Research progress of electrospun P(VDF-TrFE) nanofibers in the field of flexible piezoelectric sensing and energy harvesting
-
摘要: 压电聚合物聚偏氟乙烯-三氟乙烯(P(VDF-TrFE)) 作为聚偏氟乙烯(PVDF)典型的共聚物,具有优异的压电性能、机械性能及生物相容性。因此基于P(VDF-TrFE) 静电纺压电网膜的柔性压电传感器与能量收集器在可穿戴电子设备、智能纺织品及医疗健康系统等领域有着广阔的前景,能够将触觉/压力、应变、声波甚至生理微振动等信号转换为电学信号或低功率的电能。本文旨在深入分析P(VDF-TrFE) 压电性能的机制,总结各种提升静电纺P(VDF-TrFE) 纳米纤维压电性的策略,全面概述P(VDF-TrFE) 基柔性压电传感与能量收集方面的应用,特别是在压力与触觉传感、声传感、生物组织传感、生理微振动传感及能量收集等领域的研究进展。阐述了静电纺压电聚合物纳米纤维的新兴应用场景,并讨论了该领域目前的挑战和未来前景。Abstract: Poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)) is a copolymer of polyvinylidene fluoride (PVDF) that exhibits outstanding piezoelectric properties, mechanical properties, and biocompatibility. Therefore, the flexible piezoelectric sensors and energy harvesters based on P(VDF-TrFE) have a promising future in the fields of intelligent textiles, wearable electronic devices and medical and health systems. These devices can convert signals such as tactile, pressure, strain, acoustic waves or even physiological micro-vibrations into electrical signals or low-power electrical energy. This paper aims to provide an in-depth analysis of the mechanism of P(VDF-TrFE) piezoelectric properties, summarize various strategies to enhance the piezoelectricity of electrostatically spun P(VDF-TrFE) nanofibers, and provide a comprehensive overview of the applications of P(VDF-TrFE)-based flexible piezoelectric sensing and energy harvesting. Specifically, research advances in the areas of pressure and tactile sensing, acoustic sensing, biological tissue sensing, physiological micro-vibration sensing, and energy harvesting are summarized. Finally, the emerging application scenarios of electrospun piezoelectric polymer nanofibers are illustrated, the current challenges and future prospects in this field are discussed.
-
Key words:
- P(VDF-TrFE) /
- electrospinning /
- nanofiber /
- sensing /
- energy harvesting /
- PVDF /
- piezoelectricity
-
图 2 (a) P(VDF-TrFE)共聚物中VDF摩尔含量与剩余极化(Pr)的关系[27];(b) P(VDF-TrFE)共聚物的相图[28]
PTrFE—Polytrifluoroethylene; VDF—Vinylidene fluoride; PVDF—Poly(vinylidene fluoride); Tm—Melting temperature; Tc—Curie temperature
Figure 2. (a) Relationship between VDF molar content and remanent polarization (Pr) of P(VDF-TrFE) copolymers[27]; (b) Phase diagram for a P(VDF-TrFE) copolymer[28]
表 1 静电纺丝法制备的P(VDF-TrFE) 纳米纤维应用总结
Table 1. Summary of application of P(VDF-TrFE) nanofibers prepared by electrospinning
Application Mole ratio F(β)/% Xc/% Special processing Performance Year Ref. Pressure sensor 70/30 — — Spray on PEDOT-CNT/rGO electrode Sensitivity: 67.4 kPa−1;
Response time: 12 ms2019 [58] 70/30 — — Oil modified stacked porous nanofibers Voltage output: 3.8 V;
Current output: 243.6 nA2021 [14] 75/25 — 70 Doped with MXene Voltage output: 1.58 V;
Power density: 3.64 mW/m2;
Stability: 1000 cycles2021 [42] 70/30 — — Doped with ZnO NPs Voltage output: 1.788 V 2021 [59] 80/20 92 90 Doped with rGO-MCNTs Sensitivity: 16.125 kPa−1 2022 [23] 80/20 — — Doped with carbon nano powders as electrode Sensitivity: 0.14 mV/N;
Stability: 106 cycles2022 [60] 75/25 81.04 50 Doped with BaTiO3 and MXene Voltage output: 7.6 V;
Response time: 56 ms;
Stability:5000 cycles2023 [43] 70/30 — — Polydopamine-assisted ZnO nanowires attached to P(VDF-TrFE) nanofibers Sensitivity: (25.0±3.5) V/N;
