Preparation and performance of fabric decorative wood plastic composites
-
摘要: 利用织物装饰木塑复合材料风格多变,能够大大提高木塑复合材料的实用价值。本文开发了一种新型装饰织物贴面技术,将热塑性聚合物铺设在装饰织物表面,与热压板直接接触,从而缩短装饰织物承受高温的时间;并且受热熔化的聚合物透过装饰织物与木塑基材表面的聚合物相熔合,起到固定和保护装饰织物的作用。本文探究了热压温度(140℃、160℃和180℃)、基材中木塑比(6∶4、7∶3和8∶2)和表面聚合物的种类(高密度聚乙烯、低密度聚乙烯和聚乳酸)对饰面木粉/高密度聚乙烯(WF/HDPE)复合材料表面胶合强度、装饰效果、力学性能等的影响;通过红外光谱、扫描电子显微镜等手段对WF/HDPE复合材料和织物的性能变化进行了分析和表征。结果表明:熔融的聚合物能够透过装饰织物纤维空隙,与木塑基材熔合状况良好,制得的装饰复合材料表面光滑平整。综合分析热压温度、基材木塑比和表面聚合物种类的影响,认为当热压温度为160℃、木塑比为7∶3时,表层使用聚乳酸时棉麻织物装饰的WF/HDPE复合基材力学强度最佳,表面胶合强度可达3.64 MPa,弯曲强度达到82.19 MPa。Abstract: The use of fabrics to decorate wood plastic composites (WPC) in a variety of styles can greatly improve the practical value of WPC. In this study, a new decorative fabric veneer technique was developed, in which a thermoplastic polymer was laid on the surface of the decorative fabric. This enabled the thermoplastic polymer to be in direct contact with the hot platen, thus shortening the time that the decorative fabric was exposed to high temperatures. Moreover, the heat-melted polymer fused with the polymer on the surface of the wood-plastic substrate through the decorative fabric, which served to fix and protect the decorative fabric. In this paper, the effects of hot-pressing temperature (140℃, 160℃ and 180℃), wood-plastic ratio in the substrate (6∶4, 7∶3 and 8∶2) and the type of polymer (high density polyethylene, low density polyethylene and polylactic acid (PLA)) on the properties, such as surface bonding strength, decorative effect and mechanical properties of the decorative wood flour/high-density polyethylene (WF/HDPE) composites, were investigated. The changes in the properties of WF/HDPE composites and fabrics were analyzed and characterized by FTIR and SEM. The results show that the molten polymer is able to pass through the fiber voids of the decorative fabric and fuses well with the wood-plastic substrate. The surface of the produced decorative composite material is smooth and even. The effects of hot pressing temperature, substrate wood-plastic ratio and surface polymer type were comprehensive analyzed. When the hot pressing temperature is 160℃, wood-plastic ratio is 7∶3, the mechanical strength of the WF/HDPE composite substrate with the surface layer of the fabric decorated with PLA is the best. Its surface bonding strength is up to 3.64 MPa and the bending strength reaches 82.19 MPa.
