rGO electrode Sensitivity: 67.4 kPa−1;
    Response time: 12 ms
    2019 [58]
    70/30 Oil modified stacked porous nanofibers Voltage output: 3.8 V;
    Current output: 243.6 nA
    2021 [14]
    75/25 70 Doped with MXene Voltage output: 1.58 V;
    Power density: 3.64 mW/m2;
    Stability: 1000 cycles
    2021 [42]
    70/30 Doped with ZnO NPs Voltage output: 1.788 V 2021 [59]
    80/20 92 90 Doped with rGO-MCNTs Sensitivity: 16.125 kPa−1
    2022 [23]
    80/20 Doped with carbon nano powders as electrode Sensitivity: 0.14 mV/N;
    Stability: 106 cycles
    2022 [60]
    75/25 81.04 50 Doped with BaTiO3 and MXene Voltage output: 7.6 V;
    Response time: 56 ms;
    Stability:5000 cycles
    2023 [43]
    70/30 Polydopamine-assisted ZnO nanowires attached to P(VDF-TrFE) nanofibers Sensitivity: (25.0±3.5) V/N;
    Range of forces: 970 N
    2023 [44]
    Tactile Sensor 75/25 The sensor is composed of two sections, TENG and PENG Response time:100 ms 2020 [45]
    70/30 92 Designed a patterned piezoelectric array Sensitivity: 2.5 mV/kPa;
    Response time: 5 ms;
    Stability: 25000 cycles
    2022 [46]
    70/30 All electrospun fabrics doped with BaTiO3 Sensitivity: 2.72 nA/N 2022 [47]
    80/20 Doped with CB as electrode Sensitivity: 4 mV/N;
    Stability: 106 cycles
    2023 [61]
    Acoustic sensor 55/45 8-hole electrode and package structure Voltage output:14.5 V;
    Current output: 28.5 μA
    2017 [48]
    70/30 Sensitivity: 10 V/Pa 2020 [49]
    Biotissue engineering
    sensors
    75/25 95 The aligned electrospun fiber scaffolds Cell growth cycle: 10 days 2020 [40]
    70/30 88.49 The aligned electrospun fiber scaffolds Current output:1.75 nA 2020 [50]
    Doped with CuO, P3HT, CuPc or MB Cell viability: 77% 2023 [51]
    Physiological
    micro-vibration sensor
    70/30 Oily modification and combined with TENG Voltage output: 13.1 V;
    Current output: 46 nA
    2022 [52]
    86.43 Doped with nanoclay Bandwidth: 0.3-40 Hz;
    Stability: 105 cycles;
    Sensitivity: 24.35 mV/kPa
    2022 [53]
    Energy harvester 75/25 The electrospun BNT-ST/PVDF-TrFE nanofibers are twined around a conductive thread Voltage output: 2.1 V;
    Current output: 0.42 μA
    2019 [62]
    70/30 Electrospun PVDF-TrFE nanofibers are deposited on copper wires Current density: 22 nA/cm2;
    Power density: 8.6 μW/cm3
    2021 [54]
    75/25 94 Doped with PMMA@BaTiO3 Voltage output: 12.6 V;
    Current output: 1.30 μA;
    Output power: 4.25 μW;
    Stability: 6000 cycles
    2021 [55]
    70/30 46.37 Doped with PEO and LiCl Voltage output: 69.4 V;
    Output power: 40.7 µW/cm2
    2022 [56]
    76 A nonpiezoelectric polymer core is introduced Voltage output: 126 V;
    Current output: 7.2 μA;
    Power density: 710 mW/m2
    2023 [57]
    70/30 52.9 Doped with amine-functionalized graphene oxide (AGO) Energy density: 4.75 J/cm−3;
    Piezoelectric coefficient: –47 pm/V
    2023 [63]
    Notes: F(β)—β phase content of P(VDF-TrFE); Xc—Crystallinity of P(VDF-TrFE); PEO—Polyethylene oxide; P3HT—Poly(3-hexylthiophene); CuPc—Copper phthalocyanine; MB—Methylene blue; BNT-ST—Bismuth sodium titanate-strontium titanate; PMMA—Polymethyl methacrylate; CB—Carbon black; PEDOT—Poly(3, 4-ethylenedioxythiophene); CNT—Carbon nanotubes; rGO—Reduced graphene oxide; NPs—Nano particles; MCNTs—Multi-walled carbon nanotubes; TENG—Triboelectric nanogenerator.