Range of forces: 970 N2023 [44] Tactile Sensor 75/25 — — The sensor is composed of two sections, TENG and PENG Response time:100 ms 2020 [45] 70/30 92 — Designed a patterned piezoelectric array Sensitivity: 2.5 mV/kPa;
Response time: 5 ms;
Stability: 25000 cycles2022 [46] 70/30 — — All electrospun fabrics doped with BaTiO3 Sensitivity: 2.72 nA/N 2022 [47] 80/20 — — Doped with CB as electrode Sensitivity: 4 mV/N;
Stability: 106 cycles2023 [61] Acoustic sensor 55/45 — — 8-hole electrode and package structure Voltage output:14.5 V;
Current output: 28.5 μA2017 [48] 70/30 — — — Sensitivity: 10 V/Pa 2020 [49] Biotissue engineering
sensors75/25 95 — The aligned electrospun fiber scaffolds Cell growth cycle: 10 days 2020 [40] 70/30 88.49 — The aligned electrospun fiber scaffolds Current output:1.75 nA 2020 [50] — — — Doped with CuO, P3HT, CuPc or MB Cell viability: 77% 2023 [51] Physiological
micro-vibration sensor70/30 — — Oily modification and combined with TENG Voltage output: 13.1 V;
Current output: 46 nA2022 [52] — 86.43 — Doped with nanoclay Bandwidth: 0.3-40 Hz;
Stability: 105 cycles;
Sensitivity: 24.35 mV/kPa2022 [53] Energy harvester 75/25 — — The electrospun BNT-ST/PVDF-TrFE nanofibers are twined around a conductive thread Voltage output: 2.1 V;
Current output: 0.42 μA2019 [62] 70/30 — — Electrospun PVDF-TrFE nanofibers are deposited on copper wires Current density: 22 nA/cm2;
Power density: 8.6 μW/cm32021 [54] 75/25 94 — Doped with PMMA@BaTiO3 Voltage output: 12.6 V;
Current output: 1.30 μA;
Output power: 4.25 μW;
Stability: 6000 cycles2021 [55] 70/30 — 46.37 Doped with PEO and LiCl Voltage output: 69.4 V;
Output power: 40.7 µW/cm22022 [56] — — 76 A nonpiezoelectric polymer core is introduced Voltage output: 126 V;
Current output: 7.2 μA;
Power density: 710 mW/m22023 [57] 70/30 — 52.9 Doped with amine-functionalized graphene oxide (AGO) Energy density: 4.75 J/cm−3;
Piezoelectric coefficient: –47 pm/V2023 [63] Notes: F(β)—β phase content of P(VDF-TrFE); Xc—Crystallinity of P(VDF-TrFE); PEO—Polyethylene oxide; P3HT—Poly(3-hexylthiophene); CuPc—Copper phthalocyanine; MB—Methylene blue; BNT-ST—Bismuth sodium titanate-strontium titanate; PMMA—Polymethyl methacrylate; CB—Carbon black; PEDOT—Poly(3, 4-ethylenedioxythiophene); CNT—Carbon nanotubes; rGO—Reduced graphene oxide; NPs—Nano particles; MCNTs—Multi-walled carbon nanotubes; TENG—Triboelectric nanogenerator. -
[1] KARAN S K, MAITI S, LEE J H, et al. Recent advances in self-powered tribo-/piezoelectric energy harvesters: All-in-one package for future smart technologies[J]. Advanced Functional Materials, 2020, 30(48): 2004446. doi: 10.1002/adfm.202004446 [2] WAN X Q, CONG H L, JIANG G M, et al. A review on PVDF nanofibers in textiles for flexible piezoelectric sensors[J]. ACS Applied Nano Materials, 2023, 6(2): 1522-1540. [3] SHARVARE P, BATRA A, KOTRU S, et al. Electrospun polyvinylidene fluoride nanofiber membrane-based flexible capacitive tactile sensors for biomedical applications[J]. Surface Engineering and Applied Electrochemistry, 2022, 58(2): 194-201. doi: 10.3103/S1068375522020089 [4] YANG C R, LIN M F, HUANG C K, et al. Highly sensitive and wearable capacitive pressure sensors based on PVDF/BaTiO3 