留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiO2包覆单硬脂酸甘油酯/聚乙烯基共混膜制备及其长效防雾性能

朱喜成 丘晓琳 丁相斐 陈锦华 张佳伟

朱喜成, 丘晓琳, 丁相斐, 等. SiO2包覆单硬脂酸甘油酯/聚乙烯基共混膜制备及其长效防雾性能[J]. 复合材料学报, 2024, 41(5): 2344-2354. doi: 10.13801/j.cnki.fhclxb.20230905.001
引用本文: 朱喜成, 丘晓琳, 丁相斐, 等. SiO2包覆单硬脂酸甘油酯/聚乙烯基共混膜制备及其长效防雾性能[J]. 复合材料学报, 2024, 41(5): 2344-2354. doi: 10.13801/j.cnki.fhclxb.20230905.001
ZHU Xicheng, QIU Xiaolin, DING Xiangfei, et al. Preparation of SiO2-coated monostearate/polyvinyl blended membrane and thereof long-lasting anti-fog performance[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2344-2354. doi: 10.13801/j.cnki.fhclxb.20230905.001
Citation: ZHU Xicheng, QIU Xiaolin, DING Xiangfei, et al. Preparation of SiO2-coated monostearate/polyvinyl blended membrane and thereof long-lasting anti-fog performance[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2344-2354. doi: 10.13801/j.cnki.fhclxb.20230905.001

SiO2包覆单硬脂酸甘油酯/聚乙烯基共混膜制备及其长效防雾性能

doi: 10.13801/j.cnki.fhclxb.20230905.001
基金项目: 江苏省农业科技自主创新资金项目(CX(22)1014))
详细信息
    通讯作者:

    丘晓琳,博士,副教授,硕士生导师,研究方向为聚合物基复合材料、包装材料与制品、相变储能材料 E-mail: xiaolinqiu2005@126.com

  • 中图分类号: TS206.4;TB332

Preparation of SiO2-coated monostearate/polyvinyl blended membrane and thereof long-lasting anti-fog performance

Funds: Jiangsu Agricultural Science and Technology Independent Innovation Fund Project (CX(22)1014))
  • 摘要: 防雾薄膜包装可以降低包装内的水分活度,减少果蔬腐败变质产生的大量浪费,因此具有十分重要的研究意义。本文以SiO2为壁材,采用乳液聚合法对单硬脂酸甘油酯(GMS)芯材进行包覆,并将其与线型低密度聚乙烯(LLDPE)混合,制备出了一种长效防雾薄膜。结果表明:通过FTIR和XRD对制备样品进行了化学成分、晶型结构分析,证明了GMS被成功包覆;通过SEM对样品的微观形貌和防雾膜截面微观结构进行分析,所制备的GMS@SiO2为类球形,在薄膜中分散较好;粒径、DSC测试表明,GMS和正硅酸四乙酯(TEOS)使用量在1∶2条件下制备的GMS@SiO2样品的粒径均一性较好,83.05%集中在20~100 nm,且有着最高的包覆率,为69.9%;N2吸附-脱附结果显示:GMS@SiO2表面存在许多的介孔结构,孔径为17.918 nm,可以有效延缓GMS的释放;通过TG对样品的热性能进行分析,发现SiO2壁材对GMS起到了较好的保护作用,GMS的最大损失温度由298℃提高到了405℃,提升了约107℃;通过热防雾测试发现,所制备的薄膜可有效延长薄膜的防雾时间且防雾性能优越,在1~11 h内,薄膜防雾等级为DE级;11~60 h内,薄膜防雾等级为E级,而直接加入GMS制备的防雾薄膜在1~11 h防雾等级为E级,在11~60 h内防雾等级为D级,所制备的防雾膜在果蔬保鲜等领域将有着广阔的应用前景。

     

  • 图  1  不同GMS@SiO2芯壁比的FTIR图谱

    Figure  1.  FTIR spectra for different GMS@SiO2 core wall ratio samples

    图  2  不同GMS@SiO2芯壁比的SEM图像和粒径测试结果:((a), (c)) 10.0GMS;((b), (d)) 7.5GMS

    Figure  2.  SEM images and plots of particle size test results for different GMS@SiO2 core wall ratio samples: ((a), (c)) 10.0GMS; ((b), (d)) 7.5GMS

    图  3  GMS@SiO2样品(a)与防雾薄膜(b)的XRD图谱

    Figure  3.  XRD patterns of GMS@SiO2 samples (a) and anti-fog films (b)

    图  4  SiO2、GMS和不同GMS@SiO2芯壁比样品的TG曲线(a)和DTG曲线(b)

    Figure  4.  TG curves (a) and DTG curves (b) for SiO2, GMS and different GMS@SiO2 core wall ratio samples

    图  5  GMS和不同GMS@SiO2芯壁比样品的DSC测试的二次升温曲线(a)和一次降温曲线(b)