-
Key words:
- wood-plastic composites /
- thermoplastic polymers /
- fabrics /
- surface decoration /
- mechanical properties
-
表 1 织物贴面木粉/高密度聚乙烯(WF/HDPE)复合材料的压制条件
Table 1. Pressing conditions of fabric decorated wood flour/high-density polyethylene (WF/HDPE) composites
Pre-pressing temperature
/℃Pre-pressing duration
/minPre-pressing pressure
/MPaHot-pressing temperature
/℃Hot-pressing duration/min Hot-pressing pressure/MPa Cold-pressing pressure/MPa 140/160/180 2 0.5 140/160/180 1 1.5 1.5 表 2 因素和水平表
Table 2. Table of factors and levels
Level Factor A B C 1 140 6∶4 HDPE 2 160 7∶3 LDPE 3 180 8∶2 PLA Notes: A is the hot-pressing temperature (℃); B is the ratio of WF to HDPE of substrate; C is the type of polymer on fabric; LDPE—Low density polyethylene; PLA—Polylactic acid. 表 3 织物贴面WF/HDPE复合材料热压工艺方案
Table 3. Schemes of hot-pressing process of fabric decorated WF/HDPE composites
No. A B C Level Value Level Value Level Type 1 A1 140 B1 6∶4 C1 HDPE 2 A1 140 B2 7∶3 C2 LDPE 3 A1 140 B3 8∶2 C3 PLA 4 A2 160 B1 6∶4 C2 LDPE 5 A2 160 B2 7∶3 C3 PLA 6 A2 160 B3 8∶2 C1 HDPE 7 A3 180 B1 6∶4 C3 PLA 8 A3 180 B2 7∶3 C1 HDPE 9 A3 180 B3 8∶2 C2 LDPE 表 4 织物贴面WF/HDPE复合材料的表面胶合强度和浸渍剥离长度测试结果
Table 4. Surface bonding strength and impregnation/stripping length of fabric decorated WF/HDPE composites
No. Surface bonding strength/MPa Length of impregnation and peeling/mm 1 2.76±0.32 0 2 2.98±0.33 0 3 1.67±0.37 0 4 4.46±0.61 0 5 3.64±0.68 0 6 3.68±0.73 0 7 4.57±0.42 0 8 4.54±0.48 0 9 2.71±0.79 0 表 5 织物贴面WF/HDPE复合材料表面胶合强度极差分析
Table 5. Surface gluing strength extreme difference analysis of fabric decorated WF/HDPE composites
Factor Sum of index Average of index Range K1 K2 K3 k1 k2 k3 A 7.41 11.78 11.82 2.47 3.93 3.94 1.47 B 11.79 11.16 8.06 3.93 3.72 2.69 1.24 C 10.98 10.15 9.88 3.66 3.38 3.29 0.28 Notes: Kn—Sum of the test indicators corresponding to the nth level of the factor; kn—Average of Kn; Range=max(k1, k2, k3)−min(k1, k2, k3). 表 6 贴面WF/HDPE复合材料表面胶合强度方差分析
Table 6. Analysis of variance for surface gluing strength of decorated WF/HDPE composites
Sources of variation Sj fj Mean sum of square F value Critical value
F(fj, fe) (α = 0.05)Significance A 4.28 2 2.14 5.22 19 Insignificant B 2.65 2 1.33 3.24 19 Insignificant C 0.22 2 0.11 0.27 19 Insignificant Error 0.81 2 0.41 Total 7.96 8 Notes: Sj—Sum of squares of deviations, which is the sum of the squares of the differences between the individual numbers in a set of data and their arithmetic mean; fj—Degree of freedom; F—Equal to the mean sum of square of the factors divided by the error; fe—Error degree of freedom; α—Given level of significance. 表 7 织物贴面和未贴面WF/HDPE复合材料弯曲性能
Table 7. Bending strength of decorated and undecorated WF/HDPE composites
No. Bending
strength/MPaBending