composite fibers on PDMS microcylindrical structures[J]. Measurement, 2022, 202: 111817. doi: 10.1016/j.measurement.2022.111817 [5] ZHOU Q, CHEN T J, CAO S J, et al. A novel flexible piezoresistive pressure sensor based on PVDF/PVA-CNTs electrospun composite film[J]. Applied Physics A-Materials Science & Processing, 2021, 127(9): 667. [6] BHATTA T, MAHARJAN P, CHO H, et al. High-performance triboelectric nanogenerator based on MXene functionalized polyvinylidene fluoride composite nanofibers[J]. Nano Energy, 2021, 81: 105670. doi: 10.1016/j.nanoen.2020.105670 [7] GUO S B, DUAN X X, XIE M Y, et al. Composites, fabrication and application of polyvinylidene fluoride for flexible electromechanical devices: A review[J]. Micromachines, 2020, 11(12): 1076. doi: 10.3390/mi11121076 [8] WANG Y, ZHU L P, DU C F. Progress in piezoelectric nanogenerators based on PVDF composite films[J]. Micromachines, 2021, 12(11): 1278. doi: 10.3390/mi12111278 [9] WANG X M, SUN F Z, YIN G C, et al. Tactile-sensing based on flexible PVDF nanofibers via electrospinning: A review[J]. Sensors, 2018, 18(2): 330. doi: 10.3390/s18020330 [10] KALIMULDINA G, TURDAKYN N, ABAY I, et al. A review of piezoelectric PVDF film by electrospinning and its applications[J]. Sensors, 2020, 20(18): 5214. doi: 10.3390/s20185214 [11] DAS MAHAPATRA S, MOHAPATRA P C, ARIA A I, et al. Piezoelectric materials for energy harvesting and sensing applications: Roadmap for future smart materials[J]. Advanced Science, 2021, 8(17): 2100864. doi: 10.1002/advs.202100864 [12] VEVED A, EJUH G W, DJONGYANG N. Review of emerging materials for PVDF-based energy harvesting[J]. Energy Reports, 2022, 8: 12853-12870. doi: 10.1016/j.egyr.2022.09.076 [13] ZHANG W X, ZAAROUR B, ZHU L, et al. A comparative study of electrospun polyvinylidene fluoride and poly(vinylidenefluoride-co-trifluoroethylene) fiber webs: Mechanical properties, crystallinity, and piezoelectric properties[J]. Journal of Engineered Fibers and Fabrics, 2020, 15: 105515. [14] LO W C, CHEN C C, FUH Y K. 3D stacked near-field electrospun nanoporous PVDF-TrFE nanofibers as self-powered smart sensing in gait big data analytics[J]. Advanced Materials Technologies, 2021, 6(4): 2000779. doi: 10.1002/admt.202000779 [15] HERNANDEZ N, GONZALEZ-GONZALEZ V A, DZUL-BAUTISTA I B, et al. Electrospun poly(vinylidene fluoride-trifluoroethylene) based flexible magnetoelectric nanofibers[J]. European Polymer Journal, 2018, 109: 336-340. doi: 10.1016/j.eurpolymj.2018.09.045 [16] XUE J J, WU T, DAI Y Q, et al. Electrospinning and electrospun nanofibers: Methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8): 5298-5415. doi: 10.1021/acs.chemrev.8b00593 [17] THENMOZHI S, DHARMARAJ N, KADIRVELU K, et al. Electrospun nanofibers: New generation materials for advanced applications[J]. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2017, 217: 36-48. [18] 葛锋, 王雪梅, 冉祥海. P(VDF-TrFE)静电纺丝纤维膜的制备及其性能研究[J]. 塑料科技, 2018, 46(10): 36-39.GE Feng, WANG Xuemei, RAN Xianghai. Study on properties of P(VDF-TrFE) electro-spinning fiber membrane and its preparation[J]. Plastics Science and Technology, 2017, 217: 36-48(in Chinese). [19] SMITH M, KAR-NARAYAN S. Piezoelectric polymers: Theory, challenges and opportunities[J]. International Materials Reviews, 2022, 67(1): 65-88. doi: 10.1080/09506608.2021.1915935 [20] 张淑婷, 安琪. 