留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复合材料开孔板拉伸损伤对剩余压缩强度的影响

王湘江 夏俊康 冀运东 曹东风 胡海晓 李书欣

王湘江, 夏俊康, 冀运东, 等. 复合材料开孔板拉伸损伤对剩余压缩强度的影响[J]. 复合材料学报, 2024, 41(4): 2111-2125. doi: 10.13801/j.cnki.fhclxb.20230907.001
引用本文: 王湘江, 夏俊康, 冀运东, 等. 复合材料开孔板拉伸损伤对剩余压缩强度的影响[J]. 复合材料学报, 2024, 41(4): 2111-2125. doi: 10.13801/j.cnki.fhclxb.20230907.001
WANG Xiangjiang, XIA Junkang, JI Yundong, et al. Effect of tension damage on structures residual compression strength of open-hole composite laminates[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2111-2125. doi: 10.13801/j.cnki.fhclxb.20230907.001
Citation: WANG Xiangjiang, XIA Junkang, JI Yundong, et al. Effect of tension damage on structures residual compression strength of open-hole composite laminates[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2111-2125. doi: 10.13801/j.cnki.fhclxb.20230907.001

复合材料开孔板拉伸损伤对剩余压缩强度的影响

doi: 10.13801/j.cnki.fhclxb.20230907.001
基金项目: 国家自然科学基金(52273080;12202325);中央高校基本科研业务费专项资金(WUT2021IVA068)
详细信息
    通讯作者:

    曹东风,博士,副研究员,硕士生导师,研究方向为先进复合材料计算力学 E-mail: cao_dongf@whut.edu.cn

    胡海晓,博士,副教授,硕士生导师,研究方向为复合材料材料-工艺-结构一体化应用 E-mail: yiming9008@126.com

  • 中图分类号: TB332

Effect of tension damage on structures residual compression strength of open-hole composite laminates

Funds: National Natural Science Foundation of China (52273080; 12202325); Fundamental Research Funds for the Central Universities (WUT2021IVA068)
  • 摘要: 通过试验和数值分析相结合的方式,探究含孔复合材料层合板拉伸损伤对其剩余压缩强度和失效模式的影响。试验方面,首先,通过开孔复合材料层合板拉伸试验引入两种程度的拉伸损伤,使用热揭层方法表征和量化其拉伸损伤程度。随后,开展含拉伸损伤的开孔复合材料层合板压缩试验,记录其载荷-位移曲线,并通过数字图像相关法(DIC)、应变片、微距相机等手段观察其变形和损伤演化特征。数值分析方面,构建基于LaRC失效准则的渐进损伤失效模型描述层内损伤演化,使用内聚力单元方法刻画复合材料层间分层损伤,基于此模型探究了开孔复合材料层合板损伤扩展规律。试验结果表明:拉伸载荷引起的孔边复合材料损伤以基体裂纹和分层损伤为主,在加载方向和纤维朝向夹角较小的层间,分层损伤程度更大。拉伸损伤会进一步加剧孔周应变集中,使孔邻域应变呈非对称,导致结构局部屈曲更早地发生,进而诱发结构整体破坏,相对于不含拉伸损伤开孔板,含拉伸损伤开孔板可使结构压缩承载能力下降25.8%。构建的数值计算模型可以准确预测拉伸载荷下孔周剪切应力引起的分层损伤和压缩阶段应变域场演化特征,也可揭示含不同程度拉伸损伤的开孔板压缩损伤扩展模式差异及探究纤维弯折失效、基体损伤和层间分层对结构承载能力的影响规律,为复合材料开孔板在变载荷作用下结构设计与剩余强度的确定提供支撑。

     

  • 图  1  试验方案流程图

    Figure  1.  Flow chart of the trial protocol

    图  2  开孔板尺寸示意图

    Figure  2.  Open-hole laminates size diagram

    图  3  (a) 热压罐;(b) 浸没式超声C扫描无损检测设备

    Figure  3.  (a) Autoclave; (b) Immersed ultrasound C-scan nondestructive testing equipment

    图  4  (a) 水刀切割机;(b) 钻孔设备

    Figure  4.  (a) Water jet cutting machine; (b) Drilling equipment

    图  5  试验装置与拉压夹具:(a) 试验机;(b) 拉伸夹具;(c) 压缩夹具

    Figure  5.  Test device and fixture: (a) Testing machine; (b) Drawing fixtures; (c) Compression fixture

    DIC—Digital imaging correlation; CCD—Charge coupled device

    图  6  复合材料开孔板数值计算模型

    Figure  6.  Numerical calculation model of open-hole composite laminates

    ux, uy, uz—Displacement in the direction x, y and z

    图  7  不同孔周网格尺寸的孔周分布状态:(a) 0.6 mm;(b) 0.4 mm;(c) 0.33 mm;(d) 0.29 mm

    Figure  7.  Distribution of hole circumference with different hole circumference mesh sizes: (a) 0.6 mm; (b) 0.4 mm; (c) 0.33 mm; (d) 0.29 mm

