留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度损伤机制的CFRP铝合金粘接板冲击行为研究

姚潞 何文涛 马岩 于航 王艳超 许家婧

姚潞, 何文涛, 马岩, 等. 基于多尺度损伤机制的CFRP铝合金粘接板冲击行为研究[J]. 复合材料学报, 2024, 41(4): 2167-2179. doi: 10.13801/j.cnki.fhclxb.20230904.001
引用本文: 姚潞, 何文涛, 马岩, 等. 基于多尺度损伤机制的CFRP铝合金粘接板冲击行为研究[J]. 复合材料学报, 2024, 41(4): 2167-2179. doi: 10.13801/j.cnki.fhclxb.20230904.001
YAO Lu, HE Wentao, MA Yan, et al. Research on impact behavior of CFRP aluminum alloy adhesive plate based on multiscale damage mechanism[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2167-2179. doi: 10.13801/j.cnki.fhclxb.20230904.001
Citation: YAO Lu, HE Wentao, MA Yan, et al. Research on impact behavior of CFRP aluminum alloy adhesive plate based on multiscale damage mechanism[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2167-2179. doi: 10.13801/j.cnki.fhclxb.20230904.001

基于多尺度损伤机制的CFRP铝合金粘接板冲击行为研究

doi: 10.13801/j.cnki.fhclxb.20230904.001
基金项目: 国家自然科学基金(52071308;51879248;52105153);江苏省自然科学基金(BK20221378);江苏省高校自然科学研究项目(21KJB570009);南通市科技计划面上研究项目(MS22022103)
详细信息
    通讯作者:

    许家婧,博士,讲师,研究方向为复合材料结构损伤表征 E-mail: xujiajing@ntu.edu.cn

  • 中图分类号: TU311.3;TB333

Research on impact behavior of CFRP aluminum alloy adhesive plate based on multiscale damage mechanism

Funds: National Natural Science Foundation of China (52071308; 51879248; 52105153); Natural Science Foundation of Jiangsu Province under Grants (BK20221378); Natural Science Foundation of Jiangsu Higher Education Institutions of China under Grants (21KJB570009); In Part by Projects from Nantong Science and Technology Bureau (MS22022103)
  • 摘要: 碳纤维增强聚合物(CFRP)铝合金粘接板作为一种轻质高强的材料,被广泛用在飞机、汽车、高速列车等轻量化结构上。研究首先基于纤维/基体微观尺度建立代表性体积单元(RVE)单胞模型,预测单向CFRP的基本弹性力学参数,并通过RVE模型施加宏观单位载荷计算宏-微观应力放大系数。其次考虑纤维基体微观失效准则与演化规律,开发复合材料宏-微观渐进损伤演化程序,再结合金属与复合材料粘接面的损伤模型,建立多尺度损伤机制的CFRP铝合金粘接板冲击仿真模型,并通过实验验证了数值模型的准确性与可靠性。最后通过数值模拟对CFRP铝合金粘接板在不同纤维铺层角度与不同纤维体积分数下的抗冲击行为进行参数化研究,结果表明纤维铺层方向对粘接板的抗冲击力学性能影响不大,而纤维体积分数对结构的冲击行为影响较大。

     

  • 图  1  碳纤维增强聚合物(CFRP)铝合金粘接板的低速冲击实验

    Figure  1.  Low-velocity impact test for carbon fiber reinforced polymers (CFRP) aluminum alloy adhesive plate

    图  2  代表性体积单元(RVE)模型的单元节点分布规律

    Figure  2.  Distribution rule of nodes in representative volume element (RVE) model

    图  3  不同的CFRP的RVE模型

    Figure  3.  Different RVE models of CFRP

    图  4  不同CFRP RVE模型弹性常数的数值与实验误差

    Figure  4.  Numerical and experimental error of elastic constantsfor different CFRP RVE models

    图  5  CFRP RVE模型的选点分布(a)及宏观单位载荷加载工况(b)

    Figure  5.  Distribution of key points (a) and macro unit loadings (b) in RVE model of CFRP

    ${\bar \sigma _1} $, ${\bar \sigma _2} $, ${\bar \sigma _3} $—Normal stress; ${\bar \tau _{12}} $, ${\bar \tau _{23}} $, ${\bar \tau _{13}} $—Shear stress

    图  6  考虑纤维/基体微观损伤的复合材料渐进损伤演化程序

    Figure  6.  Progressive damage progress of composite laminates based on the fiber/matrix micro-damage

    FEM—Finite element method; f—Fiber; m—Matrix; SAFs—Stress amplification factors; D—Stiffness matrix; d—Damage parameter