高性能聚偏氟乙烯基柔性压电材料的设计策略进展[J]. 高等学校化学学报, 2021, 42(4): 1114-1145.ZHANG Shuting, AN Qi. Progress on the design and fabrication of high performance piezoelectric flexible materials on polyvinylidene fluoride[J]. Chemical Journal of Chinese Universities, 2021, 42(4): 1114-1145(in Chinese). [21] 吴强, 宋玉洁, 李俊. P(VDF-TrFE)的铁电性能影响因素及研究现状[J]. 高分子材料科学与工程, 2019, 35(8): 167-173. doi: 10.16865/j.cnki.1000-7555.2019.0215WU Qiang, SONG Yujie, LI Jun. Factors governing ferroelectric characteristics and status of P(VDF-TrFE)[J]. Polymeric Materials Science and Engineering, 2019, 35(8): 167-173(in Chinese). doi: 10.16865/j.cnki.1000-7555.2019.0215 [22] MARTINS P, LOPES A C, LANCEROS-MENDEZ S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications[J]. Progress in Polymer Science, 2014, 39(4): 683-706. doi: 10.1016/j.progpolymsci.2013.07.006 [23] AHMED A, JIA Y, DEB H, et al. Ultra-sensitive all organic PVDF-TrFE E-spun nanofibers with enhanced beta-phase for piezoelectric response[J]. Journal of Materials Science-Materials in Electronics, 2022, 33(7): 3965-3981. doi: 10.1007/s10854-021-07590-y [24] LOVINGER A J. Ferroelectric polymers[J]. Science, 1983, 220(4602): 1115-1121. doi: 10.1126/science.220.4602.1115 [25] QIAN X, CHEN X, ZHU L, et al. Fluoropolymer ferroelectrics: Multifunctional platform for polar-structured energy conversion[J]. Science, 2023, 380(6645): 596. [26] CHEN X, QIN H, QIAN X, et al. Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field[J]. Science, 2022, 375(6587): 1418-1422. doi: 10.1126/science.abn0936 [27] FURUKAWA T. Structure and functional properties of ferroelectric polymers[J]. Advances in Colloid and Interface Science, 1997, 71-72: 183-208. [28] BAUER F. Review on the properties of the ferrorelaxor polymers and some new recent developments[J]. Applied Physics A-Materials Science & Processing, 2012, 107(3): 567-573. [29] 葛锋, 王雪梅, 冉祥海. 降温速率对偏氟乙烯-三氟乙烯共聚物相转变的影响[J]. 塑料科技, 2018, 46(11): 54-58. doi: 10.15925/j.cnki.issn1005-3360.2018.11.009GE Feng, WANG Xuemei, RAN Xianghai. Effect of cooling rate on the phase transition of P(VDF-TrFE) copolymer[J]. Plastics Science and Technology, 2018, 46(11): 54-58(in Chinese). doi: 10.15925/j.cnki.issn1005-3360.2018.11.009 [30] 张小芳, 夏卫民, 邢俊红, 等. 聚偏氟乙烯及其共聚物基压电复合材料的研究进展[J]. 复合材料学报, 2021, 38(4): 997-1019. doi: 10.13801/j.cnki.fhclxb.20201210.004ZHANG Xiaofang, XIA Weimin, XING Junhong, et al. Research progress of polyvinylidene fluoride and its copolymer piezoelectric composites[J]. Acta Materiae Compositae Sinica, 2021, 38(4): 997-1019(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201210.004 [31] HE Z C, RAULT F, LEWANDOWSKI M, et al. Electrospun PVDF nanofibers for piezoelectric applications: A review of the influence of electrospinning parameters on the beta phase and crystallinity enhancement[J]. Polymers, 2021, 13(2): 174. doi: 10.3390/polym13020174 [32] POURBAFRANI M, AZIMI S, NIA N Y, et al. The effect of electrospinning parameters on piezoelectric PVDF-TrFE nanofibers: Experimental and simulation study[J]. Energies, 2023, 16(1): 37. [33] KIM M, LEE S, KIM Y I. Solvent-controlled crystalline beta-phase formation in electrospun P(VDF-TrFE) fibers for enhanced piezoelectric energy