留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质壳聚糖基复合材料在CO2分离捕获和资源化利用中的应用

冯颖 于汉哲 张宏 李可心 董鑫 张建伟

冯颖, 于汉哲, 张宏, 等. 生物质壳聚糖基复合材料在CO2分离捕获和资源化利用中的应用[J]. 复合材料学报, 2024, 41(3): 1153-1165. doi: 10.13801/j.cnki.fhclxb.20230913.001
引用本文: 冯颖, 于汉哲, 张宏, 等. 生物质壳聚糖基复合材料在CO2分离捕获和资源化利用中的应用[J]. 复合材料学报, 2024, 41(3): 1153-1165. doi: 10.13801/j.cnki.fhclxb.20230913.001
FENG Ying, YU Hanzhe, ZHANG Hong, et al. Application of biomass chitosan-based composites for CO2 separation and capture and resource utilization[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1153-1165. doi: 10.13801/j.cnki.fhclxb.20230913.001
Citation: FENG Ying, YU Hanzhe, ZHANG Hong, et al. Application of biomass chitosan-based composites for CO2 separation and capture and resource utilization[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1153-1165. doi: 10.13801/j.cnki.fhclxb.20230913.001

生物质壳聚糖基复合材料在CO2分离捕获和资源化利用中的应用

doi: 10.13801/j.cnki.fhclxb.20230913.001
基金项目: 国家自然科学基金(21406142);辽宁省自然科学基金(2020-MS-230);辽宁省教育厅科学研究项目(LJ2020036);中央引导地方科技发展专项(2020JH6/10500051)
详细信息
    通讯作者:

    董鑫,博士,副教授,硕士生导师,研究方向为环境流体多相流传递理论与技术装备 E-mail:dongxin1106@syuct.edu.cn

  • 中图分类号: X511;TB332

Application of biomass chitosan-based composites for CO2 separation and capture and resource utilization

Funds: National Natural Science Foundation of China (21406142); Natural Science Foundation of Liaoning Province (2020-MS-230); Liaoning Provincial Education Department Scientific Research Project (LJ2020036); Central Guidance for Local Science and Technology Development Special (2020JH6/10500051)
  • 摘要: 二氧化碳过度排放导致的全球变暖、海平面上升和气候恶化等生态环境问题日益显著,亟需探寻新型处理技术和生物质材料来缓解这一问题。本文综述了生物质壳聚糖在二氧化碳分离、捕获和资源化利用领域的研究进展;详细阐述了壳聚糖膜对CO2的分离机制及提高膜分离性能的方法;归纳了增强壳聚糖基活性炭对CO2捕获性能的方法;对利用壳聚糖基催化剂将CO2转化为碳酸酯、甲烷和烯烃等增值品的相关研究进行了总结。最后,对生物质壳聚糖在未来助力“双碳”战略目标实现过程中的发展趋势进行了展望。

     

  • 图  1  聚集体对CO2传输的阻碍作用

    Figure  1.  Obstruction of CO2 transport by aggregates

    图  2  增强活性炭对CO2捕获性能的方法

    HAPS—Hydroquinonesulfonic acid potassium salt

    Figure  2.  Methods to enhance the CO2 capture performance byactivated carbon

    图  3  不同炭化温度下CTS-NaNH2活性炭的N元素含量[35]

    Figure  3.  Elemental N content of CTS-NaNH2 activated carbon at different carbonization temperatures[35]

    图  4  利用响应曲面法分析不同因素对壳聚糖-漂白土CO2去除率的影响:((a), (d)) 温度和CO2浓度对吸附量的影响;((b), (e))温度和CTS用量对吸附量的影响;((c), (f)) CTS用量和CO2浓度对吸附量的影响[46]

    Figure  4.  Effect of different factors on CO2 removal from chitosan-bleached soil using response surface methodology: ((a), (d)) Effect of temperature and CO2 concentration on adsorption capacity; ((b), (e)) Effect of temperature and CTS dosage on adsorption capacity; ((c), (f)) Effect of CTS dosage and CO2 concentration on adsorption capacity[46]

    图  5  碳酸酯的分类

    Figure  5.  Classification of carbonate esters

    图  6  常见的环状碳酸酯合成方法[52]