    Figure  5.  Secondary heating curves (a) and primary cooling curves (b) for DSC tests with GMS and different GMS@SiO2 core wall ratio samples

    图  6  SiO2和不同GMS@SiO2芯壁比样品的氮气吸附-脱附曲线

    Figure  6.  Nitrogen adsorption-desorption curves for SiO2 and different GMS@SiO2 core wall ratio samples

    图  7  加入GMS和GMS@SiO2薄膜断裂面的低倍((a), (c))和高倍((b), (d)) SEM图像

    Figure  7.  Low magnification ((a), (c)) and high magnification ((b), (d)) SEM images of film fracture surface diagram with GMS and GMS@SiO2

    图  8  不同薄膜的热防雾测试结果

    Figure  8.  Thermal anti-fog test results for different films

    图  9  不同含量GMS@SiO2防雾膜拉伸强度和断裂伸长率

    Figure  9.  Tensile strength and elongation at break for different content GMS@SiO2 anti-fog films

    图  10  不同含量GMS@SiO2防雾膜透光率和雾度

    Figure  10.  Light transmittance and haze of different content GMS@SiO2 anti-fog films

    表  1  不同单硬脂酸甘油酯(GMS)含量样品制备方案

    Table  1.   Preparation scheme for different content of glyceryl monostearate (GMS)

    SampleGMS/gTetraethyl orthosilicate/gDeionized water/mLType of surfactantSurfactant/g
    10.0GMS10.015.0200OP-10+CTAB0.8
    7.5GMS 7.515.0200OP-10+CTAB0.8
    Notes: OP-10—Octyl phenol polyoxyethylene ether-1; CTAB—Cetyl trimethyl ammonium bromide.
    下载: 导出CSV

    表  2  薄膜配方

    Table  2.   Formula of films

    SampleLLDPE/gGMS/wt%GMS@SiO2/wt%
    LLDPE2.000000
    1.5%GMS/LLDPE1.97001.50
    0.2%GMS@SiO2/LLDPE1.994200.2
    0.4%GMS@SiO2/LLDPE1.988400.4
    0.6%GMS@SiO2/LLDPE1.982600.6
    0.8%GMS@SiO2/LLDPE1.976800.8
    1.5%GMS@SiO2/LLDPE1.956501.5
    Note: LLDPE—Linear low-density polyethylene.
    下载: 导出CSV

    表  3  不同样品的DSC参数

    Table  3.   DSC parameters for different samples

    Sample$ {T}_{{\rm{m}}} $/℃$ {T}_{{\rm{peak}}} $/℃$ {\Delta H}_{\rm{{m}}} $/(W·g−1)Tc/℃R/%
    GMS55.666.11.5365.1
    10.0GMS25.552.6/60.00.8258.753.6
    7.5GMS31.152.0/60.31.0759.369.9
    Notes: $ {T}_{{\rm{m}}} $—Melting temperature; $ {T}_{{\rm{peak}}} $—Peak melting temperature; $ {\Delta H}_{{\rm{m}}} $—Melting enthalpy; $ {T}_{{\rm{c}}} $—Crystallization temperature; R—Microencapsulation rate.
    下载: 导出CSV

    表  4  不同样品的比表面积、孔容和孔径

    Table  4.   Specific surface area, pore volume and pore size of different samples

    SampleSBET/(m2·g−1)Vt/(cm3·g−1)d/nm
    SiO2332.7301.41717.039
    7.5GMS 1.7780.00817.918
    10.0GMS 4.0530.01817.619
    Notes: SBET—Total area per unit mass of the item; Vt—Total pore volume (p/p0=0.990); d—Mean pore diameter.
    下载: 导出CSV
  • [1] 安朝霞, 苗雨阳, 杜玉婉, 等. 食品腐败变质生物因素相关机制研究进展[J]. 食品安全质量检测学报, 2022, 13(1):86-93. doi: 10.3969/j.issn.2095-0381.2022.1.spaqzljcjs202201012

    AN Zhaoxia, MIAO Yuyang, DU Yuwan, et al. Research progress on the related mechanisms of biological factors in food spoilage and deterioration[J]. Journal of Food Safety and Quality Detection,2022,13(1):86-93(in Chinese). doi: 10.3969/j.issn.2095-0381.2022.1.spaqzljcjs202201012
    [2] MORE A S, RANADHEERA C S, FANG Z X, et al. Biomarkers associated with quality and safety of fresh-cut produce[J]. Food Bioscience, 2020, 34: 100524.
    [3] JIANG H Y, ZHANG M, BHANDARI B, et al. Application of electronic tongue for fresh foods quality evaluation: A review[J]. Food Reviews International,2018,34(8):746-769. doi: 10.1080/87559129.2018.1424184
    [4] 朱宏莉, 杨彬彬, 张秀齐, 等. 果蔬保鲜加工现状及发展浅析[J]. 食品科学, 2006, 27(10):596-600. doi: 10.3321/j.issn:1002-6630.2006.10.153

