留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化麦秸/聚乳酸复合材料力学性能的响应面工艺优化

廖承钢 阮久锠 李新功 左迎峰

廖承钢, 阮久锠, 李新功, 等. 氧化麦秸/聚乳酸复合材料力学性能的响应面工艺优化[J]. 复合材料学报, 2024, 41(4): 2065-2073. doi: 10.13801/j.cnki.fhclxb.20230907.003
引用本文: 廖承钢, 阮久锠, 李新功, 等. 氧化麦秸/聚乳酸复合材料力学性能的响应面工艺优化[J]. 复合材料学报, 2024, 41(4): 2065-2073. doi: 10.13801/j.cnki.fhclxb.20230907.003
LIAO Chenggang, RUAN Jiuchang, LI Xingong, et al. Optimization of response surface methodology and performance of oxidized wheat straw/polylactic acid composites[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2065-2073. doi: 10.13801/j.cnki.fhclxb.20230907.003
Citation: LIAO Chenggang, RUAN Jiuchang, LI Xingong, et al. Optimization of response surface methodology and performance of oxidized wheat straw/polylactic acid composites[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2065-2073. doi: 10.13801/j.cnki.fhclxb.20230907.003

氧化麦秸/聚乳酸复合材料力学性能的响应面工艺优化

doi: 10.13801/j.cnki.fhclxb.20230907.003
基金项目: 湖南省教育厅科学研究重点项目(18A157);湖湘青年英才计划(2019RS2040)
详细信息
    通讯作者:

    左迎峰,博士,教授,博士生导师,研究方向为农林生物质复合材料制备与改性 E-mail: zuoyf1986@163.com

  • 中图分类号: TB332

Optimization of response surface methodology and performance of oxidized wheat straw/polylactic acid composites

Funds: Research Foundation of Education Bureau of Hunan Province (18A157); Hunan Provincial Technical Innovation Platform and Talent Program in Science and Technology (2019RS2040)
  • 摘要: 为解决麦秸纤维/聚乳酸(WF/PLA)复合材料界面相容性较差的问题,以H2O2作为氧化剂处理麦秸,采用响应面试验法探究H2O2的pH、处理温度、质量比对氧化麦秸纤维(OWF)/PLA复合材料力学性能的影响,得到各因素对复合材料力学性能的影响规律。结果表明:pH和处理温度、pH和质量比、处理温度和质量比之间均表现出明显的交互作用。回归方程预测的最佳工艺参数如下:H2O2的pH为8.9,H2O2的处理温度为52.3℃,H2O2的质量比为2%。在此条件下,复合材料的拉伸强度和断裂伸长率分别为38.89 MPa和7.85%,较未改性前分别提高了15.64%和15.20%。FTIR结果表明,OWF中的部分羟基被H2O2氧化为羧基。SEM结果表明,OWF能够更好地与PLA进行结合,经过熔融共混后制备的复合材料之间具有更好的界面相容性。此外,XRD和DSC结果表明,H2O2的加入促进了聚合物的异相成核过程,使其结晶度有所提高。

     

  • 图  1  单因素对氧化麦秸纤维/聚乳酸(OWF/PLA)复合材料拉伸性能的影响:(a) H2O2的pH;(b) 处理温度;(c) H2O2的质量比

    Figure  1.  Effect of single factor on the tensile properties of oxidized wheat straw fiber/poly(lactic acid) (OWF/PLA) composite materials: (a) pH of H2O2; (b) Treatment temperatures; (c) Mass ratios of H2O2

    图  2  OWF/PLA复合材料拉伸强度实验值与预测值对比

    Figure  2.  Comparison between experimental and predicted values of tensile strength of OWF/PLA composites

    图  3  OWF/PLA复合材料三维响应曲面图:H2O2的pH与处理温度

    Figure  3.  Three-dimensional response surface graph of OWF/PLA composites: pH and treatment temperature of H2O2

    图  4  OWF/PLA复合材料三维响应曲面图:H2O2的pH与质量比

    Figure  4.  Three-dimensional response surface graph of OWF/PLA composites: pH and mass ratio of H2O2

    图  5  OWF/PLA复合材料三维响应曲面图:H2O2的处理温度与质量比

    Figure  5.  Three-dimensional response surface graph of OWF/PLA composites: Treatment temperature and mass ratio of H2O2