    Figure  6.  Common methods for synthesizing cyclic carbonates[52]

    表  1  利用壳聚糖(CTS)/羧甲基壳聚糖(CMC)与填料制备混合基质膜

    Table  1.   Preparation of mixed matrix membrane using chitosan (CTS)/carboxymethyl chitosan (CMC) and filler

    Membrane Packing loading rate Penetration rate of CO2 CO2/N2 selectivity Separation condition Literature
    CMC/PZ PZ,20% 89 GPU 103 80℃, 120 kPa [22]
    CTS/GO/PVAm HPEI-GO, 2% and 3% 36 GPU (2%) 107 (3%) CO2 : N2 =10 : 90 [23]
    CTS/ZIF-8/IL ZIF-8,10% (5413±191) Barrer 11.5 50℃, 200 kPa [24]
    CTS/SF/GNP GNP,0.5% 159 GPU 93 90℃, 200 kPa [25]
    CMC/HT HT,1% 70 GPU 13 90℃, 200 kPa [26]
    Notes: PZ—Piperazine; PVAm—Polyvinylamine; HPEI-GO—Hyperbranched polyethyleneimine grafted graphene oxide; ZIF-8—Zinc(2-methylimidazole); IL—Ionic liquid; GNP—Graphene nanoparticles; HT—Hydrotalcite; SF—Silk fibroin.
    下载: 导出CSV

    表  2  通过原子掺杂的方法制备壳聚糖基活性炭

    Table  2.   Preparation of chitosan-based activated carbon by atomic doping method

    Carbon Source Source of heteroatoms Activator Adsorption performance Reusability Literature
    CTS CTS provides N atoms K2CO3 100 kPa, 25℃, adsorption capacity was 3.86 mmol/g Adsorption capacity unchanged
    after five cycles
    [37]
    CTS TMP and CTS provide N atoms KOH 0℃, 100 kPa, the maximum CO2 adsorption capacity was 4.74 mmol/g After ten cycles, the adsorption capacity decreased by 8% [38]
    CTS HMT and CTS provide N atoms ZnCl2 Adsorption capacity was smaller than undoped activated carbon [39]
    CTS NaNH2 and CTS provide N atoms NaNH2 0℃, 100 kPa, the adsorption amount of CO2 was 6.33 mmol/g After three cycles, the adsorption
    effect remains almost constant

    [35]
    CTS,
    SL
    CTS and SL provide N and S atoms, respectively KOH 0℃, 100 kPa, the adsorption amount of CO2 was 215.2 mg/g After three cycles, the adsorption capacity has decreased by 20% [40]
    CTS CTS and HAPS provide N and S atoms, respectively HAPS 25℃, 100 kPa, the adsorption amount of CO2 was 2.4 mmol/g [41]
    CTS CTS provides the N atoms and phytic acid provides the P atoms NaNO3 100 kPa, the adsorption amount of CO2 was 3.02 mmol/g After twenty cycles, the adsorption capacity remains unchanged [42]
    Notes: TMP—2, 4, 6-triaminopyrimidine; HMT—Hexamethylenetetramine; SL—Sodium lignosulfonate.
    下载: 导出CSV

    表  3  改性壳聚糖基吸附剂用于CO2捕获

    Table  3.   Modified chitosan-based sorbents for CO2 capture

    Adsorbent Modification method Modification advantages Introduction of substances Adsorption performance Literature
    Furfuryl-
    imine-CTS
    fibers
    Imine formation The introduction of imine groups produced a
    highly nucleophilic active surface
    20℃, 61 kPa, the adsorption
    amount was 0.978 mmol/g
    [47]
    Chitosan
    based
    aerogel
    Graft Carboxyl, amino, imine, amide and other
    groups are introduced
    35℃, the adsorption amount
    was 5.48 mmol/g
    [48]
    CTS/LS hydrogel Cross-link The introduction of Li+ and basic group, enhances the acid-base effect and electrostatic effect 100 kPa, 25℃, the maximum
    adsorption amount
    was 67.9 mg/g
    [49]
    CTS/MWCNTs Graft Increase the surface area of CTS and introduce hydroxyl and carboxyl groups 25℃, 100 kPa, the maximum
    adsorption amount
    was 1.92 cm3/g
    [50]
    Notes: MWCNTs—Multi-walled carbon nanotubes; LS—Lithium sulfonate.
    下载: 导出CSV