harvesting[J]. APL Materials, 2020, 8(7): 071109. doi: 10.1063/5.0011686 [34] BANIASADI M, XU Z, CAI J, et al. Correlation of annealing temperature, morphology, and electro-mechanical properties of electrospun piezoelectric nanofibers[J]. Polymer, 2017, 127: 192-202. doi: 10.1016/j.polymer.2017.08.053 [35] BANIASADI M, XU Z, HONG S, et al. Thermo-electromechanical behavior of piezoelectric nanofibers[J]. ACS Applied Materials & Interfaces, 2016, 8(4): 2540-2551. [36] LU L J, DING W Q, LIU J Q, et al. Flexible PVDF based piezoelectric nanogenerators[J]. Nano Energy, 2020, 78: 105251. doi: 10.1016/j.nanoen.2020.105251 [37] LANG C H, FANG J, SHAO H, et al. High-sensitivity acoustic sensors from nanofibre webs[J]. Nature Communications, 2016, 7: 11108. doi: 10.1038/ncomms11108 [38] CHEN G Z, CHEN G, PAN L, et al. Electrospun flexible PVDF/GO piezoelectric pressure sensor for human joint monitoring[J]. Diamond and Related Materials, 2022, 129: 109358. doi: 10.1016/j.diamond.2022.109358 [39] BHATTA T, SHARMA S, SHRESTHA K, et al. Siloxene/PVDF composite nanofibrous membrane for high-performance triboelectric nanogenerator and self-powered static and dynamic pressure sensing applications[J]. Advanced Functional Materials, 2022, 32(25): 2202145. doi: 10.1002/adfm.202202145 [40] ADADI N, YADID M, GAL I, et al. Electrospun fibrous PVDF-TrFe scaffolds for cardiac tissue engineering, differentiation, and maturation[J]. Advanced Materials Technologies, 2020, 5(3): 1900820. doi: 10.1002/admt.201900820 [41] SHARMA S, CHHETRY A, SHARIFUZZAMAN M, et al. Wearable capacitive pressure sensor based on mxene composite nanofibrous scaffolds for reliable human physiological signal acquisition[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 22212-22224. [42] WANG S, SHAO H Q, LIU Y, et al. Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor[J]. Composites Science and Technology, 2021, 202: 108600. doi: 10.1016/j.compscitech.2020.108600 [43] LIU X, TONG J, WANG J, et al. BaTiO3/MXene/PVDF-TrFE composite films via an electrospinning method for flexible piezoelectric pressure sensors[J]. Journal of Materials Chemistry C, 2023, 11: 4614-4622. doi: 10.1039/D2TC05291A [44] CHUNG M C, SANCHEZ F J D, SCHOELLER J, et al. Enhanced piezoelectric performance of electrospun PVDF-TrFE by polydopamine-assisted attachment of ZnO nanowires for impact force sensing[J]. Macromolecular Materials and Engineering, 2023, 308(6): 2200520. doi: 10.1002/mame.202200520 [45] GUO H, WAN J, WU H, et al. Self-powered multifunctional electronic skin for a smart anti-counterfeiting signature system[J]. ACS Applied Materials & Interfaces, 2020, 12(19): 22357-22364. [46] ZHOU B, CHEN Y, HU K, et al. Matrix-addressed crosstalk-free self-powered pressure sensor array based on electrospun isolated PVDF-TrFE cells[J]. Sensors and Actuators A-Physical, 2022, 347: 113993. doi: 10.1016/j.sna.2022.113993 [47] LUO Y, ZHAO L, LUO G, et al. All electrospun fabrics based piezoelectric tactile sensor[J]. Nanotechnology, 2022, 33(41): 415502. doi: 10.1088/1361-6528/ac7ed5 [48] LANG C H, FANG J, SHAO H, et al. High-output acoustoelectric power generators from poly(vinylidenefluoride-co-trifluoroethylene) electrospun nano-nonwovens[J]. Nano Energy, 2017, 35: 146-153. doi: 