    图  8  开孔板单压缩承载极限与孔周网格尺寸关系

    Figure  8.  Relationship between compression load limit of the open-hole composite laminates and the mesh size around the hole

    图  9  T-34 (a)与T-39 (b)拉伸导致的分层损伤热揭层结果

    Figure  9.  Delamination damage caused by T-34 (a) and T-39 (b) tensile heat stripping results

    图  10  T-39拉伸阶段数值分析的应力、分层损伤状态

    Figure  10.  Numerical analysis of stress and stratified damage state of T-39 during tensile phase

    图  11  T-0、T-34和T-39压缩加载试验载荷-位移曲线

    Figure  11.  Load-displacement curves of T-0, T-34 and T-39 in compressive load test

    EXP—Experimental

    图  12  T-0、T-34和T-39压缩极限载荷柱状图

    Figure  12.  T-0, T-34 and T-39 compressive limit load column diagram

    图  13  开孔板压缩加载试验与数值计算载荷-位移曲线

    Figure  13.  Load-displacement curves of compression loading test and numerical calculation of open-hole composite laminates

    FEM—Finite element method

    图  14  T-0与T-39不同压缩载荷作用下DIC测量和数值计算的表面应变εyyεxy结果

    Figure  14.  Surface strain εyy and εxy results of DIC and numerical calculations under different compressive loads for T-0 and T-39

    图  15  T-0与T-39破坏前、后DIC监测应变状态

    Figure  15.  Strain state monitored by DIC before and after T-0 and T-39 destruction

    图  16  T-0与T-39应变仪监测孔周应变变化

    Figure  16.  Circumferential strain changes of T-0 and T-39 holes monitored by strain gauges

    图  17  T-0与T-39破坏前、后结构侧面损伤状态

    Figure  17.  Lateral damage state of the structure before and after T-0 and T-39 destruction

    图  18  T-0与T-39压缩加载各阶段屈曲示意图

    Figure  18.  Schematic diagram of buckling at each stage of T-0 and T-39 compressive loading

    图  19  T-0面内损伤的数值计算结果

    Figure  19.  Numerical results of T-0 intralaminar damage

    图  22  T-39层间损伤的数值计算结果

    Figure  22.  Numerical results of T-39 interlaminar damage

    图  20  T-0层间损伤的数值计算结果

    Figure  20.  Numerical results of T-0 interlaminar damage

    图  21  T-39面内损伤的数值计算结果

    Figure  21.  Numerical results of T-39 intralaminar damage

    表  1  拉伸后压缩试验工况列表

    Table  1.   List of post-tensile compression test conditions

    Specimen group Type
    T-0 No tensile damage
    T-34
    T-39
    Compression after stretching to 34 kN
    Compression after stretching to 39 kN
    下载: 导出CSV

    表  2  T700复合材料层合板材料参数

    Table  2.   Material parameters of T700 composite laminates

    CFRP Density ρ1=1520 kg/m3
    Module E11=117 GPa, E22=E33=7.5 GPa,
    G12=G13=4.1 GPa, G23=2.3 GPa
    Poisson's ratio v12=v13=0.33, v23=0.3
    Strength XT=2326 MPa, X­c=1236 MPa,
    YT=51.0 MPa, Yc=209.0 MPa, S=87.9 MPa
    Fracture energy Gf =182.1 N/mm, Gkink=97.4 N/mm,
    $G_{{\rm{IC}}}^{\rm{m}} $=0.23 N/mm, $G_{{\rm{IIC}}}^{\rm{m}} $=0.79 N/mm
    Cohesive element Density ρ2=1520 kg/m3
    Module K1=K2=6×104 MPa/mm
    Strength N1=38.5 MPa, S1=T1=48.5 MPa
    Fracture energy GIC=0.23 N/mm,GIIC=0.79 N/mm
    Notes: E—Elastic modulus; G—Shear modulus; 1—Direction of fiber; 2—Direction of matrix; 3—Thickness direction of layer; XT—Fiber tensile strength; X­c—Fiber compressive strength; YT—Matrix tensile strength; Yc—Matrix compressive strength; S—In-plane shear strength; Gf—Fiber tensile fracture energy; Gkink—Fiber kinking energy; $G_{{\rm{IC}}}^{\rm{m}} $, $G_{{\rm{IIC}}}^{\rm{m}} $—Mode I and II fracture energies of matrix; K—Interface stiffness; N1—Normal strength; S1, T1—Transverse and longitudinal shear strength; GIC, GIIC—Interlaminar mode I and II fracture energies.
    下载: 导出CSV