    表  4  利用CO2制备其他化学增值品

    Table  4.   Preparation of other chemical value-added products using CO2

    Catalyst Raw materials Reaction condition Product Production efficiency Reusability Literature
    CTS/KOH/
    Enzymes
    Bicarbonate, CaCl2, CO2 pH 8, 35℃ CaCO3 152 mg of CaCO3 per gram of CO2 No change after 7 repetitions [61]
    K-doped Fe/CTS complexes CO2, H2 330℃, 1.5 MPa Olefins CO2 conversion rate was 41% and
    olefin yield was 20.4%
    [62]
    CTS/CA/SiO2 CaCl2, CO2 pH 7.6, 25℃ CaCO3 230 mg CaCO3 were gotten after 10 min Can be reused up to 30 times [63]
    CTS/PEG Ethanol, CO2, H2 6 MPa, 170℃ Methanol Resulting methanol concentration was 472 mmol/L Can be recycled up to 3 times [64]
    C/A/PEC CaCl2, CO2 pH 8.2, pH 9.5 CaCO3 1 g of catalyst can catalyze the
    synthesis of 253 mg of CaCO3
    No change after 10 repetitions [65]
    Cu/TiO2/CTS H2O, CO2 Xenon lamp irradiation Methane Yield of methane was 5.34 μmol/g [66]
    Notes: CA—Carbonic anhydrase; PEG—Polyethyleneglycol; C/A/PEC—Chitosan-alginate polyelectrolyte complex.
    下载: 导出CSV
  • [1] NAGASE T, MIYAKAWA M, NISHIOKA M, et al. Microwave-assisted green synthesis of mesoporous zeolite adsorbents for direct air capture of CO2[J]. Chemistry Letters, 2022, 51(3): 296-299. doi: 10.1246/cl.210687
    [2] YU S, LI S, HUANG S, et al. Covalently bonded zeolitic imidazolate frameworks and polymers with enhanced compatibility in thin film nanocomposite membranes for gas separation[J]. Journal of Membrane Science, 2017, 540: 155-164. doi: 10.1016/j.memsci.2017.06.047
    [3] CHABAN V V, ANDREEVA N A. Extensively amino-functionalized graphene captures carbon dioxide[J]. Physical Chemistry Chemical Physics, 2022, 24(42): 25801-25815. doi: 10.1039/D2CP03235J
    [4] 汤琦龙, 傅晶依, 窦信, 等. 改性壳聚糖磁性纳米材料的研究进展[J]. 复合材料学报, 2022, 39(3): 1017-1025