10.1016/j.nanoen.2017.03.038 [49] KIBRIA F, RAHMAN W, PATRA S N. Electrospinning-based high-sensitive PVDF-TrFE nanofibre sensor with sensitivity dependence on pore diameter[J]. Current Science, 2020, 119(5): 841-849. doi: 10.18520/cs/v119/i5/841-849 [50] ORKWIS J A, WOLF A K, SHAHID S M, et al. Development of a piezoelectric PVDF-TrFE fibrous scaffold to guide cell adhesion, proliferation, and alignment[J]. Macromolecular Bioscience, 2020, 20(9): 2000197. doi: 10.1002/mabi.202000197 [51] SERRANO-GARCIA W, CRUZ-MAYA I, MELENDEZ-ZAMBRANA A, et al. Optimization of PVDF-TrFE based electro-conductive nanofibers: Morphology and in vitro response[J]. Materials (Basel, Switzerland), 2023, 16(8): 3106. doi: 10.3390/ma16083106 [52] WANG J, CHEN C C, SHIE C Y, et al. A hybrid sensor for motor tics recognition based on piezoelectric and triboelectric design and fabrication[J]. Sensors and Actuators A-Physical, 2022, 342: 113622. doi: 10.1016/j.sna.2022.113622 [53] XIN Y, HOU T, LIU C, et al. Flexible piezoelectric sensor based on PVDF-TrFE/nanoclay composite nanofibers for physiological micro-vibration signal sensing[J]. Measurement, 2022, 201: 111742 doi: 10.1016/j.measurement.2022.111742 [54] KIM J H, KIM B, KIM S W, et al. High-performance coaxial piezoelectric energy generator (C-PEG) yarn of Cu/PVDF-TrFE/PDMS/Nylon/Ag[J]. Nanotechnology, 2021, 32(14): 145401. doi: 10.1088/1361-6528/abd57e [55] SHI K, CHAI B, ZOU H, et al. Interface induced performance enhancement in flexible BaTiO3/PVDF-TrFE based piezoelectric nanogenerators[J]. Nano Energy, 2021, 80: 105515. doi: 10.1016/j.nanoen.2020.105515 [56] SANCHEZ F J D, CHUNG M, WAQAS M, et al. Sponge-like piezoelectric micro- and nanofiber structures for mechanical energy harvesting[J]. Nano Energy, 2022, 98: 107286. doi: 10.1016/j.nanoen.2022.107286 [57] CHAI B, SHI K, WANG Y, et al. Modulus-modulated all-organic core-shell nanofiber with remarkable piezoelectricity for energy harvesting and condition monitoring[J]. Nano Letters, 2023, 23: 1810-1819. doi: 10.1021/acs.nanolett.2c04674 [58] AHMED A, JIA Y, HUANG Y, et al. Preparation of PVDF-TrFE based electrospun nanofibers decorated with PEDOT-CNT/rGO composites for piezo-electric pressure sensor[J]. Journal of Materials Science-Materials in Electronics, 2019, 30(15): 14007-14021. doi: 10.1007/s10854-019-01751-w [59] LIU M, LIU Y, ZHOU L. Novel flexible PVDF-TrFE and PVDF-TrFE/ZnO pressure sensor: Fabrication, characterization and investigation[J]. Micromachines, 2021, 12(6): 602. doi: 10.3390/mi12060602 [60] SELLERI G, GINO M E, BRUGO T M, et al. Self-sensing composite material based on piezoelectric nanofibers[J]. Materials & Design, 2022, 219: 110787. [61] SELLERI G, MONGIOI F, MACCAFERRI E, et al. Self-sensing soft skin based on piezoelectric nanofibers[J]. Polymers, 2023, 15(2): 280. doi: 10.3390/polym15020280 [62] JI S H, CHO Y S, YUN J S. Wearable core-shell piezoelectric nanofiber yarns for body movement energy harvesting[J]. Nanomaterials, 2019, 9(4): 555. doi: 10.3390/nano9040555 [63] ABDOLMALEKI H, HAUGEN A B, BUHL K B, et al. Interfacial engineering of PVDF-TrFE toward higher piezoelectric, ferroelectric, and dielectric performance for sensing and energy harvesting applications[J]. Advanced Science, 2023, 10(6): 05942.