    表  3  开孔板压缩承载能力的误差分析

    Table  3.   Error analysis of compressive bearing capacity of open-hole composite laminates

    Index Ultimate
    load/kN
    Average
    value/kN
    Standard
    deviation/kN
    Variation
    coefficient/%
    T-032.2, 31.5,
    33.9, 29.4,
    30.5
    31.51.715.4
    T-3430.3, 29.9,
    31.4, 30.0
    30.40.712.3
    T-3924.7, 23.4,
    24.2, 26.4,
    25.6
    24.81.184.8
    下载: 导出CSV
  • [1] SAYAR H, AZADI M, GHASEMI-GHALEBAHMAN A, et al. Clustering effect on damage mechanisms in open-hole laminated carbon/epoxy composite under constant tensile loading rate, using acoustic emission[J]. Composite Structures, 2018, 204: 1-11.
    [2] ÖZASLAN E, YETGIN A, ACAR B, et al. Damage mode identification of open hole composite laminates based on acoustic emission and digital image correlation methods[J]. Composite Structures, 2021, 274: 114299. doi: 10.1016/j.compstruct.2021.114299
    [3] MOURE M M, HERRERO-CUENCA J, GARCÍA-CASTILLO S K, et al. Design tool to predict the open-hole failure strength of composite laminates subjected to in-plane loads[J]. Composite Structures, 2020, 238: 111970. doi: 10.1016/j.compstruct.2020.111970
    [4] MOHAMMADI R, NAJAFABADI M A, SAEEDIFAR M, et al. Correlation of acoustic emission with finite element predicted damages in open-hole tensile laminated composites[J]. Composites Part B: Engineering, 2017, 108: 427-435. doi: 10.1016/j.compositesb.2016.09.101
    [5] ZHENG K D, HU H X, CAO D F, et al. Experimental and numerical studies on the tensile behaviors of thin-ply and thick-ply open-hole laminates[J]. Thin-Walled Structures, 2023, 186: 110649.
    [6] 王遥, 曹东风, 胡海晓, 等. 单螺栓修复对含冲击损伤碳纤维/环氧树脂复合材料层合板压缩承载能力的影响[J]. 复合材料学报, 2020, 37(11): 2833-2843.

    WANG Yao, CAO Dongfeng, HU Haixiao, et al. Effect of single-bolt repair on compression capability of carbon/epoxy composite laminates containing impact damage[J]. Acta Materiae Compositae Sinica, 2020, 37(11): 2833-2843(in Chinese).
    [7] OZ F E, MEHDIKHANI M, ERSOY N, et al. In-situ imaging of inter- and intra-laminar damage in open-hole tension tests of carbon fibre-reinforced composites[J]. Composite Structures, 2020, 244: 112302. doi: 10.1016/j.compstruct.2020.112302
    [8] WEI L X, ZHU W Q, YU Z L, et al. A new three-dimensional progressive damage model for fiber-reinforced polymer laminates and its applications to large open-hole panels[J]. Composites Science and Technology, 2019, 182: 107757. doi: 10.1016/j.compscitech.2019.107757
    [9] FURTADO C, ARTEIRO A, CATALANOTTI G, et al. Selective ply-level hybridisation for improved notched response of composite laminates[J]. Composite Structures, 2016, 145: 1-14. doi: 10.1016/j.compstruct.2016.02.050
    [10] İNAL O, BALIKOĞLU F, ATAŞ A. Bolted joints in quasi-unidirectional glass-fibre NCF composite laminates[J]. Composite Structures, 2018, 183(1): 536-544.
    [11] ERÇIN G H, CAMANHO P P, XAVIER J, et al. Size effects on the tensile and compressive failure of notched composite laminates[J]. Composite Structures, 2013, 96: 736-744. doi: 10.1016/j.compstruct.2012.10.004
    [12] ARTEIRO A, CATALANOTTI G, XAVIER J, et al. Notched response of non-crimp fabric thin-ply laminates[J]. Composites Science and Technology, 2013, 79: 97-114. doi: 10.1016/j.compscitech.2013.02.001
    [13] XU X D, WISNOM M R, CHANG K, et al. Unification of strength scaling between unidirectional, quasi-isotropic, and notched carbon/epoxy laminates[J]. Composites Part A: Applied Science and Manufacturing, 2016, 90: 296-305. doi: 10.1016/j.compositesa.2016.07.019
    [14] HUANG C F, JU S, HE M C, et al. Identification of failure modes of composite thin-ply laminates containing circular hole under tension by acoustic emission signals[J]. Composite Structures, 2018, 206: 70-79. doi: 10.1016/j.compstruct.2018.08.019
    [15] XIAO M L, ZHANG Y B, WANG Z H, et al. Tensile failure analysis and residual strength prediction of CFRP laminates with open hole[J]. Composites Part B: Engineering, 2017, 126: 49-59.
    [16] WU X, FULLER J D, LONGANA M L, et al. Reduced notch sensitivity in pseudo-ductile CFRP thin ply angle-ply laminates with central 0° plies[J]. Composites Part A: Applied Science and Manufacturing, 2018, 111: 62-72. doi: 10.1016/j.compositesa.2018.05.011
    [17] ZHANG D, ZHENG X T, WU T C. Damage characteristics of open-hole laminated composites subjected to longitudinal loads[J]. Composite Structures, 2019, 230: 111474. doi: 10.1016/j.compstruct.2019.111474
    [18] HAN W Q, HU K J, SHI Q H, et al. Damage evolution analysis of open-hole tensile laminated composites using a progress damage model verified by AE and DIC[J]. Composite Structures, 2020, 247: 112452.
    [19] LIU D C, CAO D F, HU H X, et al. Numerical study on failure behavior of open-hole composite laminates based on LaRC criterion and extended finite element method[J]. Journal of Mechanical Science and Technology, 2021, 35(3): 1037-1047. doi: 10.1007/s12206-021-0217-9
    [20] HAEGER A, GRUDENIK M, HOFFMANN M J, et al. Effect of drilling-induced damage on the open hole flexural fatigue of carbon/epoxy composites[J]. Composite Structures, 2019, 215: 238-248. doi: 10.1016/j.compstruct.2019.02.025
    [21] WANG X D, LI W D, GUAN Z D, et al. Clustering effect on mechanical properties and failure mechanism of open hole high modulus carbon fiber reinforced composite laminates under compression[J]. Composite Structures, 2019, 229: 111377. doi: 10.1016/j.compstruct.2019.111377
    [22] 安泽君, 曹东风, 郑凯东, 等. 钻孔分层损伤对复合材料层合孔板压缩力学行为的影响[J]. 复合材料学报, 2022, 39(6): 2974-2986.