    ZHU Hongli, YANG Binbin, ZHANG Xiuqi, et al. The present situation and development of fresh maintaining and processing technology of fruit and vegetable[J]. Food Science,2006, 27(10):596-600(in Chinese). doi: 10.3321/j.issn:1002-6630.2006.10.153
    [5] ZHANG M, TANG J, MUJUMDAR A S, et al. Trends in microwave-related drying of fruits and vegetables[J]. Trends in Food Science & Technology,2006,17(10):524-534.
    [6] 杨文忠, 伍杰锋, 冯润财, 等. 聚乙烯薄膜加工方法及BOPE新产品[J]. 塑料工业, 2013, 41(3):116-119. doi: 10.3969/j.issn.1005-5770.2013.03.023

    YANG Wenzhong, WU Jiefeng, FENG Runcai, et al. Process of polyethylene film and BOPE new product[J]. China Plastics Industry,2013,41(3):116-119(in Chinese). doi: 10.3969/j.issn.1005-5770.2013.03.023
    [7] DURÁN I R, LAROCHE G. Water drop-surface interactions as the basis for the design of anti-fogging surfaces: Theory, practice, and applications trends[J]. Advances in Colloid and Interface Science,2019,263:68-94. doi: 10.1016/j.cis.2018.11.005
    [8] ZHU K X, WANG H D, CHEN C W, et al. Development of polyethylene antifogging and antibacterial packaging films for lettuce preservation[J]. LWT, 2023, 181: 114772.
    [9] 周立国, 刘晓妍, 王玉兵. 一种Gemini表面活性剂合成及其在薄膜中的应用[J]. 化学研究与应用, 2012, 24(6):890-894. doi: 10.3969/j.issn.1004-1656.2012.06.010

    ZHOU Liguo, LIU Xiaoyan, WANG Yubing. A Gemini surfactants synthesizes and it at the application in the thin film[J]. Chemical Research and Application,2012,24(6):890-894(in Chinese). doi: 10.3969/j.issn.1004-1656.2012.06.010
    [10] 魏丽娟, 杨福馨, 杜运鹏. 改性聚乙烯防雾薄膜的性能研究[J]. 功能材料, 2017, 48(2):2215-2220. doi: 10.3969/j.issn.1001-9731.2017.02.041

    WEI Lijuan, YANG Fuxin, DU Yunpeng. Study on antifogging properties of modified polyethylene films[J]. Journal of Functional Materials,2017,48(2):2215-2220(in Chinese). doi: 10.3969/j.issn.1001-9731.2017.02.041
    [11] ROSEN-KLIGVASSER J, SUCKEVERIENE R Y, TCHOUDAKOV R, et al. A novel methodology for controlled migration of antifog from thin polyolefin films[J]. Polymer Engineering & Science,2014,54(9):2023-2028.
    [12] YAO Z H, YIN J H, SONG Y X, et al. Preparation and properties of a novel nonionic surfactant grafted linear low density polyethylene[J]. Journal of Macromolecular Science, Part A,2007,44(9):963-968. doi: 10.1080/10601320701424248
    [13] GE X S, CHU M, QU L H, et al. Long-lasting intrinsic polyethylene antifogging films generated by incorporating SiO2 nanoparticles into covalently grafted antifog agents[J]. Journal of Macromolecular Science, Part A,2020,57(12):826-836. doi: 10.1080/10601325.2020.1796493
    [14] SHLOSMAN K, ROSEN-KLIGVASSER J, SUCKEVERIENE R, et al. Novel antifog modification for controlled migration and prolonged wetting of LLDPE thin films[J]. European Polymer Journal,2017,90:220-230. doi: 10.1016/j.eurpolymj.2017.03.025
    [15] YANG S Q, ZHU D T, YANG F H, et al. An effective method for delayed migration of dripping agent from linear low-density polyethylene films[J]. Polymers for Advanced Technologies,2021,32(4):1560-1567.
    [16] YAN K, CHEN D, WANG L, et al. A facile method for delaying the migration of antifogging agents in polyethylene films[J]. Industrial & Engineering Chemistry Research,2022,61(20):6945-6956.
    [17] CHEN K L, XU C Y, ZHOU J L, et al. Multifunctional fabric coatings with slow-releasing fragrance and UV resistant properties from ethyl cellulose/silica hybrid microcapsules[J]. Carbohydrate Polymers,2020,232:115821. doi: 10.1016/j.carbpol.2019.115821
    [18] SOUSA F L, SANTOS M, ROCHA S M, et al. Encapsulation of essential oils in SiO2 microcapsules and release behaviour of volatile compounds[J]. Journal of Microencapsulation,2014,31(7):627-635. doi: 10.3109/02652048.2014.911376
    [19] YANG X, LIU Y, LYU Z H, et al. Synthesis of high latent heat lauric acid/silica microcapsules by interfacial polymerization method for thermal energy storage[J]. Journal of Energy Storage, 2021, 33: 102059.
    [20] 李佳佳, 陆艺超, 叶光斗, 等. 纺丝原液原位合成相变材料微胶囊制备石蜡/PVA储能纤维[J]. 复合材料学报, 2012, 29(3):79-84. doi: 10.13801/j.cnki.fhclxb.2012.03.020

