留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维MXene负载MoO3/Ni-NiO异质结催化材料用于高效碱性电催化析氢反应

刘寿达 刘娟娟 刘潞潞 董梦飞 李瑞 高晓明 高楼军 简选

刘寿达, 刘娟娟, 刘潞潞, 等. 二维MXene负载MoO3/Ni-NiO异质结催化材料用于高效碱性电催化析氢反应[J]. 复合材料学报, 2024, 41(5): 2546-2558. doi: 10.13801/j.cnki.fhclxb.20230908.003
引用本文: 刘寿达, 刘娟娟, 刘潞潞, 等. 二维MXene负载MoO3/Ni-NiO异质结催化材料用于高效碱性电催化析氢反应[J]. 复合材料学报, 2024, 41(5): 2546-2558. doi: 10.13801/j.cnki.fhclxb.20230908.003
LIU Shouda, LIU Juanjuan, LIU Lulu, et al. Two-dimensional MXene supported MoO3/Ni-NiO heterostructures for high-performance hydrogen evolution reaction at alkaline condition[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2546-2558. doi: 10.13801/j.cnki.fhclxb.20230908.003
Citation: LIU Shouda, LIU Juanjuan, LIU Lulu, et al. Two-dimensional MXene supported MoO3/Ni-NiO heterostructures for high-performance hydrogen evolution reaction at alkaline condition[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2546-2558. doi: 10.13801/j.cnki.fhclxb.20230908.003

二维MXene负载MoO3/Ni-NiO异质结催化材料用于高效碱性电催化析氢反应

doi: 10.13801/j.cnki.fhclxb.20230908.003
基金项目: 国家自然科学基金 (22008167);陕西省大学生创新创业训练项目(S202210719065)
详细信息
    通讯作者:

    简选,博士,讲师,硕士生导师,研究方向为能源电化学工程 E-mail: jianxuan@yau.edu.cn

  • 中图分类号: TB331;O646

Two-dimensional MXene supported MoO3/Ni-NiO heterostructures for high-performance hydrogen evolution reaction at alkaline condition

Funds: National Natural Science Foundation of China (22008167);College Students' Innovation and Entrepreneurship Project of Shaanxi Province (S202210719065)
  • 摘要: 氢能作为低碳和零碳能源,是未来国家能源体系的重要组成部分,开发高效、低廉的碱性析氢(HER)电催化剂对于氢能的大规模制备和利用具有重要的意义。本文以二维Nb2CTx MXene为载体,通过一步电化学共沉积法在其表面负载MoO3/Ni-NiO异质结构,得到具有优异电催化HER性能的MoO3/Ni-NiO/Nb2CTx催化材料。采用XRD、SEM和TEM等手段对MoO3/Ni-NiO/Nb2CTx的表面形貌和结构进行表征,发现通过一步电化学共沉积法成功地将MoO3/Ni-NiO异质结构紧密负载于Nb2CTx MXene纳米片表面。在1.0 mol/L KOH电解质中测试其HER性能,在10 mA·cm−2和100 mA·cm−2的电流密度时,MoO3/Ni-NiO/Nb2CTx表现出较低的过电压,分别为8 mV和201 mV,Tafel斜率为51 mV·dec−1;并且在电流密度分别为10 mA·cm−2和50 mA·cm−2下连续电解产氢20 h,活性几乎保持不变,具有优异的碱性HER稳定性。此外,本文还采用工况电化学阻抗谱对不同催化电极材料在过电压从0~220 mV (vs 可逆氢电极(RHE))进行HER工况表征,结果表明MoO3/Ni-NiO/Nb2CTx可有效促进水解离过程和活性氢吸附过程,从而提高HER活性。

     

  • 图  1  MoO3/Ni-NiO/Nb2CTx的合成示意图

    TPAOH—Tetrapropyl ammonium hydroxide

    Figure  1.  Schematic illustration for the synthesis of MoO3/Ni-NiO/Nb2CTx catalytic electrode

    图  2  (a) 碳纸(CP)基体上负载MoO3/Ni-NiO/Nb2CTx、Ni/Nb2CTx、NiO/ Nb2CTx和Nb2CTx MXene的XRD图谱对比;((b), (c)) MoO3/Ni-NiO/Nb2CTx不同放大倍数下的SEM图像;(d) MoO3/Ni-NiO/Nb2CTx的EDS 图谱;((e)~(g)) MoO3/Ni-NiO/Nb2CTx不同放大倍数下的TEM图像