    图  7  CFRP铝合金粘接板的有限元模型

    Figure  7.  Finite element model of CFRP aluminum alloy adhesive plate

    图  8  CFRP铝合金粘接板的数值与实验冲击载荷-位移响应对比

    Figure  8.  Comparison of impact load-displacement curves of experimental and numerical results of CFRP aluminum alloy adhesive plate

    图  9  冲击载荷后CFRP铝合金粘接板的失效形貌对比

    Figure  9.  Comparison of damage morphologies of CFRP aluminum alloy adhesive plate after impact

    图  10  不同铺层方向下CFRP铝合金粘接板的冲击响应

    Figure  10.  Impact response of CFRP aluminum alloy adhesive plate under different layer angles

    图  11  不同铺层角度下CFRP铝合金粘接板的冲击损伤形貌

    Figure  11.  Damage morphologies of CFRP aluminum alloy adhesive plate under different layer angles

    图  12  不同铺层角度复合材料层失效模式

    Figure  12.  Failure models of CFRP under different layer angles

    S—Stress (Pa)

    图  13  不同纤维体积分数Vf的CFRP铝合金粘接板的冲击响应

    Figure  13.  Impact response of CFRP aluminum alloy adhesive plate under different fiber volume fractions Vf

    图  14  不同纤维体积分数的CFRP铝合金粘接板的失效形貌

    Figure  14.  Damage morphologies of CFRP aluminum alloy adhesive plate under different fiber volume fractions

    图  15  不同纤维体积分数下复合材料层失效模式

    Figure  15.  Failure models of CFRP under different fiber volume fractions

    表  1  T300碳纤维与基体的力学性能参数

    Table  1.   Material properties of T300 carbon fiber and matrix

    Material Name Value
    Carbon fiber Ef11/GPa 185
    Ef22/GPa 13
    Ef33/GPa 15
    Gf12/GPa 15
    Gf13/GPa 15
    Gf23/GPa 9
    μf12 0.28
    μf13 0.35
    μf23 0.35
    Matrix Em/GPa 2.6
    μm 0.33
    Notes: Ef11, Ef22, Ef33, Gf12, Gf23, Gf13—Elastic moduli of T300 carbon fiber in the 1, 2, 3, 12, 23, 13 directions, respectively; μf12, μf13, μf23—Poisson's ratios in the 12, 13, 23 directions, respectively; Em and μm—Micro elastic modulus and Poisson's ratio of the matrix, respectively.
    下载: 导出CSV

    表  2  CFRP RVE模型力学性能参数与实验对比

    Table  2.   Comparison of RVE models of CFRP and experimental tests

    E11/GPaE22/GPaE33/GPaμ12μ13μ23G12/MPaG13/MPaG23/MPa
    Experiments108880.3200.3200.300350035003000
    Square111.96.86.80.2970.2970.364329732972257
    Rectangle111.96.26.20.2980.2980.361315731562672
    Uniform distribution111.16.76.70.2980.2980.363325232512228
    Random distribution 1937.05.55.40.2920.2940.409273926042174
    Random distribution 2108.96.46.40.3020.3030.423357035962849
    Notes: E11, E22, E33, G12, G23, G13—Elastic moduli of carbon fiber prepreg in the 1, 2, 3, 12, 23, 13 directions, respectively; μ12, μ13, μ23—Poisson's ratios in the 12, 13, 23 directions, respectively.
    下载: 导出CSV

    表  3  CFRP多尺度模型的需求参数

    Table  3.   Parameters of CFRP multiscale model

    E11/GPa E33/GPa μ13 G12/GPa G23/GPa $X_{\text{f}}^{0,{\text{T}}}/{\rm{MPa}}$ $X_{\text{f}}^{0,{\text{C}}}/{\rm{MPa}}$ $\gamma $ E22/GPa μ12 μ23 G13/GPa $Y_{\text{m}}^{0,{\text{T}}}/{\rm{MPa}}$ $Y_{\text{m}}^{0,{\text{C}}}/{\rm{MPa}}$
    108 8 0.32 3.5 3 2100 800 1.5 8 0.32 0.3 3.5 25 120
    Notes: $X_{\text{f}}^{0,{\text{T}}}$, $X_{\text{f}}^{0,{\text{C}}}$—Longitudinal tensile strength and compres-sive strength, respectively; $Y_{\text{m}}^{0,{\text{T}}}$, $Y_{\text{m}}^{0,{\text{C}}}$—Transverse tensile strength and compressive strength, respectively; $\gamma $—Damage shape parameter of matrix.
    下载: 导出CSV

    表  4  2024-T3铝合金板的材料属性

    Table  4.   Material properties of 2024-T3 aluminum

    Density/(kg·m−3)2700
    Young's modulus/GPa70
    Poisson's ratio0.3
    Yield strength/MPa292
    Fracture strain0.15
    Fracture energy/(J·m−2)10200
    下载: 导出CSV