    LI Jiajia, LU Yichao, YE Guangdou, et al. In-situ synthesis of energy storage paraffin/PVA fibre with phase change microcapsules in the spinning solution[J]. Acta Materiae Compositae Sinica,2012,29(3):79-84(in Chinese). doi: 10.13801/j.cnki.fhclxb.2012.03.020
    [21] 中国国家标准化管理委员会. 塑料薄膜防雾性试验方法: GB/T 31726—2015[S]. 北京: 中国标准出版社, 2015.

    Standardization Administration of the People's Republic of China. Test method for anti-fogging of plastic film: GB/T 31726—2015[S]. Beijing: China Standard Press, 2015(in Chinese).
    [22] 中国国家标准化管理委员会. 塑料拉伸性能的测定第3部分: 薄膜和薄片的试验条件: GB/T 1043.3—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People's Republic of China. Determination of tensile properties of plastics—Part 3: Test conditions for films and sheets: GB/T 1043.3—2006[S]. Beijing: China Standard Press, 2006(in Chinese).
    [23] 中国国家标准化管理委员会. 透明塑料透光率和雾度的测定: GB/T 2410—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Determination of light transmittance and haze of transparent plastics: GB/T 2410—2008[S]. Beijing: China Standard Press, 2008(in Chinese).
    [24] 袁文俊, 周勇敏. 纳米颗粒团聚的原因及解决措施[J]. 材料导报, 2008, 22(S3):59-61.

    YUAN Wenjun, ZHOU Yongmin. Causes and solutions of nanoparticle agglomeration[J]. Materials Reports,2008,22(S3):59-61(in Chinese).
    [25] GARCIA M C, PEREIRA-DA-SILVA M A, TABOGA S, et al. Structural characterization of complexes prepared with glycerol monoestearate and maize starches with different amylose contents[J]. Carbohydrate Polymers,2016,148:371-379. doi: 10.1016/j.carbpol.2016.04.067
    [26] SUN L N, LU L X, WANG L Q, et al. Influence of α-tocopherol/MCM-41 assembly on physical and antioxidant release properties of low-density polyethylene antioxidant active films[J]. Polymer Engineering & Science,2018,58(10):1710-1716.
    [27] DURMUŞ A, WOO M, KAŞGÖZ A, et al. Intercalated linear low density polyethylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as a new type compatibilizer: Structural, mechanical and barrier properties[J]. European Polymer Journal,2007,43(9):3737-3749. doi: 10.1016/j.eurpolymj.2007.06.019
    [28] GARCÍA M, BARSEMA J, GALINDO R E, et al. Hybrid organic inorganic Nylon-6/SiO2 nanocomposites: Transport properties[J]. Polymer Engineering & Science,2004,44(7):1240-1246.
    [29] YAJIMA T, ITAI S, TAKEUCHI H, et al. Determination of optimum processing temperature for transformation of glyceryl monostearate[J]. Chemical & Pharmaceutical Bulletin,2002,50(11):1430-1433. doi: 10.1248/cpb.50.1430
    [30] ADAM-BERRET M, RIAUBLANC A, RONDEAU-MOURO C, et al. Effects of crystal growth and polymorphism of triacylglycerols on NMR relaxation parameters. 1. Evidence of a relationship between crystal size and spin-lattice relaxation time[J]. Crystal Growth & Design,2009,9(10):4273-4280.
    [31] 姚云平, 宁灵, 于佳睿, 等. 乳化剂对米糠蜡凝胶油理化特性的影响[J]. 中国粮油学报, 2022, 37(11):184-190.

    YAO Yunping, NING Ling, YU Jiarui, et al. Effects of three emulsifiers on structure and properties of rice bran wax oleogel[J]. Journal of the Chinese Cereals and Oils Association,2022,37(11):184-190(in Chinese).
    [32] KIM M, HYUN K. Characterization of polyethylene/silica nanocomposites using different rheological analyses[J]. Korea-Australia Rheology Journal,2021,33(1):25-36. doi: 10.1007/s13367-021-0003-3
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  335
  • HTML全文浏览量:  207
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-08
  • 修回日期:  2023-08-14
  • 录用日期:  2023-08-18
  • 网络出版日期:  2023-09-06
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回