    TANG Qilong, FU Jingyi, DOU Xin, et al. Research progress of modified chitosan magnetic nanomaterials[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1017-1025(in Chinese)
    [5] RANGNEKAR N, MITTAL N, ELYASSI B, et al. Zeolite membranes-A review and comparison with MOFs[J]. Chemical Society Reviews, 2015, 44(20): 7128-7154. doi: 10.1039/C5CS00292C
    [6] ITO A, SATO M, ANMA T. Permeability of CO2 through chitosan membrane swollen by water vapor in feed gas[J]. Die Angewandte Makromolekulare Chemie: Applied Macromolecular Chemistry and Physics, 1997, 248(1): 85-94. doi: 10.1002/apmc.1997.052480105
    [7] WEINKAUF D H, KIM H D, PAUL D R. Gas transport properties of liquid crystalline poly (p-phenyleneterephthalamide)[J]. Macromolecules, 1992, 25(2): 788-796. doi: 10.1021/ma00028a044
    [8] EL-AZZAMI L A, GRULKE E A. Dual mode model for mixed gas permeation of CO2, H2, and N2 through a dry chitosan membrane[J]. Journal of Polymer Science Part B: Polymer Physics, 2007, 45(18): 2620-2631. doi: 10.1002/polb.21236
    [9] REN J, XUAN H, GE L. Double network self-healing chitosan/dialdehyde starch-polyvinyl alcohol film for gas separation[J]. Applied Surface Science, 2019, 469: 213-219. doi: 10.1016/j.apsusc.2018.11.001
    [10] ZHANG H, TIAN H, ZHANG J, et al. Facilitated transport membranes with an amino acid salt for highly efficient CO2 separation[J]. International Journal of Greenhouse Gas Control, 2018, 78: 85-93. doi: 10.1016/j.ijggc.2018.07.014
    [11] LI N, WANG Z, WANG J. Water-swollen carboxymethyl chitosan (CMC)/polyamide (PA) membranes with octopus-branched nanostructures for CO2 capture[J]. Journal of Membrane Science, 2022, 642: 119946. doi: 10.1016/j.memsci.2021.119946
    [12] DANCKWERTS P V. The reaction of CO2 with ethanolamines[J]. Chemical Engineering Science, 1979, 34(4): 443-446. doi: 10.1016/0009-2509(79)85087-3
    [13] PRASAD B, MANDAL B. CO2 separation performance by chitosan/tetraethylenepentamine/poly(ether sulfone) composite membrane[J]. Journal of Applied Polymer Science, 2017, 134(34): 45206. doi: 10.1002/app.45206
    [14] PRASAD B, MANDAL B. Preparation and characterization of CO2-selective facilitated transport membrane composed of chitosan and poly (allylamine) blend for CO2/N2 separation[J]. Journal of Industrial and Engineering Chemistry, 2018, 66: 419-429. doi: 10.1016/j.jiec.2018.06.009
    [15] PRASAD B, MANDAL B. Moisture responsive and CO2 selective biopolymer membrane containing silk fibroin as a green carrier for facilitated transport of CO2[J]. Journal of Membrane Science, 2018, 550: 416-426. doi: 10.1016/j.memsci.2017.12.061
    [16] DE MORAES M A, NOGUEIRA G M, WESKA R F, et al. Preparation and characterization of insoluble silk fibroin/chitosan blend films[J]. Polymers, 2010, 2(4): 719-727. doi: 10.3390/polym2040719
    [17] EL-AZZAMI L A, GRULKE E A. Carbon dioxide separation from hydrogen and nitrogen: Facilitated transport in arginine salt-chitosan membranes[J]. Journal of Membrane Science, 2009, 328(1-2): 15-22. doi: 10.1016/j.memsci.2008.08.038
    [18] SHEN J N, YU C C, ZENG G N, et al. Preparation of a facilitated transport membrane composed of carboxymethyl chitosan and polyethylenimine for CO2/N2 separation[J]. International Journal of Molecular Sciences, 2013, 14(2): 3621-3638. doi: 10.3390/ijms14023621
    [19] BORGOHAIN R, JAIN N, PRASAD B, et al. Carboxymethyl chitosan/carbon nanotubes mixed matrix membranes for CO2 separation[J]. Reactive and Functional Polymers, 2019, 143: 104331. doi: 10.1016/j.reactfunctpolym.2019.104331
    [20] KATARE A, SHARMA S, MANDAL B. Effects of L-lysine-conjugated-graphene oxide as a nanofiller on the CO2 separation performance of mixed matrix chitosan membrane[J]. Indian Chemical Engineer, 2023, 65(2): 168-179.