    AN Zejun, CAO Dongfeng, ZHENG Kaidong, et al. Effect of drilling delamination on compressive mechanical behaviour of open-hole laminates[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2974-2986(in Chinese).
    [23] ASTM. Standard test method for compressive properties of polymer matrix composite materials using a combined loading compression (CLC) test fixture: ASTM D6641/D6641M—2009[S]. West Conshohocken: ASTM International, 2009.
    [24] ASTM. Standard test method for open-hole tensile strength of polymer matrix composite laminates: ASTM D5766/D5766M—2011[S]. West Conshohocken: ASTM International, 2011.
    [25] ASTM. Standard test method for open-hole compressive strength of polymer matrix composite laminates: ASTM D6484/D6484M—2014[S]. West Conshohocken: ASTM International, 2014.
    [26] PINHO S T, IANNUCCI L, ROBINSON P. Physically-based failure models and criteria for laminated fibre-reinforced composites with emphasis on fibre kinking: Part I: Development[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(1): 63-73. doi: 10.1016/j.compositesa.2005.04.016
    [27] WANG X J, WANG Y, JI Y D, et al. Modeling progressive damage and failure of single-lap thin-ply-laminated composite-bolted joint using LaRC failure criterion[J]. Materials, 2022, 15(22): 8123. doi: 10.3390/ma15228123
    [28] PUCK A, SCHÜRMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology, 2002, 62(12): 1633-1662.
    [29] PUCK A, SCHÜRMANN H. Failure analysis of FRP laminates by means of physically based phenomenological models[J]. Composites Science and Technology, 1998, 58(7): 1045-1067. doi: 10.1016/S0266-3538(96)00140-6
    [30] CAO D F, DUAN Q F, HU H X, et al. Computational investigation of both intra-laminar matrix cracking and inter-laminar delamination of curved composite components with cohesive elements[J]. Composite Structures, 2018, 192: 300-309. doi: 10.1016/j.compstruct.2018.02.072
    [31] CAO D F, HU H X, DUAN Q F, et al. Experimental and three-dimensional numerical investigation of matrix cracking and delamination interaction with edge effect of curved composite laminates[J]. Composite Structures, 2019, 225: 111154. doi: 10.1016/j.compstruct.2019.111154
  • 加载中
图(22) / 表(3)
计量
  • 文章访问数:  327
  • HTML全文浏览量:  171
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-21
  • 修回日期:  2023-08-01
  • 录用日期:  2023-08-17
  • 网络出版日期:  2023-09-07
  • 刊出日期:  2024-04-15

目录

    /

    返回文章
    返回