modulus/GPa1 64.91±1.72 1.79±0.78 2 70.89±1.79 3.15±0.49 3 73.76±3.11 4.61±0.50 4 57.76±2.01 1.52±0.74 5 82.19±1.51 4.34±0.42 6 70.40±1.02 2.90±0.90 7 63.42±0.88 3.44±0.16 8 50.97±0.85 1.94±0.53 9 49.65±2.52 1.64±0.99 WF/HDPE (6∶4) 41.02±1.06 2.15±0.21 WF/HDPE (7∶3) 46.66±0.57 2.97±0.11 WF/HDPE (8∶2) 43.30±1.46 2.93±0.14 表 8 织物贴面WF/HDPE复合材料弯曲强度极差分析
Table 8. Bending strength extreme difference analysis of decorated WF/HDPE composites
Factor Sum of index Average of index Range K1 K2 K3 k1 k2 k3 A 209.56 210.35 164.04 69.85 70.12 54.68 15.44 B 186.09 204.05 193.81 62.03 68.02 64.60 5.99 C 186.28 178.30 219.37 62.09 59.43 73.12 13.69 表 9 织物贴面WF/HDPE复合材料弯曲强度方差分析
Table 9. Analysis of variance for flexural strength of fabric decorated WF/HDPE composites
Sources of variation Sj fj Mean sum of square F value Critical value
F(fj, fe) (α = 0.05)Significance A 468.59 2 234.30 30.77 19 Significant B 54.12 2 27.06 0.41 19 Insignificant C 316.16 2 158.08 14.01 19 Insignificant Error 84.48 2 42.24 Total 923.35 8 表 10 热压温度对织物颜色变化影响
Table 10. Effect of hot-pressing temperature on fabric color change
Hot-pressed temperature/℃ L* a* b* ΔE* Fabrics Unheated 87.91 2.99 −1.03 — 140 89.15±0.74 2.49±0.07 1.33±0.82 2.71±0.99 160 88.69±1.10 2.13±0.39 3.70±1.58 4.87±0.95 180 86.12±0.81 2.31±0.07 8.55±0.69 9.77±0.79 Notes: L*—Lightness; a*—Reddish-green degree of the color; b*—Yellowish-blue degree of color; ΔE*—Chromatic aberration of the sample. 表 11 贴面前后WF/HDPE复合材料界面胶合性能和弯曲性能的测试结果
Table 11. Test results of interfacial bonding and flexural properties of WF/HDPE composites before and after decoration
WF∶HDPE Surface bonding
strength/MPaLength of impregnated
peel/mmBending
strength/MPaBending
modulus/GPa6∶4 Undecorated — — 41.02 ±1.06 2.15 ±0.21 Decorated 2.50 ±0.41 0 56.54 ±1.38 1.28 ±0.13 7∶3 Undecorated — — 46.66 ±0.57 2.97 ±0.11 Decorated 2.13 ±0.67 0 67.58 ±1.19 2.39 ±0.04 -
[1] 王海刚, 张京发, 王伟宏, 等. 纤维增强木塑复合材料研究进展[J]. 林业科学, 2016, 52(6):130-139.WANG Haigang, ZHANG Jingfa, WANG Weihong, et al. Research of fiber reinforced wood-plastic composites: A review[J]. Scientia Silvae Sinicae,2016,52(6):130-139(in Chinese). [2] ZHAO L, XI F, WANG G. Calculation model for uniaxial stress-strain relationship of wood plastic composites[J]. Polymer Composites,2021,42(12):6664-6671. doi: 10.1002/pc.26330 [3] 郝建秀, 王海刚, 王伟宏, 等. 利用弹性体增韧木粉/HDPE复合材料[J]. 复合材料学报, 2016, 33(5):976-983.HAO Jianxiu, WANG Haigang, WANG Weihong, et al. Improve toughness wood flour/HDPE composites with elastomers[J]. Acta Materiae Compositae Sinica,2016,33(5):976-983(in Chinese). [4] 曹岩, 徐海龙, 郝建秀, 等. 混合木粉质量比对木塑复合材料性能的影响[J]. 森林与环境学报, 2018, 38(3):284-289.CAO Yan, XU Hailong, HAO Jianxiu, et al. Infiuence of ratio of hybrid wood flour on physical and mechanical properties of wood-plastic composites[J]. Journal of Forestry and Environment,2018,38(3):284-289(in Chinese). [5] WANG H, ZHANG X, GUO S, et al. A review of coextruded wood-plastic composites[J]. Polymer Composites,2021,42(9):4174-4186. doi: 10.1002/pc.26189 [6] 陈娟, 苗青青, 王建荣, 等. 天然植物纤维木塑复合材料的研究进展[J]. 