留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单宁酸包裹的阿维菌素/介孔SiO2纳米载药系统的构建与性能

徐鹏 戴伟 曹蓉 石伟山 邢刚 王钊贵 王莎莎 李群 游朝群 郝德君

徐鹏, 戴伟, 曹蓉, 等. 单宁酸包裹的阿维菌素/介孔SiO2纳米载药系统的构建与性能[J]. 复合材料学报, 2024, 41(3): 1470-1479. doi: 10.13801/j.cnki.fhclxb.20230828.002
引用本文: 徐鹏, 戴伟, 曹蓉, 等. 单宁酸包裹的阿维菌素/介孔SiO2纳米载药系统的构建与性能[J]. 复合材料学报, 2024, 41(3): 1470-1479. doi: 10.13801/j.cnki.fhclxb.20230828.002
XU Peng, DAI Wei, CAO Rong, et al. Preparation and properties of tannic acid coated abamectin/mesoporous silica nano-pesticide delivery system[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1470-1479. doi: 10.13801/j.cnki.fhclxb.20230828.002
Citation: XU Peng, DAI Wei, CAO Rong, et al. Preparation and properties of tannic acid coated abamectin/mesoporous silica nano-pesticide delivery system[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1470-1479. doi: 10.13801/j.cnki.fhclxb.20230828.002

单宁酸包裹的阿维菌素/介孔SiO2纳米载药系统的构建与性能

doi: 10.13801/j.cnki.fhclxb.20230828.002
基金项目: 江苏省林业科技创新与推广项目(LYKJ-南京[2022]02)
详细信息
    通讯作者:

    徐鹏,博士,副教授,硕士生导师,研究方向为纳米农药开发与应用 E-mail: xupeng@njfu.edu.cn

  • 中图分类号: TB332

Preparation and properties of tannic acid coated abamectin/mesoporous silica nano-pesticide delivery system

Funds: Jiangsu Forestry Science and Technology Innovation and Promotion Project (LYKJ-Nanjing[2022]02)
  • 摘要: 增加农药在靶标作物叶面的滞留时间对提高农药利用率和降低农药对环境的影响具有重要意义。本文以阿维菌素(Aba)为模型药物,以单宁酸(TA)包裹的介孔SiO2纳米颗粒为载体材料构建纳米农药载药系统,在对纳米农药载药系统结构和形貌进行表征的基础上,通过模拟释放实验、植物叶面接触角和滞留量的比较及抗紫外光解实验深入研究纳米载药系统的释放性能和叶面粘附性能。研究发现,单宁酸包覆的阿维菌素/介孔SiO2纳米载药系统(Aba/MSNs@TA)的载药量达到23.50%,单宁酸的包覆明显提高了载药系统在绿萝、玉米和马尾松叶面上的润湿性,叶面滞留量相较于Aba/MSNs提高了23.4%。Aba/MSNs@TA表现出明显的pH响应性释放性能,较低的pH值环境加速了Aba的释放速度。此外,单宁酸的包覆进一步提高了载药系统中药物的抗紫外光解性能。

     

  • 图  1  ((a), (b)) 负载阿维菌素的介孔 SiO2纳米颗粒(Aba/MSNs)的TEM图像;(c) 单宁酸(TA)包覆的阿维菌素/介孔SiO2纳米载药系统(Aba/MSNs@TA)的TEM图像;(d) Aba/MSNs@TA和Aba/MSNs的实物图

    Figure  1.  ((a), (b)) TEM images of abamectin-loaded mesoporous silica nanospheres (Aba/MSNs); (c) Tannic acid (TA)-coated abamectin/mesoporous silica nanospheres (Aba/MSNs@TA); (d) Photo of Aba/MSNs@TA and Aba/MSNs

    图  2  Aba、MSNs、Aba/MSNs和Aba/MSNs@TA的FTIR图谱 (a);Aba/MSNs和Aba/MSNs@TA的吸脱附等温线(b)、DTG曲线(c)、TGA曲线(d)

    Figure  2.  FTIR spectra of Aba, MSNs, Aba/MSNs and Aba/MSNs@TA (a) ; N2 adsoprtion-desorption (b), DTG curves (c) and TGA curves (d) of Aba/MSNs and Aba/MSNs@TA

    图  3  (a) Aba的紫外光谱图;(b) Aba-甲醇标准曲线

    Figure  3.  (a) Ultraviolet spectra of Aba; (b) Aba-methanol standard curve

    R2—Linear correlation coefficient

    图  4  在乙醇/水(体积比30/70)混合液中,Aba/MSNs@TA和Aba/MSNs中Aba的释放曲线

    Figure  4.  Release curves of Aba from Aba/MSNs@TA and Aba/MSNs in ethanol/water (volume ratio 30/70) mixtures

    图  5  不同pH的磷酸盐缓冲溶液(PBS)条件下,Aba/MSNs@TA中Aba的释放曲线

    Figure  5.  Release curves of Aba from Aba/MSNs@TA under different pH conditions of phosphate buffer solution (PBS)