    表  5  内聚力单元参数

    Table  5.   Material properties of cohesive elements

    E/GPa${t}_{}^{\text{0}}/{\rm{MPa}}$$ {G^{\text{c} }}/({\rm{N} }\cdot{\rm{mm} }^{-1})$Density/(kg·m−3)
    ${E_{{\text{nn}}}}$${E_{{\text{ss}}}}$${E_{{\text{tt}}}}$${t}_{\text{n}}^{\text{0}}$${t}_{\text{s}}^{\text{0}}$${t}_{\text{t} }^{\text{0} }$$ G_{\text{n}}^{\text{c}} $$ G_{\text{s}}^{\text{c}} $$ G_{\text{t}}^{\text{c}} $$\rho $
    20500720072001403003002000300030000.092
    Notes: $ {E}_{\text{nn}}, {E}_{\text{ss}}, {E}_{\text{tt}} $—Stiffness coefficient in the normal and shear directions; ${t}_{\text{n} }^{\text{0} }, {t}_{\text{s} }^{\text{0} }, {t}_{\text{t} }^{\text{0} }$—Nominal stress in the normal and shear directions; $ G_{\text{n}}^{\text{c}} , G_{\text{s}}^{\text{c}} , G_{\text{t}}^{\text{c}} $—Critical fracture energies in the normal and shear directions.
    下载: 导出CSV

    表  6  CFRP铝合金粘接板RVE模型力学性能参数与实验对比

    Table  6.   Comparison of mechanical parameters of RVE model of CFRP aluminum alloy adhesive plate and experimental tests

    Fiber volume fraction (Vf)E11/GPaE22/GPaE33/GPaμ12μ13μ23G12/MPaG13/MPaG23/MPa
    0.4 75.44.64.60.3080.3080.440203120311780
    0.5 93.65.35.30.3020.3020.427250325032154
    0.6111.96.26.20.2980.2980.361315731562672
    0.7130.17.37.30.2930.2930.394413641333404
    0.8148.38.78.70.2880.2880.380582458244470
    下载: 导出CSV
  • [1] 陶杰, 李华冠, 潘蕾, 等. 纤维金属层板的研究与发展趋势[J]. 南京航空航天大学学报, 2015, 47(5):626-636.

    TAO Jie, LI Huaguan, PAN Lei, et al. Review on research and development of fiber metal laminates[J]. Journal of Nanjing University of Aeronautics and Astronautics,2015,47(5):626-636(in Chinese).
    [2] HA N S, LU G X. A review of recent research on bio-inspired structures and materials for energy absorption applications[J]. Composites Part B: Engineering,2020,181:107496. doi: 10.1016/j.compositesb.2019.107496
    [3] SUN G Y, CHEN D D, ZHU G H, et al. Lightweight hybrid materials and structures for energy absorption: A state-of-the-art review and outlook[J]. Thin-Walled Structures,2022,172:108760. doi: 10.1016/j.tws.2021.108760
    [4] HE W T, WANG C Z, WANG S Q, et al. Characterizing and predicting the tensile mechanical behavior and failure mechanisms of notched FMLs-combined with DIC and numerical techniques[J]. Composite Structures,2020,254:112893. doi: 10.1016/j.compstruct.2020.112893
    [5] YAO L, MAO L Z, WANG Y C, et al. In-situ damage monitoring and numerical characterization of three-point bending and incremental cycle flexural behavior of FMLs[J]. Mechanics of Advanced Materials and Structures,2023:1-19. doi: 10.1080/15376494.2023.2204095
    [6] ZOPP C, DITTES A, NESTLER D, et al. Quasi-static and fatigue bending behavior of a continuous fiber-reinforced thermoplastic/metal laminate[J]. Composites Part B: Engineering,2019,174:107043. doi: 10.1016/j.compositesb.2019.107043
    [7] HE W T, WANG L F, LIU H C, et al. On impact behavior of fiber metal laminate (FML) structures: A state-of-the-art review[J]. Thin-Walled Structures,2021,167:108026. doi: 10.1016/j.tws.2021.108026
    [8] YU G C, WU L Z, MA L, et al. Low velocity impact of carbon fiber aluminum laminates[J]. Composite Structures,2015,119:757-766. doi: 10.1016/j.compstruct.2014.09.054
    [9] YANG L, WU Z J, GAO D Y, et al. Microscopic damage mechanisms of fibre reinforced composite laminates subjected to low velocity impact[J]. Computational Materials Science,2016,111:148-156. doi: 10.1016/j.commatsci.2015.09.039
    [10] QI Z C, LIU Y, CHEN W L. An approach to predict the mechanical properties of CFRP based on cross-scale simulation[J]. Composite Structures,2019,210:339-347. doi: 10.1016/j.compstruct.2018.11.056
    [11] GE L, LI H M, LIU B S, et al. Multi-scale elastic property prediction of 3D five-directional braided composites considering pore defects[J]. Composite Structures,2020,244:112287. doi: 10.1016/j.compstruct.2020.112287
    [12] GHOLAMI M, AFRASIAB H, BAGHESTANI A M, et al. A novel multiscale parallel finite element method for the study of the hygrothermal aging effect on the composite materials[J]. Composites Science and Technology,2022,217:109120. doi: 10.1016/j.compscitech.2021.109120
    [13] 王猛. 碳纤维增强复合材料宏-细-微观损伤失效研究[D]. 南京: 东南大学, 2020.