    Figure  2.  (a) XRD patterns of MoO3/Ni-NiO/Nb2CTx, Ni/Nb2CTx, NiO/ Nb2CTx and Nb2CTx MXene loaded on carbon papers (CP); ((b), (c)) Different magnifications SEM images of MoO3/Ni-NiO/Nb2CTx; (d) EDS mapping images of MoO3/Ni-NiO/Nb2CTx; ((e)-(g)) Different magnifications TEM images of MoO3/Ni-NiO/Nb2CTx

    图  3  MoO3/Ni-NiO/Nb2CTx的XPS图谱;(a) MoO3/Ni-NiO/Nb2CTx的XPS全谱图;(b) Nb2CTx MXene的Nb3d 图谱;(c) MoO3/Ni-NiO/Nb2CTx和MoO3/Nb2CTx的Mo3d图谱对比;(d) MoO3/Ni-NiO/Nb2CTx和Ni-NiO/Nb2CTx的Ni2p图谱对比

    Figure  3.  XPS spectra of MoO3/Ni-NiO/Nb2CTx: (a) Survey of MoO3/Ni-NiO/Nb2CTx; (b) Nb3d of of Nb2CTx MXene; (c) Comparison of Mo3d for MoO3/Ni-NiO/Nb2CTx and MoO3/Nb2CTx; (d) Comparison of Ni2p for MoO3/Ni-NiO/Nb2CTx and Ni-NiO/Nb2CTx

    图  4  不同催化电极材料在1.0 mol/L KOH电解质中析氢反应(HER)性能:(a) 线性扫描伏安(LSV)曲线;(b) Tafel斜率对比;(c) 电化学活性面积(ECSA)对比;(d) EIS谱图对比;(e) MoO3/Ni-NiO/Nb2CTx在不同电流密度下稳定性

    η10—10 mA·cm−2 current density; η100—100 mA·cm−2 current density; j—Current density; Rs—Internal resistance of solution; C—Capacitance; R0—Electrode resistance; Z'—Real part of impedance; Z''—Imaginary part of impedance

    Figure  4.  Electrochemical hydrogen evolution reaction (HER) performance of different catalytic electrodes in 1.0 mol/L KOH: (a) Linear sweep voltammetry (LSV) curves; (b) Tafel patterns; (c) Comparison of electrochemical active surface area (ECSA); (d) Nyquist plots of EIS; (e) Stability of MoO3/Ni-NiO/Nb2CTx at different current densities

    图  5  MoO3/Ni-NiO/Nb2CTx电极在HER稳定性测试前后的XPS图谱:(a) XPS全谱图;(b) Nb3d;(c) Ni2p;(d) Mo3d

    Figure  5.  XPS spectra of MoO3/Ni-NiO/Nb2CTx electrode before and after HER reaction: (a) Full XPS spectra; (b) Nb3d; (c) Ni2p; (d) Mo3d

    图  6  不同催化电极在1.0 mol/L KOH电解质中过电压为0~220 mV (vs RHE)下的EIS图谱

    Figure  6.  Operando EIS measurements of different catalytic electrodes in 1.0 mol/L KOH electrolyte with overvoltage of 0-220 mV (vs RHE)

    图  7  MoO3/Ni-NiO/Nb2CTx在Ar饱和1.0 mol/L KOH电解质中旋转圆盘-环盘电极(RRDE)测试图

    Iring—Ring current; Idisk—Disk current

    Figure  7.  MoO3/Ni-NiO/Nb2CTx test diagram of rotating ring-disk electrodes (RRDE) in Ar-saturated 1.0 mol/L KOH electrolyte

    图  S1  MAX相Nb2AlC、多层Nb2CTx MXene和单层Nb2CTx MXene XRD图谱

    Figure  S1.  XRD patterns of MAX Nb2AlC, multi-layer Nb2CTx MXene and single-layer Nb2CTx MXene

    图  S2  多层Nb2CTx MXene和单层Nb2CTx MXene的SEM图像和TEM图像

    Figure  S2.  SEM and TEM images of multi-layer Nb2CTx MXene and single-layer Nb2CTx MXene