    图  6  Ritger-Peppas方程(a)、零级方程(b)、一级方程(c)和Higuchi方程(d)拟合曲线

    Figure  6.  Fitting plots using the Ritger-Peppas equation (a), the Zero-level equation (b), the First-level equation (c), and the Higuchi equation (d)

    图  7  不同浓度的Aba/MSNs@TA和Aba/MSNs在叶面上的滞留量

    Figure  7.  Retention of Aba/MSNs@TA and Aba/MSNs on leaves at different concentrations

    图  8  Aba、MSNs、Aba/MSNs和Aba/MSNs@TA在不同叶面上的接触角:(a) 绿萝;(b) 玉米;(c) 马尾松

    Figure  8.  Contact angle of Aba, MSNs, Aba/MSNs and Aba/MSNs@TA on different leaves: (a) Epipremnum aureum; (b) Corn; (c) Masson pine

    图  9  Aba/MSNs和Aba/MSNs@TA在绿萝叶面荧光成像

    Figure  9.  Fluorescence images of Aba/MSNs and Aba/MSNs@TA on the surface of Epipremnum aureum foliage

    图  10  Aba/MSNs和Aba/MSNs@TA在不同紫外照射时间下的Aba剩余率

    Figure  10.  Retention rate of Aba/MSNs and Aba/MSNs@TA under different UV irraditation time

    表  1  文献中不同载药系统载药量的对比

    Table  1.   Comparison of drug loading capacities of different drug loading systems in literature

    Carrier materialPesticidesLoading rate/%Ref.
    MSNs-chitosan@prochloraz nanoparticlesProchloraz25.40[20]
    Avermectin@MSNs-SS-starch nanoparticlesAvermectin 9.30[21]
    DMM@HMS-SS-COSDimethomorph24.36[22]
    Py@F-DSH-MSNsPyraclostrobin28.50[23]
    CHT@MSNs-β-glucansChlorothalonil24.99[24]
    Aba/MSNs@TAAbamectin23.50This study
    Notes: MSNs—Mesoporous silica nanoparticles; SS—Disulfide bond; DMM—Dimethomorph; HMS—Hollow mesoporous silica; COS—Chitosan oligosaccharide; Py—Pyraclostrobin; F-DSH-MSNs—Fluorophore-free luminescent double-shelled hollow MSNs; CHT—Chlorothalonil; MSNs-β-glucans—β-glucans attached MSNs.
    下载: 导出CSV

    表  2  通过拟合几个动力学方程计算Aba/MSNs@TA释放Aba的参数

    Table  2.   Parameters of Aba released from Aba/MSNs@TA by fitting several kinetic equations