    下载: 导出CSV
  • [1] KARAN S K, MAITI S, LEE J H, et al. Recent advances in self-powered tribo-/piezoelectric energy harvesters: All-in-one package for future smart technologies[J]. Advanced Functional Materials, 2020, 30(48): 2004446. doi: 10.1002/adfm.202004446
    [2] WAN X Q, CONG H L, JIANG G M, et al. A review on PVDF nanofibers in textiles for flexible piezoelectric sensors[J]. ACS Applied Nano Materials, 2023, 6(2): 1522-1540.
    [3] SHARVARE P, BATRA A, KOTRU S, et al. Electrospun polyvinylidene fluoride nanofiber membrane-based flexible capacitive tactile sensors for biomedical applications[J]. Surface Engineering and Applied Electrochemistry, 2022, 58(2): 194-201. doi: 10.3103/S1068375522020089
    [4] YANG C R, LIN M F, HUANG C K, et al. Highly sensitive and wearable capacitive pressure sensors based on PVDF/BaTiO3 composite fibers on PDMS microcylindrical structures[J]. Measurement, 2022, 202: 111817. doi: 10.1016/j.measurement.2022.111817
    [5] ZHOU Q, CHEN T J, CAO S J, et al. A novel flexible piezoresistive pressure sensor based on PVDF/PVA-CNTs electrospun composite film[J]. Applied Physics A-Materials Science & Processing, 2021, 127(9): 667.
    [6] BHATTA T, MAHARJAN P, CHO H, et al. High-performance triboelectric nanogenerator based on MXene functionalized polyvinylidene fluoride composite nanofibers[J]. Nano Energy, 2021, 81: 105670. doi: 10.1016/j.nanoen.2020.105670
    [7] GUO S B, DUAN X X, XIE M Y, et al. Composites, fabrication and application of polyvinylidene fluoride for flexible electromechanical devices: A review[J]. Micromachines, 2020, 11(12): 1076. doi: 10.3390/mi11121076
    [8] WANG Y, ZHU L P, DU C F. Progress in piezoelectric nanogenerators based on PVDF composite films[J]. Micromachines, 2021, 12(11): 1278. doi: 10.3390/mi12111278
    [9] WANG X M, SUN F Z, YIN G C, et al. Tactile-sensing based on flexible PVDF nanofibers via electrospinning: A review[J]. Sensors, 2018, 18(2): 330. doi: 10.3390/s18020330
    [10] KALIMULDINA G, TURDAKYN N, ABAY I, et al. A review of piezoelectric PVDF film by electrospinning and its applications[J]. Sensors, 2020, 20(18): 5214. doi: 10.3390/s20185214
    [11] DAS MAHAPATRA S, MOHAPATRA P C, ARIA A I, et al. Piezoelectric materials for energy harvesting and sensing applications: Roadmap for future smart materials[J]. Advanced Science, 2021, 8(17): 2100864. doi: 10.1002/advs.202100864
    [12] VEVED A, EJUH G W, DJONGYANG N. Review of emerging materials for PVDF-based energy harvesting[J]. Energy Reports, 2022, 8: 12853-12870. doi: 10.1016/j.egyr.2022.09.076
    [13] ZHANG W X, ZAAROUR B, ZHU L, et al. A comparative study of electrospun polyvinylidene fluoride and poly(vinylidenefluoride-co-trifluoroethylene) fiber webs: Mechanical properties, crystallinity, and piezoelectric properties[J]. Journal of Engineered Fibers and Fabrics, 2020, 15: 105515.
    [14] LO W C, CHEN C C, FUH Y K. 3D stacked near-field electrospun nanoporous PVDF-TrFE nanofibers as self-powered smart sensing in gait big data analytics[J]. Advanced Materials Technologies, 2021, 6(4): 2000779. doi: 10.1002/admt.202000779
    [15] HERNANDEZ N, GONZALEZ-GONZALEZ V A, DZUL-BAUTISTA I B, et al. Electrospun poly(vinylidene fluoride-trifluoroethylene) based flexible magnetoelectric nanofibers[J]. European Polymer Journal, 2018, 109: 336-340. doi: 10.1016/j.eurpolymj.2018.09.045
    [16] XUE J J, WU T, DAI Y Q, et al. Electrospinning and electrospun nanofibers: Methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8): 5298-5415. doi: 10.1021/acs.chemrev.8b00593
    [17] THENMOZHI S, DHARMARAJ N, KADIRVELU K, et al. Electrospun nanofibers: New generation materials for advanced applications[J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2017, 217: 36-48.