    图  S3  MoO3/Ni-NiO/Nb2CTx的XPS图谱

    Figure  S3.  XPS spectra of MoO3/Ni-NiO/Nb2CTx

    图  S4  不同催化电极材料在1.0 mol/L KOH电解质中CV曲线:(a) Nb2CTx;(b) MoO3/Nb2CTx;(c) Ni-NiO/Nb2CTx;(d) MoO3/Ni-NiO;(e) MoO3/Ni-NiO/Nb2CTx

    Figure  S4.  CV curves of different catalytic electrode materials in 1.0 mol/L KOH electrolyte: (a) Nb2CTx; (b) MoO3/Nb2CTx; (c) Ni-NiO/Nb2CTx; (d) MoO3/Ni-NiO; (e) MoO3/Ni-NiO/Nb2CTx

    表  1  MoO3/Ni-NiO/Nb2CTx与最近报道的代表性电催化剂的HER性能对比

    Table  1.   Comparison of electrochemical HER performance of MoO3/Ni-NiO/Nb2CTx with recently reported representative electrocatalysts

    No. Electrocatalyst Electrolyte η10/
    mV
    Tafel slop/
    (mV·dec−1)
    Ref.
    1 MoO3/Ni-NiO/Nb2CTx 1.0 mol/L KOH 8 51 This work
    2 Nitrogen-rich Ag@Ti3C2Tx MXene 1.0 mol/L KOH 153 137.9 [29]
    3 IrCo@basal plane-porous titanium carbide MXene 1.0 mol/L KOH 220 60 [30]
    4 MoS2@Mo2CTx nanohybrids 1.0 mol/L KOH 176 207 [31]
    5 Ru-MoS2/carbon cloth 1.0 mol/L KOH 41 114 [32]
    6 Ru-MoO2 nanocomposites 1.0 mol/L KOH 29 44 [33]
    7 NiCoP grains@Ti3C2Tx MXene 1.0 mol/L KOH 71 77.3 [24]
    8 P-CoFe-LDH@MXene/NF 1.0 mol/L KOH 85 53.19 [34]
    9 Co-doped β-Mo2C 1.0 mol/L KOH 141 62 [35]
    10 TiO2@CoCH 1.0 mol/L KOH 99 80 [36]
    Notes:LDH—Layered double hydroxide; NF—Nickel foam;β-Mo2C—Porous molybdenum carbide;CoCH—Cobalt carbonate hydroxide.
    下载: 导出CSV
  • [1] KUMAR A, BUI V Q, LEE J S, et al. Moving beyond bimetallic-alloy to single-atom dimer atomic-interface for all-pH hydrogen evolution[J]. Nature Communications, 2021, 12(1): 6766. doi: 10.1038/s41467-021-27145-3
    [2] DAI J, ZHU Y L, CHEN Y, et al. Hydrogen spillover in complex oxide multifunctional sites improves acidic hydrogen evolution electrocatalysis[J]. Nature Communications, 2022, 13(1): 1189. doi: 10.1038/s41467-022-28843-2
    [3] 吴诗德, 张桂伟, 黄思光, 等. Ni-NiO/N-C的制备及其电解水析氢性能[J]. 复合材料学报, 2022, 39(4): 1667-1677.

    WU Shide, ZHANG Guiwei, HUANG Siguang, et al. Preparation of Ni-NiO/N-C electrocatalyst and its performance for water splitting into hydrogen[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1667-1677(in Chinese).
    [4] WANG Y Q, ZHAO L L, MA J Z, et al. Confined interface transformation of metal-organic frameworks for highly efficient oxygen evolution reactions[J]. Energy & Environmental Science, 2022, 15(9): 3830-3841.
    [5] YU H Z, ZHU S Q, HAO Y S, et al. Modulating local interfacial bonding environment of heterostructures for energy-saving hydrogen production at high current densities[J]. Advanced Functional Materials, 2023, 33(12): 2212811.
    [6] LI M, WANG X, LIU K, et al. Ce-induced differentiated regulation of Co sites via gradient orbital coupling for bifunctional water-splitting reactions[J]. Advanced Energy Materials, 2023, 13(30): 2301162.
    [7] JIANG B W, YANG T, WANG T T, et al. Edge stimulated hydrogen evolution reaction on monodispersed MXene quantum dots[J]. Chemical Engineering Journal, 2022, 442: 136119. doi: 10.1016/j.cej.2022.136119
    [8] WU Y C, WEI W, YU R H, et al. Anchoring sub-nanometer Pt clusters on crumpled paper-like MXene enables high hydrogen evolution mass activity[J]. Advanced Functional Materials, 2022, 32(17): 2110910. doi: 10.1002/adfm.202110910
    [9] 赖嘉俊, 李潇潇, 曾传旺, 等. 富氧空位铁基复合材料的制备及其电催化析氢性能[J]. 复合材料学报, 2023, 40(5): 2827-2835.