    ModelpH valueanr2
    Zero-order 5 0.469 0.825
    7 0.329 0.878
    9 0.132 0.831
    First-order 5 86.801 0.998
    7 61.858 0.996
    9 25.843 0.956
    Higuchi 5 7.415 0.961
    7 5.094 0.982
    9 2.088 0.966
    Ritger-Peppas 5 7.537 0.488 0.960
    7 4.235 0.526 0.978
    9 3.764 0.396 0.982
    Notes: a—Release rate constant; n—Release characteristic index; r2—Regression coefficient.
    下载: 导出CSV
  • [1] SARATOVSKIKH E A. Molecular mechanisms of the damage effect of pesticides of various structures on target organisms[J]. Russian Journal of Physical Chemistry B,2017,11(4):652-662. doi: 10.1134/S1990793117040224
    [2] SØRENSEN G, NIELSEN A L, PEDERSEN M M, et al. Controlled release of biocide from silica microparticles in wood paint[J]. Progress in Organic Coatings,2010,68(4):299-306. doi: 10.1016/j.porgcoat.2010.03.009
    [3] ZHAO W, LIU Y, ZHANG P, et al. Engineered Zn-based nano-pesticides as an opportunity for treatment of phytopathogens in agriculture[J]. NanoImpact,2022,28:100420. doi: 10.1016/j.impact.2022.100420
    [4] HAMMING L M, FAN X W, MESSERSMITH P B, et al. Mimicking mussel adhesion to improve interfacial properties in composites[J]. Composites Science and Technology,2008,68(9):2042-2048. doi: 10.1016/j.compscitech.2008.02.036
    [5] GUVENDIREN M, BRASS D A, MESSERSMITH P B, et al. Adhesion of DOPA-functionalized model membranes to hard and soft surfaces[J]. The Journal of Adhesion,2009,85(9):631-645. doi: 10.1080/00218460902997000
    [6] JIA X, SHENG W B, LI W, et al. Adhesive polydopamine coated avermectin microcapsules for prolonging foliar pesticide retention[J]. ACS Applied Materials & Interfaces,2014,6(22):19552-19558. doi: 10.1021/am506458t
    [7] ZHI H, YU M, YAO J, et al. A facile approach to increasing the foliage retention of pesticides based on coating with a tannic acid/Fe3+ complex[J]. Coatings,2020,10(4):359. doi: 10.3390/coatings10040359
    [8] JEVREMOVIC A, BOZINOVIC N, ARSENIJEVIC D, et al. Modulation of cytotoxicity by consecutive adsorption of tannic acid and pesticides on surfactant functionalized zeolites[J]. Environmental Science: Processes & Impacts,2020,22(11):2199-2211.
    [9] YU M, SUN C, XUE Y, et al. Tannic acid-based nanopesticides coating with highly improved foliage adhesion to enhance foliar retention[J]. RSC Advances,2019,9(46):27096-27104. doi: 10.1039/C9RA05843E
    [10] XIAO D, CHENG J, LIANG W, et al. Metal-phenolic coated and prochloraz-loaded calcium carbonate carriers with pH responsiveness for environmentally-safe fungicide delivery[J]. Chemical Engineering Journal, 2021, 418: 129274.
    [11] GAO Y, XIAO Y, MAO K, et al. Thermoresponsive polymer-encapsulated hollow mesoporous silica nanoparticles and their application in insecticide delivery[J]. Chemical Engineering Journal,2020,383:123169. doi: 10.1016/j.cej.2019.123169
    [12] NEVES J, CARDOSO D N, MALHEIRO C, et al. Copper toxicity to Folsomia candida in different soils: A comparison between nano and conventional formulations[J]. Environmental Chemistry,2019,16(6):419-429. doi: 10.1071/EN19061
    [13] ZHAO P, CAO L, MA D, et al. Translocation, distribution and degradation of prochloraz-loaded mesoporous silica nanoparticles in cucumber plants[J]. Nanoscale,2018,10(4):1798-1806. doi: 10.1039/C7NR08107C
    [14] SINGH A, DHIMAN N, KAR A K, et al. Advances in controlled release pesticide formulations: Prospects to safer integrated pest management and sustainable agriculture[J]. Journal of Hazardous Materials,2020,385:121525. doi: 10.1016/j.jhazmat.2019.121525
    [15] YIN J, SU X, YAN S, et al. Multifunctional nanoparticles and nanopesticides in agricultural application[J]. Nanomaterials,2023,13(7):1255. doi: 10.3390/nano13071255
    [16] LI G B, WANG J, KONG X P. Coprecipitation-based synchronous pesticide encapsulation with chitosan for controlled spinosad release[J]. Carbohydrate Polymers,2020,249:116865. doi: 10.1016/j.carbpol.2020.116865
    [17] ZIVAN O, SEGAL-ROSENHEIMER M, DUBOWSKI Y. Airborne organophosphate pesticides drift in mediterranean climate: The importance of secondary drift[J]. Atmospheric Environment,2016,127:155-162. doi: 10.1016/j.atmosenv.2015.12.003
    [18] SCHOLTZ M T, BIDLEMAN T F. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues[J]. Science of the Total Environment,2007,377(1):61-80. doi: 10.1016/j.scitotenv.2007.01.084
    [19] SINGH H, SHARMA A, BHARDWAJ S K, et al. Recent advances in the applications of nano-agrochemicals for sustainable agricultural development[J]. Environmental Science: Processes & Impacts,2021,23(2):213-239.
    [20] LIANG Y, FAN C, DONG H, et al. Preparation of MSNs-chitosan@prochloraz nanoparticles for reducing toxicity and improving release properties of prochloraz[J]. ACS Sustainable Chemistry & Engineering,2018,6(8):10211-10220.
    [21] LIANG Y, GAO Y, WANG W, et al. Fabrication of smart stimuli-responsive mesoporous organosilica nano-vehicles for targeted pesticide delivery[J]. Journal of Hazardous Materials, 2020, 389: 122075.
    [22] YANG L, CHEN H, YAN W, et al. A pH- and redox-stimulated responsive hollow mesoporous silica for triggered delivery of fungicides to control downy mildew of Luffa cylindrica[J]. Pest Management Science,2022,78(8):3365-3375. doi: 10.1002/ps.6964
    [23] CAO L, ZHANG H, ZHOU Z, et al. Fluorophore-free luminescent double-shelled hollow mesoporous silica nanoparticles as pesticide delivery vehicles[J]. Nanoscale,2018,10(43):20354-20365. doi: 10.1039/C8NR04626C
    [24] KAZIEM A E, YANG L, LIN Y, et al. Pathogenic invasion-responsive carrier based on mesoporous silica/β-glucan nanoparticles for smart delivery of fungicides[J]. ACS Sustainable Chemistry & Engineering,2021,9(27):9126-9138.
    [25] ZHAO Y, WENDLING L A, WANG C, et al. Behavior of chlorpyrifos and its major metabolite TCP (3, 5, 6-trichloro-2-pyridinol) in agricultural soils amended with drinking water treatment residuals[J]. Journal of Soils and Sediments,2016,17(4):889-900.
    [26] GENG Y, MA J, ZHOU R, et al. Assessment of insecticide risk to human health in groundwater in Northern China by using the China-PEARL model[J]. Pest Management Science,2017,73(10):2063-2070. doi: 10.1002/ps.4572
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  590
  • HTML全文浏览量:  278
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 修回日期:  2023-07-22
  • 录用日期:  2023-07-29
  • 网络出版日期:  2023-08-29
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回