    WANG Meng. Damage and failure analysis of carbon fiber reinforced composites across macro-meso-micro scales[D]. Nanjing: Southeast University, 2020(in Chinese).
    [14] WANG M, HANG X C. Modified micro-mechanics based multiscale model for damage analysis of open-hole composite laminates under compression[J]. Materials,2022,15(15):5105. doi: 10.3390/ma15155105
    [15] 蒋宏勇. CFRP薄壁结构耐撞性与失效机理研究[D]. 长沙: 湖南大学, 2021.

    JIANG Hongyong. Research on crashworthiness and failure mechanisms of carbon-fiber reinforced polymer composite thin-walled structures[D]. Changsha: Hunan University, 2021(in Chinese).
    [16] HA S K, JIN K K, HUANG Y C. Micro-mechanics of failure (MMF) for continuous fiber reinforced composites[J]. Journal of Composite Materials,2008,42(18):1873-1895. doi: 10.1177/0021998308093911
    [17] LIAO B B, TAN H C, ZHOU J W, et al. Multi-scale modelling of dynamic progressive failure in composite laminates subjected to low velocity impact[J]. Thin-Walled Structures,2018,131:695-707. doi: 10.1016/j.tws.2018.07.047
    [18] LOU X F, CAI H N, YU P F, et al. Failure analysis of composite laminate under low-velocity impact based on micromechanics of failure[J]. Composite Structures,2017,163:238-247. doi: 10.1016/j.compstruct.2016.12.030
    [19] ASTM. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: ASTM D7136/D7136M—12[S]. West Conshohocken: ASTM International, 2012.
    [20] XIA Z H, ZHANG Y F, ELLYIN F. A unified periodical boundary conditions for representative volume elements of composites and applications[J]. International Journal of Solids and Structures,2003,40(8):1907-1921. doi: 10.1016/S0020-7683(03)00024-6
    [21] 李星, 关志东, 刘璐, 等. 复合材料跨尺度失效准则及其损伤演化[J]. 复合材料学报, 2013, 30(2):152-158.

    LI Xing, GUAN Zhidong, LIU Lu, et al. Composite multiscale failure criteria and damage evolution[J]. Acta Materiae Compositae Sinica,2013,30(2):152-158(in Chinese).
    [22] 刘勇. 面向CFRP钻削的跨尺度数值模拟技术研究[D]. 南京: 南京航空航天大学, 2020.

    LIU Yong. Research on scale-span numerical simulation techniques for CFRP drilling[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020(in Chinese).
    [23] JIN K K, HUANG Y C, LEE Y H, et al. Distribution of micro stresses and interfacial tractions in unidirectional composites[J]. Journal of Composite Materials,2008,42(18):1825-1849. doi: 10.1177/0021998308093909
    [24] 朱国华, 竺森森, 胡珀, 等. CFRP薄壁结构多尺度建模及耐撞性分析[J]. 复合材料学报, 2023, 40(6):3626-3639.

    ZHU Guohua, ZHU Sensen, HU Po, et al. Multi-scale modeling and crashworthiness analysis of CFRP thin-walled structures[J]. Acta Materiae Compositae Sinica,2023,40(6):3626-3639(in Chinese).
    [25] YAO L, YU H, WANG C Z, et al. Numerical and experimental investigation on the oblique successive impact behavior and accumulated damage characteristics of fiber metal laminates[J]. Thin-Walled Structures,2021,166:108033. doi: 10.1016/j.tws.2021.108033
    [26] YAO L, WANG C Z, HE W T, et al. Influence of impactor shape on low-velocity impact behavior of fiber metal laminates combined numerical and experimental approaches[J]. Thin-Walled Structures,2019,145:106399. doi: 10.1016/j.tws.2019.106399
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  383
  • HTML全文浏览量:  269
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-27
  • 修回日期:  2023-07-30
  • 录用日期:  2023-08-16
  • 网络出版日期:  2023-09-04
  • 刊出日期:  2024-04-15

目录

    /

    返回文章
    返回