    [21] BORGOHAIN R, MANDAL B. Thermally stable and moisture responsive carboxymethyl chitosan/dendrimer/hydrotalcite membrane for CO2 separation[J]. Journal of Membrane Science, 2020, 608: 118214. doi: 10.1016/j.memsci.2020.118214
    [22] BORGOHAIN R, PRASAD B, MANDAL B. Synthesis and characterization of water-soluble chitosan membrane blended with a mobile carrier for CO2 separation[J]. Separation and Purification Technology, 2019, 222: 177-187. doi: 10.1016/j.seppur.2019.04.038
    [23] SHEN Y, WANG H, LIU J, et al. Enhanced performance of a novel polyvinyl amine/chitosan/graphene oxide mixed matrix membrane for CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(8): 1819-1829.
    [24] CASADO-COTERILLO C, FERNÁNDEZ-BARQUÍN A, ZORNOZA B, et al. Synthesis and characterisation of MOF/ionic liquid/chitosan mixed matrix membranes for CO2/N2 separation[J]. RSC Advances, 2015, 5(124): 102350-102361. doi: 10.1039/C5RA19331A
    [25] PRASAD B, MANDAL B. Graphene-incorporated biopolymeric mixed-matrix membrane for enhanced CO2 separation by regulating the support pore filling[J]. ACS Applied Materials & interfaces, 2018, 10(33): 27810-27820.
    [26] BORGOHAIN R, MANDAL B. High-speed CO2 transport channel containing carboxymethyl chitosan/hydrotalcite membrane for CO2 separation[J]. Journal of Applied Polymer Science, 2020, 137(21): 48715. doi: 10.1002/app.48715
    [27] MALINI K, SASI M, MEGHANATH R, et al. Effect of barium activation on chitosan derived carbon: Enhancement of CO2 adsorption capacity[J]. International Journal of Environmental Analytical Chemistry, 2023, 103(18): 7042-7054.
    [28] MIYAJIMA N, TAKIZAWA K, SAKANE H. Surface characterization of chitosan and cellulose-derived porous carbons with K2CO3 activation and its application to water and ethene adsorption[J]. Journal of Porous Materials, 2021, 28(6): 1689-1695. doi: 10.1007/s10934-021-01116-x
    [29] NAZIR G, REHMAN A, PARK S J. Valorization of shrimp shell biowaste for environmental remediation: Efficient contender for CO2 adsorption and separation[J]. Journal of Environmental Management, 2021, 299: 113661. doi: 10.1016/j.jenvman.2021.113661
    [30] KAMRAN U, PARK S J. Tuning ratios of KOH and NaOH on acetic acid-mediated chitosan-based porous carbons for improving their textural features and CO2 uptakes[J]. Journal of CO2 Utilization, 2020, 40: 101212. doi: 10.1016/j.jcou.2020.101212
    [31] OTOWA T, NOJIMA Y, MIYAZAKI T. Development of KOH activated high surface area carbon and its application to drinking water purification[J]. Carbon, 1997, 35(9): 1315-1319. doi: 10.1016/S0008-6223(97)00076-6
    [32] LI D, ZHOU J, ZHANG Z, et al. Improving low-pressure CO2 capture performance of N-doped active carbons by adjusting flow rate of protective gas during alkali activation[J]. Carbon, 2017, 114: 496-503. doi: 10.1016/j.carbon.2016.12.039
    [33] LI J, BAO A, CHEN J, et al. A green route to CO2 adsorption on biomass chitosan derived nitrogen-doped micropore-dominated carbon nanosheets by different activators[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 107021. doi: 10.1016/j.jece.2021.107021
    [34] SINGH G, TIBURCIUS S, RUBAN S M, et al. Pure and strontium carbonate nanoparticles functionalized microporous carbons with high specific surface areas derived from chitosan for CO2 adsorption[J]. Emergent Materials, 2019, 2: 337-349. doi: 10.1007/s42247-019-00050-8
    [35] YANG C, ZHAO T, PAN H, et al. Facile preparation of N-doped porous carbon from chitosan and NaNH2 for CO2 adsorption and conversion[J]. Chemical Engineering Journal, 2022, 432: 134347. doi: 10.1016/j.cej.2021.134347
    [36] SEVILLA M, VALLE-VIGÓN P, FUERTES A B. N-doped polypyrrole-based porous carbons for CO2 capture[J]. Advanced Functional Materials, 2011, 21(14): 2781-2787. doi: 10.1002/adfm.201100291