济南大学学报(自然科学版), 2020, 34(1):47-51.CHEN Juan, MIAO Qingqing, WANG Jianrong, et al. Research progress of natural plant fiber wood-plastic composites[J]. Journal of University of Jinan (Science and Technology),2020,34(1):47-51(in Chinese). [7] 王冬至, 朱莽, 刘美霞, 等. 生物质木塑复合材料的研究进展[J]. 科技与创新, 2019(22):29-30, 34.WANG Dongzhi, ZHU Mang, LIU Meixia, et al. Research progress of biomass wood-plastic composites[J]. Science and Technology & Innovation,2019(22):29-30, 34(in Chinese). [8] 杨守禄, 黄安香, 章磊, 等. 木塑复合材料在绿色建筑中的应用[J]. 工程塑料应用, 2018, 46(1):123-127.YANG Shoulu, HUANG Anxiang, ZHANG Lei, et al. Application of wood-plastic composites in green buildings[J]. Engineering Plastics Application,2018,46(1):123-127(in Chinese). [9] 吕一心, 周橙旻, 李臻瑜. 我国家具新材料发展现状综述[J]. 家具与室内装饰, 2020(7):20-22.LYU Yixin, ZHOU Chengmin, LI Zhenyu. A review on China's development of new furniture materials[J]. Furniture & Interior Design,2020(7):20-22(in Chinese). [10] 曹岩, 王伟宏, 王海刚, 等. 制备方法对木塑复合材料弯曲性能的影响[J]. 复合材料学报, 2013, 30(S1):311-314.CAO Yan, WANG Weihong, WANG Haigang, et al. Effect of preparation method on the flexural properties of WPC[J]. Acta Materiae Compositae Sinica,2013,30(S1):311-314(in Chinese). [11] 贺瑞, 康建华, 王红梅. 木塑复合材料研究及应用进展[J]. 塑料科技, 2021, 49(5):108-110.HE Rui, KANG Jianhua, WANG Hongmei. Research and application progress of wood-plastic composites[J]. Plastics Science and Technology,2021,49(5):108-110(in Chinese). [12] 王清文, 易欣, 沈静. 木塑复合材料在家具制造领域的发展机遇[J]. 林业工程学报, 2016, 1(3):1-8.WANG Qingwen, YI Xin, SHEN Jing. Tailoring wood-plastic composites for furniture production: Possibilities and opportunities[J]. Journal of Forestry Engineering,2016,1(3):1-8(in Chinese). [13] LEI Y, LI L. Application of wood-plastic composites in exhibition design[J]. Applied Mechanics and Materials, 2014, 496-500: 2416-2420. [14] 郝建秀, 王伟宏. 木塑复合材料在建筑模板中的应用[J]. 森林工程, 2016, 32(3):43-47.HAO Jianxiu, WANG Weihong. Application of wood-plastic composites in construction formwork[J]. Forest Engineering,2016,32(3):43-47(in Chinese). [15] 张弯. 木塑复合材料在园林工程中的应用研究[D]. 广州: 华南农业大学, 2016.ZHANG Wan. Study on the application of wood-plastic composites in landscape[D]. Guangzhou: South China Agricultural University, 2016(in Chinese). [16] 肖峰, 于丽丽, 张宁, 等. 木塑复合材料在包装中的应用及研究进展[J]. 化工新型材料, 2021, 49(7):10-14.XIAO Feng, YU Lili, ZHANG Ning, et al. Application and research progress of WPC in packaging[J]. New Chemical Materials,2021,49(7):10-14(in Chinese). [17] 刘彬, 李彬, 王怀栋, 等. 木塑复合材料应用现状及发展趋势[J]. 工程塑料应用, 2017, 45(1):137-141.LIU Bin, LI Bin, WANG Huaidong, et al. Application status and development trend of wood plastic composite[J]. Engineering Plastics Application,2017,45(1):137-141(in Chinese). [18] 李正印, 王伟宏. 高木材纤维含量聚丙烯基复合材料的制备及其性能[J]. 