    LAI Jiajun, LI Xiaoxiao, ZENG Chuanwang, et al. Preparation and electrocatalytic hydrogen evolution performance of iron-based composites with rich oxygen vacancies[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2827-2835(in Chinese).
    [10] SUBBARAMAN R, TRIPKOVIC D, STRMCNIK D, et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces[J]. Science, 2011, 334(6060): 1256-1260. doi: 10.1126/science.1211934
    [11] ZHENG Y, JIAO Y, VASILEFF A, et al. The hydrogen evolution reaction in alkaline solution: From theory, single crystal models, to practical electrocatalysts[J]. Angewandte Chemie International Edition, 2018, 57(26): 7568-7579.
    [12] 李创, 王宇, 候利强, 等. 多孔碳负载钌单原子和钌纳米团簇催化剂用于高效析氢反应[J]. 复合材料学报, 2023, 40(4): 2155-2168.

    LI Chuang, WANG Yu, HOU Liqiang, et al. Porous carbon supported ruthenium single atom and ruthenium nanoclusters catalysts for efficient hydrogen evolution reaction[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2155-2168(in Chinese).
    [13] KIM J, JUNG H, JUNG S M, et al. Tailoring binding abilities by incorporating oxophilic transition metals on 3D nanostructured Ni arrays for accelerated alkaline hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2021, 143(3): 1399-1408. doi: 10.1021/jacs.0c10661
    [14] SUBBARAMAN R, TRIPKOVIC D, CHANG K C, et al. Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts[J]. Nature Materials, 2012, 11: 550-557.
    [15] LIU X, NI K, NIU C J, et al. Upraising the O2p orbital by integrating Ni with MoO2 for accelerating hydrogen evolution kinetics[J]. ACS Catalysis, 2019, 9(3): 2275-2285. doi: 10.1021/acscatal.8b04817
    [16] MAO B G, SUN P P, JIANG Y, et al. Identifying the transfer kinetics of adsorbed hydroxyl as a descriptor of alkaline hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2020, 132(35): 15232-15237.
    [17] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253. doi: 10.1002/adma.201102306
    [18] LIU A M, LIANG X Y, REN X F, et al. Recent progress in MXene-based materials: Potential high-performance electrocatalysts[J]. Advanced Functional Materials, 2020, 30(38): 2003437. doi: 10.1002/adfm.202003437
    [19] VAHIDMOHAMMADI A, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides (MXenes)[J]. Science, 2021, 372: 6547.
    [20] CHU K, LUO Y J, SHEN P, et al. Unveiling the synergy of O-vacancy and heterostructure over MoO3−x/MXene for N2 electroreduction to NH3[J]. Advanced Energy Materials, 2022, 12(3): 2103022. doi: 10.1002/aenm.202103022
    [21] CHU K, LI X C, LI Q Q, et al. Synergistic enhancement of electrocatalytic nitrogen reduction over boron nitride quantum dots decorated Nb2CT x-MXene[J]. Small, 2021, 17(40): e2102363.
    [22] LI X C, LUO Y J, LI Q Q, et al. Constructing an electron-rich interface over an Sb/Nb2CT x-MXene heterojunction for enhanced electrocatalytic nitrogen reduction[J]. Journal of Materials Chemistry A, 2021, 9(29): 15955-15962. doi: 10.1039/D1TA03662A
    [23] YAN Y, ZHANG R Z, YU Y D, et al. Interfacial optimization of PtNi octahedrons@Ti3C2 MXene with enhanced alkaline hydrogen evolution activity and stability[J]. Applied Catalysis B: Environmental, 2021, 291: 120100. doi: 10.1016/j.apcatb.2021.120100
    [24] NIU H J, YAN Y, JIANG S S, et al. Interfaces decrease the alkaline hydrogen-evolution kinetics energy barrier on NiCoP/Ti3C2T x MXene[J]. ACS Nano, 2022, 16(7): 11049-11058. doi: 10.1021/acsnano.2c03711