    [18] 葛锋, 王雪梅, 冉祥海. P(VDF-TrFE)静电纺丝纤维膜的制备及其性能研究[J]. 塑料科技, 2018, 46(10): 36-39.

    GE Feng, WANG Xuemei, RAN Xianghai. Study on properties of P(VDF-TrFE) electro-spinning fiber membrane and its preparation[J]. Plastics Science and Technology, 2017, 217: 36-48(in Chinese).
    [19] SMITH M, KAR-NARAYAN S. Piezoelectric polymers: Theory, challenges and opportunities[J]. International Materials Reviews, 2022, 67(1): 65-88. doi: 10.1080/09506608.2021.1915935
    [20] 张淑婷, 安琪. 高性能聚偏氟乙烯基柔性压电材料的设计策略进展[J]. 高等学校化学学报, 2021, 42(4): 1114-1145.

    ZHANG Shuting, AN Qi. Progress on the design and fabrication of high performance piezoelectric flexible materials on polyvinylidene fluoride[J]. Chemical Journal of Chinese Universities, 2021, 42(4): 1114-1145(in Chinese).
    [21] 吴强, 宋玉洁, 李俊. P(VDF-TrFE)的铁电性能影响因素及研究现状[J]. 高分子材料科学与工程, 2019, 35(8): 167-173. doi: 10.16865/j.cnki.1000-7555.2019.0215

    WU Qiang, SONG Yujie, LI Jun. Factors governing ferroelectric characteristics and status of P(VDF-TrFE)[J]. Polymeric Materials Science and Engineering, 2019, 35(8): 167-173(in Chinese). doi: 10.16865/j.cnki.1000-7555.2019.0215
    [22] MARTINS P, LOPES A C, LANCEROS-MENDEZ S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications[J]. Progress in Polymer Science, 2014, 39(4): 683-706. doi: 10.1016/j.progpolymsci.2013.07.006
    [23] AHMED A, JIA Y, DEB H, et al. Ultra-sensitive all organic PVDF-TrFE E-spun nanofibers with enhanced beta-phase for piezoelectric response[J]. Journal of Materials Science-Materials in Electronics, 2022, 33(7): 3965-3981. doi: 10.1007/s10854-021-07590-y
    [24] LOVINGER A J. Ferroelectric polymers[J]. Science, 1983, 220(4602): 1115-1121. doi: 10.1126/science.220.4602.1115
    [25] QIAN X, CHEN X, ZHU L, et al. Fluoropolymer ferroelectrics: Multifunctional platform for polar-structured energy conversion[J]. Science, 2023, 380(6645): 596.
    [26] CHEN X, QIN H, QIAN X, et al. Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field[J]. Science, 2022, 375(6587): 1418-1422. doi: 10.1126/science.abn0936
    [27] FURUKAWA T. Structure and functional properties of ferroelectric polymers[J]. Advances in Colloid and Interface Science, 1997, 71-72: 183-208.
    [28] BAUER F. Review on the properties of the ferrorelaxor polymers and some new recent developments[J]. Applied Physics A-Materials Science & Processing, 2012, 107(3): 567-573.
    [29] 葛锋, 王雪梅, 冉祥海. 降温速率对偏氟乙烯-三氟乙烯共聚物相转变的影响[J]. 塑料科技, 2018, 46(11): 54-58. doi: 10.15925/j.cnki.issn1005-3360.2018.11.009

    GE Feng, WANG Xuemei, RAN Xianghai. Effect of cooling rate on the phase transition of P(VDF-TrFE) copolymer[J]. Plastics Science and Technology, 2018, 46(11): 54-58(in Chinese). doi: 10.15925/j.cnki.issn1005-3360.2018.11.009
    [30] 张小芳, 夏卫民, 邢俊红, 等. 聚偏氟乙烯及其共聚物基压电复合材料的研究进展[J]. 复合材料学报, 2021, 38(4): 997-1019. doi: 10.13801/j.cnki.fhclxb.20201210.004

    ZHANG Xiaofang, XIA Weimin, XING Junhong, et al. Research progress of polyvinylidene fluoride and its copolymer piezoelectric composites[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 997-1019(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201210.004
    [31] HE Z C, RAULT F, LEWANDOWSKI M, et al. Electrospun PVDF nanofibers for piezoelectric applications: A review of the influence of electrospinning parameters on the beta phase and crystallinity enhancement[J]. Polymers, 2021, 13(2): 174. doi: 10.3390/polym13020174
    [32] POURBAFRANI M, AZIMI S, NIA N Y, et al. The effect of electrospinning parameters on piezoelectric PVDF-TrFE nanofibers: Experimental and simulation study[J]. Energies, 2023, 16(1): 37.