    [37] FAN X, ZHANG L, ZHANG G, et al. Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture[J]. Carbon, 2013, 61: 423-430. doi: 10.1016/j.carbon.2013.05.026
    [38] YANG Q, TENG D, QU J, et al. Solvent-free synthesis of N-doped porous carbons from chitosan for an efficient CO2 capture[J]. Industrial & Engineering Chemistry Research, 2021, 60(35): 13023-13030.
    [39] MALINI K, SELVAKUMAR D, KUMAR N S. Nitrogen doped activated carbon derived from chitosan/hexamethylenetetramine: Structural and CO2 adsorption properties[J]. Journal of Porous Materials, 2022, 29(5): 1539-1550. doi: 10.1007/s10934-022-01276-4
    [40] SHAO L, WANG L, WANG J, et al. N-doped highly microporous carbon derived from the self-assembled lignin/chitosan composites beads for selective CO2 capture and efficient p-nitrophenol adsorption[J]. Separation and Purification Technology, 2023, 313: 123440. doi: 10.1016/j.seppur.2023.123440
    [41] SHI J, CUI H, XU J, et al. Synthesis of nitrogen and sulfur co-doped carbons with chemical blowing method for CO2 adsorption[J]. Fuel, 2021, 305: 121505. doi: 10.1016/j.fuel.2021.121505
    [42] XIAO J, WANG Y, ZHANG T C, et al. Phytic acid-induced self-assembled chitosan gel-derived N, P–co-doped porous carbon for high-performance CO2 capture and supercapacitor[J]. Journal of Power Sources, 2022, 517: 230727. doi: 10.1016/j.jpowsour.2021.230727
    [43] SEVILLA M, PARRA J B, FUERTES A B. Assessment of the role of micropore size and N-doping in CO2 capture by porous carbons[J]. ACS Applied Materials & Interfaces, 2013, 5(13): 6360-6368.
    [44] BABARAO R, DAI S, JIANG D. Nitrogen-doped mesoporous carbon for carbon capture-A molecular simulation study[J]. The Journal of Physical Chemistry C, 2012, 116(12): 7106-7110. doi: 10.1021/jp301450m
    [45] THOTE J A, CHATTI R V, IYER K S, et al. N-doped mesoporous alumina for adsorption of carbon dioxide[J]. Journal of Environmental Sciences, 2012, 24(11): 1979-1984. doi: 10.1016/S1001-0742(11)61022-X
    [46] ISLAM M A, TAN Y L, ISLAM M A, et al. Chitosan-bleaching earth clay composite as an efficient adsorbent for carbon dioxide adsorption: Process optimization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554: 9-15.
    [47] MARIN L, DRAGOI B, OLARU N, et al. Nanoporous furfuryl-imine-chitosan fibers as a new pathway towards eco-materials for CO2 adsorption[J]. European Polymer Journal, 2019, 120: 109214. doi: 10.1016/j.eurpolymj.2019.109214
    [48] HSAN N, DUTTA P K, KUMAR S, et al. Arginine containing chitosan-graphene oxide aerogels for highly efficient carbon capture and fixation[J]. Journal of CO2 Utilization, 2022, 59: 101958. doi: 10.1016/j.jcou.2022.101958
    [49] LIU Z, MA R, DU W, et al. Radiation-initiated high strength chitosan/lithium sulfonate double network hydrogel/aerogel with porosity and stability for efficient CO2 capture[J]. RSC Advances, 2021, 11(33): 20486-20497. doi: 10.1039/D1RA03041H
    [50] HSAN N, DUTTA P K, KUMAR S, et al. Capture and chemical fixation of carbon dioxide by chitosan grafted multi-walled carbon nanotubes[J]. Journal of CO2 Utilization, 2020, 41: 101237. doi: 10.1016/j.jcou.2020.101237
    [51] TAMBOLI A H, CHAUGULE A A, KIM H. Highly selective and multifunctional chitosan/ionic liquids catalyst for conversion of CO2 and methanol to dimethyl carbonates at mild reaction conditions[J]. Fuel, 2016, 166: 495-501. doi: 10.1016/j.fuel.2015.11.023
    [52] BESSE V, ILLY N, DAVID G, et al. A chitosan derivative containing both carboxylic acid and quaternary ammonium moieties for the synthesis of cyclic carbonates[J]. ChemSusChem, 2016, 9(16): 2167-2173. doi: 10.1002/cssc.201600499