    图  6  复合材料力学性能对比(a)和FTIR图谱(b)

    Figure  6.  Comparison of mechanical properties of composites (a) and FTIR spectra (b)

    图  7  WF/PLA复合材料的改性机制图(a)、OWF与PLA的反应方程式(b)

    Figure  7.  Modification mechanism of WF/PLA composites (a), reaction equation between OWF and PLA (b)

    图  8  复合材料拉伸断面的SEM图像:((a1), (a2)) WF/PLA;((b1), (b2)) OWF/PLA

    Figure  8.  SEM images of tensile cross-section of composites: ((a1), (a2)) WF/PLA; ((b1), (b2)) OWF/PLA

    图  9  复合材料的XRD曲线(a)和DSC曲线(b)

    Tg—Glass transition temperature; Tcc—Crystal temperature

    Figure  9.  XRD curves (a) and DSC curves (b) of composites

    表  1  Box-Behnken因素水平表

    Table  1.   Factors and levels table for Box-Behnken

    Level Factor
    A: pH of H2O2 B: Treatment temperature/℃ C: Mass ratio of H2O2/%
    −1 7.0 40 2
    0 8.0 50 3
    1 9.0 60 4
    Notes: Total mass of polylactic acid (PLA) blended with wheat straw fiber (WF) is 100%, the mass ratio of H2O2 refers to its proportion to the mass of WF.
    下载: 导出CSV

    表  2  响应面法优化OWF/PLA复合材料拉伸性能试验的设计与结果

    Table  2.   Design and results of tensile properties test of OWF/PLA composites optimized by response surface method

    Run Factors Tensile strength/MPa
    A B/℃ C/%
    1 7.0 40 3 38.69±0.57
    2 9.0 40 3 34.61±2.75
    3 7.0 60 3 34.43±0.98
    4 9.0 60 3 36.09±1.38
    5 7.0 50 2 40.80±0.81
    6 9.0 50 2 37.84±1.67
    7 7.0 50 4 37.76±0.72
    8 9.0 50 4 37.83±1.07
    9 8.0 40 2 37.54±1.80
    10 8.0 60 2 37.05±1.63
    11 8.0 40 4 37.86±1.32
    12 8.0 60 4 34.20±1.17
    13 8.0 50 3 39.02±0.65
    14 8.0 50 3 39.41±1.78
    15 8.0 50 3 39.21±2.75
    16 8.0 50 3 38.97±2.03
    17 8.0 50 3 39.04±1.21
    下载: 导出CSV

    表  3  响应面法优化OWF/PLA复合材料力学性能实验中回归方程的方差分析

    Table  3.   Variance analysis of response surface experimental regression equation of optimization of the mechanical properties of OWF/PLA composites

    Source Tensile strength Significance
    F value P value
    Model 102.27 <0.0001 ***
    A 57.83 0.0001 **
    B 98.50 <0.0001 ***
    C 63.86 <0.0001 ***
    AB 135.15 <0.0001 ***
    AC 37.66 0.0005 **
    BC 41.22 0.0004 **
    A2 28.30 0.0011 **
    B2 443.96 <0.0001 ***
    C2 0.31 0.5923
    Lack of fit 3.02 0.1566
    R2 0.9925
    RAdj 2 0.9827
    CV 0.66
    Notes: F—Ratio of the mean square to the residual term; P—Influence degree value of each factor; ***—Significant in [−∞, 0.0001]; **—Significant in [0.0001, 0.01]; *—Significant in [0.01, 0.05]; R2—Coefficient of determination; RAdj 2 —Adjusted R2; CV—Coefficient of variation.
    下载: 导出CSV

    表  4  复合材料的结晶过程参数

    Table  4.   Crystallization process parameters of composites

    Sample Tg/℃ Tcc/℃ Tm/℃ ΔHcc/
    (J·g−1)
    ΔHm/
    (J·g−1)
    Xc/%
    WF/PLA 62.9 91.6 168.1 11.97 27.98 42.7
    OWF/PLA 61.7 89.9 168.0 11.82 29.88 45.6
    Notes: Tm—Melting temperature; ΔHcc—Cold crystallization enthalpy; ΔHm—Melting enthalpy; Xc—Crystallinity.
    下载: 导出CSV
  • [1] 高利伟, 马林, 张卫峰, 等. 中国作物秸秆养分资源数量估算及其利用状况[J]. 农业工程学报, 2009, 25(7): 173-179. doi: 10.3969/j.issn.1002-6819.2009.07.032