    [33] KIM M, LEE S, KIM Y I. Solvent-controlled crystalline beta-phase formation in electrospun P(VDF-TrFE) fibers for enhanced piezoelectric energy harvesting[J]. APL Materials, 2020, 8(7): 071109. doi: 10.1063/5.0011686
    [34] BANIASADI M, XU Z, CAI J, et al. Correlation of annealing temperature, morphology, and electro-mechanical properties of electrospun piezoelectric nanofibers[J]. Polymer, 2017, 127: 192-202. doi: 10.1016/j.polymer.2017.08.053
    [35] BANIASADI M, XU Z, HONG S, et al. Thermo-electromechanical behavior of piezoelectric nanofibers[J]. ACS Applied Materials & Interfaces, 2016, 8(4): 2540-2551.
    [36] LU L J, DING W Q, LIU J Q, et al. Flexible PVDF based piezoelectric nanogenerators[J]. Nano Energy, 2020, 78: 105251. doi: 10.1016/j.nanoen.2020.105251
    [37] LANG C H, FANG J, SHAO H, et al. High-sensitivity acoustic sensors from nanofibre webs[J]. Nature Communications, 2016, 7: 11108. doi: 10.1038/ncomms11108
    [38] CHEN G Z, CHEN G, PAN L, et al. Electrospun flexible PVDF/GO piezoelectric pressure sensor for human joint monitoring[J]. Diamond and Related Materials, 2022, 129: 109358. doi: 10.1016/j.diamond.2022.109358
    [39] BHATTA T, SHARMA S, SHRESTHA K, et al. Siloxene/PVDF composite nanofibrous membrane for high-performance triboelectric nanogenerator and self-powered static and dynamic pressure sensing applications[J]. Advanced Functional Materials, 2022, 32(25): 2202145. doi: 10.1002/adfm.202202145
    [40] ADADI N, YADID M, GAL I, et al. Electrospun fibrous PVDF-TrFe scaffolds for cardiac tissue engineering, differentiation, and maturation[J]. Advanced Materials Technologies, 2020, 5(3): 1900820. doi: 10.1002/admt.201900820
    [41] SHARMA S, CHHETRY A, SHARIFUZZAMAN M, et al. Wearable capacitive pressure sensor based on mxene composite nanofibrous scaffolds for reliable human physiological signal acquisition[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 22212-22224.
    [42] WANG S, SHAO H Q, LIU Y, et al. Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor[J]. Composites Science and Technology, 2021, 202: 108600. doi: 10.1016/j.compscitech.2020.108600
    [43] LIU X, TONG J, WANG J, et al. BaTiO3/MXene/PVDF-TrFE composite films via an electrospinning method for flexible piezoelectric pressure sensors[J]. Journal of Materials Chemistry C, 2023, 11: 4614-4622. doi: 10.1039/D2TC05291A
    [44] CHUNG M C, SANCHEZ F J D, SCHOELLER J, et al. Enhanced piezoelectric performance of electrospun PVDF-TrFE by polydopamine-assisted attachment of ZnO nanowires for impact force sensing[J]. Macromolecular Materials and Engineering, 2023, 308(6): 2200520. doi: 10.1002/mame.202200520
    [45] GUO H, WAN J, WU H, et al. Self-powered multifunctional electronic skin for a smart anti-counterfeiting signature system[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 22357-22364.