    [53] XIAO L F, LI F W, XIA C G. An easily recoverable and efficient natural biopolymer-supported zinc chloride catalyst system for the chemical fixation of carbon dioxide to cyclic carbonate[J]. Applied Catalysis A: General, 2005, 279(1-2): 125-129. doi: 10.1016/j.apcata.2004.10.022
    [54] ZHAO Y, TIAN J S, QI X H, et al. Quaternary ammonium salt-functionalized chitosan: An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide[J]. Journal of Molecular Catalysis A: Chemical, 2007, 271(1-2): 284-289. doi: 10.1016/j.molcata.2007.03.047
    [55] KUMAR S E, SILVA J A, WANI M Y, et al. Carbon dioxide capture and conversion by an environmentally friendly chitosan based meso-tetrakis (4-sulfonatophenyl) porphyrin[J]. Carbohydrate Polymers, 2017, 175: 575-583. doi: 10.1016/j.carbpol.2017.08.031
    [56] KUMAR S, WANI M Y, KOH J, et al. Carbon dioxide adsorption and cycloaddition reaction of epoxides using chitosan-graphene oxide nanocomposite as a catalyst[J]. Journal of Environmental Sciences, 2018, 69: 77-84. doi: 10.1016/j.jes.2017.04.013
    [57] BORJIAN BOROUJENI M, LAEINI M S, NAZERI M T, et al. A novel and green in situ strategy for the synthesis of metallophthalocyanines on chitosan and investigation their catalytic activity in the CO2 fixation[J]. Catalysis Letters, 2019, 149: 2089-2097. doi: 10.1007/s10562-019-02740-8
    [58] WU Y, ZUO S, ZHAO Y, et al. Biomass-derived metal-organic hybrids for CO2 transformation under ambient conditions[J]. Green Chemistry, 2020, 22(9): 2846-2851. doi: 10.1039/D0GC00212G
    [59] VALENTINI A, CARRENO N L V, PROBST L F D, et al. Ni: CeO2 nanocomposite catalysts prepared by polymeric precursor method[J]. Applied Catalysis A: General, 2006, 310: 174-182. doi: 10.1016/j.apcata.2006.05.037
    [60] SEELAJAROEN H, SPIESS S, HABERBAUER M, et al. Enhanced methane producing microbial electrolysis cells for wastewater treatment using poly (neutral red) and chitosan modified electrodes[J]. Sustainable Energy & Fuels, 2020, 4(8): 4238-4248.
    [61] SHARMA A, BHATTACHARYA A, SHRIVASTAVA A. Biomimetic CO2 sequestration using purified carbonic anhydrase from indigenous bacterial strains immobilized on biopolymeric materials[J]. Enzyme and Microbial Technology, 2011, 48(4-5): 416-426. doi: 10.1016/j.enzmictec.2011.02.001
    [62] CHEN B Y, DOBELE G, PLAVNIECE A, et al. Catalytic hydrogenation of CO2 to light olefins by using K-doped FeCx catalysts derived from the Fe-chitosan complex[J]. International Journal of Hydrogen Energy, 2023, 48(11): 4276-4286. doi: 10.1016/j.ijhydene.2022.11.010
    [63] WOO K M, LEE I, HONG S G, et al. Crosslinked chitosan coating on magnetic mesoporous silica with pre-adsorbed carbonic anhydrase for carbon dioxide conversion[J]. Chemical Engineering Journal, 2015, 276: 232-239. doi: 10.1016/j.cej.2015.04.057
    [64] KOTHANDARAMAN J, HELDEBRANT D J. Towards environmentally benign capture and conversion: Heterogeneous metal catalyzed CO2 hydrogenation in CO2 capture solvents[J]. Green Chemistry, 2020, 22(3): 828-834. doi: 10.1039/C9GC03449H
    [65] OVIYA M, SUKUMARAN V, GIRI S S. Immobilization and characterization of carbonic anhydrase purified from E. coli MO1 and its influence on CO2 sequestration[J]. World Journal of Microbiology and Biotechnology, 2013, 29: 1813-1820. doi: 10.1007/s11274-013-1343-z
    [66] SHE H, ZHAO Z, BAI W, et al. Enhanced performance of photocatalytic CO2 reduction via synergistic effect between chitosan and Cu : TiO2[J]. Materials Research Bulletin, 2020, 124: 110758. doi: 10.1016/j.materresbull.2019.110758
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  531
  • HTML全文浏览量:  348
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-05
  • 修回日期:  2023-08-09
  • 录用日期:  2023-08-29
  • 网络出版日期:  2023-09-13
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回