    [25] LI X P, WANG Y, WANG J J, et al. Sequential electrodeposition of bifunctional catalytically active structures in MoO3/Ni-NiO composite electrocatalysts for selective hydrogen and oxygen evolution[J]. Advanced Materials, 2020, 32(39): 2003414.
    [26] XU D, PAN Y, ZHU L K, et al. Simple coordination complex-derived Ni NP anchored N-doped porous carbons with high performance for reduction of nitroarenes[J]. CrystEngComm, 2017, 19(44): 6612-6619. doi: 10.1039/C7CE01571B
    [27] ZHANG S J, ZHUO H, LI S Q, et al. Effects of surface functionalization of MXene-based nanocatalysts on hydrogen evolution reaction performance[J]. Catalysis Today, 2021, 368: 187-195. doi: 10.1016/j.cattod.2020.02.002
    [28] LI M X, ZHU Y, WANG H Y, et al. Ni strongly coupled with Mo2C encapsulated in nitrogen-doped carbon nanofibers as robust bifunctional catalyst for overall water splitting[J]. Advanced Energy Materials, 2019, 9(10): 1803185. doi: 10.1002/aenm.201803185
    [29] YUAN Z Y, WANG L L, CAO J M, et al. Ultraviolet-assisted construction of nitrogen-rich Ag@Ti3C2T x MXene for highly efficient hydrogen evolution electrocatalysis and supercapacitor[J]. Advanced Materials Interfaces, 2020, 7(23): 2001449. doi: 10.1002/admi.202001449
    [30] LE T A, TRAN N Q, HONG Y, et al. Porosity-engineering of MXene as a support material for a highly efficient electrocatalyst toward overall water splitting[J]. ChemSusChem, 2020, 13(5): 945-955. doi: 10.1002/cssc.201903222
    [31] REN J, ZONG H, SUN Y Y, et al. 2D organ-like molybdenum carbide (MXene) coupled with MoS2 nanoflowers enhances the catalytic activity in the hydrogen evolution reaction[J]. CrystEngComm, 2020, 22(8): 1395-1403. doi: 10.1039/C9CE01777A
    [32] WANG D W, LI Q, HAN C, et al. Single-atom ruthenium based catalyst for enhanced hydrogen evolution[J]. Applied Catalysis B: Environmental, 2019, 249: 91-97. doi: 10.1016/j.apcatb.2019.02.059
    [33] JIANG P, YANG Y, SHI R H, et al. Pt-like electrocatalytic behavior of Ru-MoO2 nanocomposites for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2017, 5(11): 5475-5485. doi: 10.1039/C6TA09994G
    [34] DENG L Q, ZHANG K, SHI D, et al. Rational design of Schottky heterojunction with modulating surface electron density for high-performance overall water splitting[J]. Applied Catalysis B: Environmental, 2021, 299: 120660. doi: 10.1016/j.apcatb.2021.120660
    [35] MA Y F, CHEN M, GENG H B, et al. Synergistically tuning electronic structure of porous β-Mo2C spheres by Co doping and Mo-vacancies defect engineering for optimizing hydrogen evolution reaction activity[J]. Advanced Functional Materials, 2020, 30(19): 2000561. doi: 10.1002/adfm.202000561
    [36] YUAN L, LIU S, XU S C, et al. Modulation of volmer step for efficient alkaline water splitting implemented by titanium oxide promoting surface reconstruction of cobalt carbonate hydroxide[J]. Nano Energy, 2021, 82: 105732. doi: 10.1016/j.nanoen.2020.105732
    [37] XIAO Z H, HUANG Y C, DONG C L, et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction[J]. Journal of the American Chemical Society, 2020, 142(28): 12087-12095. doi: 10.1021/jacs.0c00257
    [38] LI J Y, LIU H X, GOU W Y, et al. Ethylene-glycol ligand environment facilitates highly efficient hydrogen evolution of Pt/CoP through proton concentration and hydrogen spillover[J]. Energy & Environmental Science, 2019, 12(7): 2298-2304.
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  449
  • HTML全文浏览量:  290
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-17
  • 修回日期:  2023-08-24
  • 录用日期:  2023-08-25
  • 网络出版日期:  2023-09-11
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回