    [46] ZHOU B, CHEN Y, HU K, et al. Matrix-addressed crosstalk-free self-powered pressure sensor array based on electrospun isolated PVDF-TrFE cells[J]. Sensors and Actuators A-Physical, 2022, 347: 113993. doi: 10.1016/j.sna.2022.113993
    [47] LUO Y, ZHAO L, LUO G, et al. All electrospun fabrics based piezoelectric tactile sensor[J]. Nanotechnology, 2022, 33(41): 415502. doi: 10.1088/1361-6528/ac7ed5
    [48] LANG C H, FANG J, SHAO H, et al. High-output acoustoelectric power generators from poly(vinylidenefluoride-co-trifluoroethylene) electrospun nano-nonwovens[J]. Nano Energy, 2017, 35: 146-153. doi: 10.1016/j.nanoen.2017.03.038
    [49] KIBRIA F, RAHMAN W, PATRA S N. Electrospinning-based high-sensitive PVDF-TrFE nanofibre sensor with sensitivity dependence on pore diameter[J]. Current Science, 2020, 119(5): 841-849. doi: 10.18520/cs/v119/i5/841-849
    [50] ORKWIS J A, WOLF A K, SHAHID S M, et al. Development of a piezoelectric PVDF-TrFE fibrous scaffold to guide cell adhesion, proliferation, and alignment[J]. Macromolecular Bioscience, 2020, 20(9): 2000197. doi: 10.1002/mabi.202000197
    [51] SERRANO-GARCIA W, CRUZ-MAYA I, MELENDEZ-ZAMBRANA A, et al. Optimization of PVDF-TrFE based electro-conductive nanofibers: Morphology and in vitro response[J]. Materials (Basel, Switzerland), 2023, 16(8): 3106. doi: 10.3390/ma16083106
    [52] WANG J, CHEN C C, SHIE C Y, et al. A hybrid sensor for motor tics recognition based on piezoelectric and triboelectric design and fabrication[J]. Sensors and Actuators A-Physical, 2022, 342: 113622. doi: 10.1016/j.sna.2022.113622
    [53] XIN Y, HOU T, LIU C, et al. Flexible piezoelectric sensor based on PVDF-TrFE/nanoclay composite nanofibers for physiological micro-vibration signal sensing[J]. Measurement, 2022, 201: 111742 doi: 10.1016/j.measurement.2022.111742
    [54] KIM J H, KIM B, KIM S W, et al. High-performance coaxial piezoelectric energy generator (C-PEG) yarn of Cu/PVDF-TrFE/PDMS/Nylon/Ag[J]. Nanotechnology, 2021, 32(14): 145401. doi: 10.1088/1361-6528/abd57e
    [55] SHI K, CHAI B, ZOU H, et al. Interface induced performance enhancement in flexible BaTiO3/PVDF-TrFE based piezoelectric nanogenerators[J]. Nano Energy, 2021, 80: 105515. doi: 10.1016/j.nanoen.2020.105515
    [56] SANCHEZ F J D, CHUNG M, WAQAS M, et al. Sponge-like piezoelectric micro- and nanofiber structures for mechanical energy harvesting[J]. Nano Energy, 2022, 98: 107286. doi: 10.1016/j.nanoen.2022.107286
    [57] CHAI B, SHI K, WANG Y, et al. Modulus-modulated all-organic core-shell nanofiber with remarkable piezoelectricity for energy harvesting and condition monitoring[J]. Nano Letters, 2023, 23: 1810-1819. doi: 10.1021/acs.nanolett.2c04674
    [58] AHMED A, JIA Y, HUANG Y, et al. Preparation of PVDF-TrFE based electrospun nanofibers decorated with PEDOT-CNT/rGO composites for piezo-electric pressure sensor[J]. Journal of Materials Science-Materials in Electronics, 2019, 30(15): 14007-14021. doi: 10.1007/s10854-019-01751-w
    [59] LIU M, LIU Y, ZHOU L. Novel flexible PVDF-TrFE and PVDF-TrFE/ZnO pressure sensor: Fabrication, characterization and investigation[J]. Micromachines, 2021, 12(6): 602. doi: 10.3390/mi12060602
    [60] SELLERI G, GINO M E, BRUGO T M, et al. Self-sensing composite material based on piezoelectric nanofibers[J]. Materials & Design, 2022, 219: 110787.
    [61] SELLERI G, MONGIOI F, MACCAFERRI E, et al. Self-sensing soft skin based on piezoelectric nanofibers[J]. Polymers, 2023, 15(2): 280. doi: 10.3390/polym15020280
    [62] JI S H, CHO Y S, YUN J S. Wearable core-shell piezoelectric nanofiber yarns for body movement energy harvesting[J]. Nanomaterials, 2019, 9(4): 555. doi: 10.3390/nano9040555
    [63] ABDOLMALEKI H, HAUGEN A B, BUHL K B, et al. Interfacial engineering of PVDF-TrFE toward higher piezoelectric, ferroelectric, and dielectric performance for sensing and energy harvesting applications[J]. Advanced Science, 2023, 10(6): 05942.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  695
  • HTML全文浏览量:  170
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-15
  • 修回日期:  2023-08-05
  • 录用日期:  2023-09-03
  • 网络出版日期:  2023-09-18
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回