    GAO Liwei, MA Lin, ZHANG Weifeng, et al. Estimation of nutrient resource quantity of crop straw and its utilization situation in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(7): 173-179(in Chinese). doi: 10.3969/j.issn.1002-6819.2009.07.032
    [2] 石祖梁, 王飞, 王久臣, 等. 我国农作物秸秆资源利用特征、技术模式及发展建议[J]. 中国农业科技导报, 2019, 21(5): 8-16. doi: 10.13304/j.nykjdb.2018.0314

    SHI Zuliang, WANG Fei, WANG Jiuchen, et al. Utilization characteristics, technical model and development suggestion on crop straw in China[J]. Journal of Agricultural Science and Technology, 2019, 21(5): 8-16(in Chinese). doi: 10.13304/j.nykjdb.2018.0314
    [3] XU J J, HAO X L, TANG W, et al. Mechanical properties, morphology, and creep resistance of ultra-highly filled bamboo fiber/polypropylene composites: Effects of filler content and melt flow index of polypropylene[J]. Construction and Building Materials, 2021, 310: 125289. doi: 10.1016/j.conbuildmat.2021.125289
    [4] 张扬, 张静, 江雯钊, 等. PLA/植物纤维全生物降解复合材料的研究进展[J]. 中国塑料, 2015, 29(8): 25-31.

    ZHANG Yang, ZHANG Jing, JIANG Wenzhao, et al. Research development of fully biodegrade poly(lactic acid)/plant fiber composites[J]. China Plastics, 2015, 29(8): 25-31(in Chinese).
    [5] KOST B, BASKO M, BEDNAREK M, et al. The influence of the functional end groups on the properties of polylactide-based materials[J]. Progress in Polymer Science, 2022, 130: 101556.
    [6] WU H, WEI X H, LIU Y C, et al. Dynamic degradation patterns of porous polycaprolactone/β-tricalcium phosphate composites orchestrate macrophage responses and immunoregulatory bone regeneration[J]. Bioactive Materials, 2023, 21: 595-611. doi: 10.1016/j.bioactmat.2022.07.032
    [7] BARLETTA M, AVERSA C, AYYOOB M, et al. Poly(butylene succinate) (PBS): Materials, processing, and industrial applications[J]. Progress in Polymer Science, 2022, 132: 101579. doi: 10.1016/j.progpolymsci.2022.101579
    [8] ALI S S, ELSAMAHY T, ABDELKARIM E A, et al. Biowastes for biodegradable bioplastics production and end-of-life scenarios in circular bioeconomy and biorefinery concept[J]. Bioresource Technology, 2022, 363: 127869. doi: 10.1016/j.biortech.2022.127869
    [9] 徐冲, 张效林, 丛龙康, 等. 天然纤维增强聚乳酸基可降解复合材料的研究进展[J]. 化工进展, 2017, 36(10): 3751-3756. doi: 10.16085/j.issn.1000-6613.2017-0123

    XU Chong, ZHANG Xiaolin, CONG Longkang, et al. Progress of natural fiber reinforced polylactic acid biodegradable composites[J]. Chemical Industry and Engineering Progress, 2017, 36(10): 3751-3756(in Chinese). doi: 10.16085/j.issn.1000-6613.2017-0123
    [10] LYU S S, GU J Y, TAN H Y, et al. Modification of wood flour/PLA composites by reactive extrusion with maleic anhydride[J]. Journal of Applied Polymer Science, 2016, 133(15): 43295.
    [11] YANG Y X, HAURIE L, WEN J H, et al. Effect of oxidized wood flour as functional filler on the mechanical, thermal and flame-retardant properties of polylactide biocomposites[J]. Industrial Crops and Products, 2019, 130: 301-309. doi: 10.1016/j.indcrop.2018.12.090
    [12] 中国石油和化学工业联合会. 塑料 拉伸性能的测定 第1部分总则: GB/T 1040.1—2018[S]. 北京: 中国标准出版社, 2018.