林业工程学报, 2017, 2(2):9-15.LI Zhengyin, WANG Weihong. Preparation and properties of polypropylene based composites with high wood fiber content[J]. Journal of Forestry Engineering,2017,2(2):9-15(in Chinese). [19] GUO L M, WANG W H, WANG Q W, et al. Decorating wood flour/HDPE composites with wood veneers[J]. Polymer Composites, 2018, 39(4): 1144-1151. [20] LIU Y N, SUN Y N, HAO J X, et al. Interface bonding properties and mechanism of poplar board-veneered wood fiber/polypropylene composites with chlorinated polypropylene films as an intermediate layer[J]. Langmuir, 2019, 35(43): 13934-13941. [21] 周扬帆, 陈伊彬, 张涛, 等. 薄木贴面聚氯乙烯基木塑复合材料贴面工艺参数对其性能的影响[J]. 木材工业, 2020, 34(3):10-13, 17. doi: 10.19455/j.mcgy.20200303ZHOU Yangfan, CHEN Yibin, ZHANG Tao, et al. Effect of technical parameter on performance of veneered PVC-based wood/plastic composites[J]. Chinese Journal of Wood Science and Technology,2020,34(3):10-13, 17(in Chinese). doi: 10.19455/j.mcgy.20200303 [22] 王瑞, 吕斌. 我国木质家居表面装饰产业发展现状及思考[J]. 中国人造板, 2019, 26(12):10-14.WANG Rui, LYU Bin. Analysis and consideration of wooden homehold surface decoration industry in China[J]. China Wood-Based Panels,2019,26(12):10-14(in Chinese). [23] 刘一楠. 单板贴面木塑板材制备技术及粘合机理研究[D]. 哈尔滨: 东北林业大学, 2019.LIU Yinan. Preparation technology and mechanism of laminating wood veneer with wood plastic composites[D]. Harbin: Northeast Forestry University, 2019(in Chinese). [24] 中国国家标准化管理委员会. 人造板及饰面人造板理化性能试验方法: GB/T 17657—2013[S]. 北京: 中国标准出版社, 2013.Standardization Administration of the People's Republic of China. Test methods of evaluating the properties of wood-based panels and surface decorated wood-based panels: GB/T 17657—2013[S]. Beijing: China Standards Press, 2013(in Chinese). [25] 中国国家标准化管理委员会. 装饰单板贴面人造板: GB/T 15104—2021[S]. 北京: 中国标准出版社, 2021.Standardization Administration of the People's Republic of China. Decorative veneered wood-based panel: GB/T 15104—2021[S]. Beijing: China Standards Press, 2021(in Chinese). [26] 中国国家标准化管理委员会. 塑料 弯曲性能的测定: GB/T 9341—2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People's Republic of China. Plastics—Determination of flexural properties: GB/T 9341—2008[S]. Beijing: China Standards Press, 2008(in Chinese). [27] 中国国家标准化管理委员会. 均匀色空间和色差公式: GB/T 7921—2008[S]. 北京: 中国标准出版社, 2008.Standardization Administration of the People's Republic of China. Uniform color space and color difference formula: GB/T 7921—2008[S]. Beijing: China Standards Press, 2008(in Chinese). [28] 孔德国, 周岭, 陈明鸽, 等. 热解温度对长、短绒棉基生物炭性能影响[J]. 炭素技术, 2017, 36(4):42-45.KONG Deguo, ZHOU Ling, CHEN Mingge, et al. Effect of temperature on the properties of biochar perpared from long and short staple cotton straw[J]. Carbon Techniques,2017,36(4):42-45(in Chinese). [29] ESMAEILZADEH M J, RASHIDI A. Evaluation of the disintegration of linen fabric under composting conditions[J]. Environmental Science and Pollution Research,2018,25(29):29070-29077. doi: 10.1007/s11356-018-2917-y [30] ZHOU X, SHEN T, SUN Y, et al. Improve the bonding between wood veneer and wood fiber/high-density polyethylene composite board for decoration[J]. Polymer Composites,2022,43(4):2163-2174. doi: 10.1002/pc.26529