    China Petroleum and Chemical Industry Federation. Plastics—Determination of tensile properties—Part 1: General: GB/T 1040.1—2018[S]. Beijing: China Standards Press, 2018(in Chinese).
    [13] 刘俊劭, 胡家朋, 赵升云, 等. 白杨木粉碱性过氧化氢漂白条件的优化[J]. 生物质化学工程, 2011, 45(2): 25-28. doi: 10.3969/j.issn.1673-5854.2011.02.006

    LIU Junshao, HU Jiapeng, ZHAO Shengyun, et al. Condition optimization for bleaching poplar wood powder by alkaline peroxide[J]. Biomass Chemical Engineering, 2011, 45(2): 25-28(in Chinese). doi: 10.3969/j.issn.1673-5854.2011.02.006
    [14] 余木火, 王昊, 余许多, 等. 干法缠绕用预浸纱制备工艺优化及其性能[J]. 复合材料学报, 2022, 39(12): 5688-5698.

    YU Muhuo, WANG Hao, YU Xuduo, et al. Preparation process optimization and performance of pre-impregnated yarn for dry winding[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5688-5698(in Chinese).
    [15] 赵冰冰, 方艳, 武康, 等. 蓝藻粉-青霉素菌渣/低密度聚乙烯复合材料配方的响应面法优化设计和验证[J]. 复合材料学报, 2020, 37(8): 1894-1903. doi: 10.13801/j.cnki.fhclxb.20191206.001

    ZHAO Bingbing, FANG Yan, WU Kang, et al. Optimization design and validation of algae powder-penicillin residue/low density polyethylene composites formulation by response surface methodology[J]. Acta Materiae Compositae Sinica, 2020, 37(8): 1894-1903(in Chinese). doi: 10.13801/j.cnki.fhclxb.20191206.001
    [16] 孙晓东, 彭亮, 吴义强, 等. 基于响应面优化竹单板泡沫铝复合材料工艺研究[J]. 林产工业, 2021, 58(7): 1-5, 10. doi: 10.19531/j.issn1001-5299.202107001

    SUN Xiaodong, PENG Liang, WU Yiqiang, et al. Study on process of bamboo veneer foam aluminum composites based on response surface optimization[J]. China Forest Products Industry, 2021, 58(7): 1-5, 10(in Chinese). doi: 10.19531/j.issn1001-5299.202107001
    [17] RAYUNG M, IBRAHIM N A, ZAINUDDIN N, et al. The effect of fiber bleaching treatment on the properties of poly(lactic acid)/oil palm empty fruit bunch fiber composites[J]. International Journal of Molecular Sciences, 2014, 15(8): 14728-14742. doi: 10.3390/ijms150814728
    [18] RAZAK N I A, IBRAHIM N A, ZAINUDDIN N, et al. The influence of chemical surface modification of kenaf fiber using hydrogen peroxide on the mechanical properties of biodegradable kenaf fiber/poly(lactic acid) composites[J]. Molecules, 2014, 19(3): 2957-2968. doi: 10.3390/molecules19032957
    [19] THEN Y Y, IBRAHIM N A, ZAINUDDIN N, et al. Static mechanical, interfacial, and water absorption behaviors of alkali treated oil palm mesocarp fiber reinforced poly (butylene succinate) biocomposites[J]. BioResources, 2014: 10(1), 123-136.
    [20] 裴继诚. 植物纤维化学[M]. 北京: 中国轻工业出版社, 2012: 229-233.

    PEI Jicheng. Plant fiber chemistry[M]. Beijing: China Light Industry Press, 2012: 229-233(in Chinese).
    [21] JUBINVILLE D, TZOGANAKIS C, MEKONNEN T H. Recycled PLA-wood flour based biocomposites: Effect of wood flour surface modification, PLA recycling, and maleation[J]. Construction and Building Materials, 2022, 352: 129026. doi: 10.1016/j.conbuildmat.2022.129026
    [22] ZHANG X Z, ZHANG Y. Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends[J]. Carbohydrate Polymers, 2016, 140: 374-382. doi: 10.1016/j.carbpol.2015.12.073
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  440
  • HTML全文浏览量:  219
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-13
  • 修回日期:  2023-08-13
  • 录用日期:  2023-08-20
  • 网络出版日期:  2023-09-08
  • 刊出日期:  2024-04-01

目录

    /

    返回文章
    返回