Preparation and properties of tannic acid coated abamectin/mesoporous silica nano-pesticide delivery system
-
摘要: 增加农药在靶标作物叶面的滞留时间对提高农药利用率和降低农药对环境的影响具有重要意义。本文以阿维菌素(Aba)为模型药物,以单宁酸(TA)包裹的介孔SiO2纳米颗粒为载体材料构建纳米农药载药系统,在对纳米农药载药系统结构和形貌进行表征的基础上,通过模拟释放实验、植物叶面接触角和滞留量的比较及抗紫外光解实验深入研究纳米载药系统的释放性能和叶面粘附性能。研究发现,单宁酸包覆的阿维菌素/介孔SiO2纳米载药系统(Aba/MSNs@TA)的载药量达到23.50%,单宁酸的包覆明显提高了载药系统在绿萝、玉米和马尾松叶面上的润湿性,叶面滞留量相较于Aba/MSNs提高了23.4%。Aba/MSNs@TA表现出明显的pH响应性释放性能,较低的pH值环境加速了Aba的释放速度。此外,单宁酸的包覆进一步提高了载药系统中药物的抗紫外光解性能。Abstract: It is important to increase the retention time of pesticides on the leaf surface of target crops for improving pesticide utilization and reducing the impact of pesticides on the environment. In this paper, we used abamectin (Aba) as a model pesticide and mesoporous silica nanoparticles coated with tannic acid (TA) as a carrier material to construct a nano-pesticide delivery system. Based on the structural and morphological characterization of the nano-pesticide delivery system, we investigated the release performance and foliar adhesion of the nano-pesticide delivery system through simulated release experiments, comparison of contact angle and retention amount on plant foliage and UV photolysis resistance experiments. It is found that tannic acid-coated abamectin-loaded mesoporous silica nanospheres (Aba/MSNs@TA) significantly improve drug wettability on the foliage of Epipremnum aureum, corn and masson pine, and foliar retention is also improved compared to Aba/MSNs. Aba/MSNs@TA exhibits significant pH-responsive release performance, with lower pH environments accelerating the release rate of Aba. In addition, the coating of tannic acid further improves the UV photolytic resistance of the drug in the drug-loaded system.
-
Key words:
- abamectin /
- adhesion /
- mesoporous SiO2 /
- stimulus response /
- anti-photodegradation /
- tannic acid /
- pesticide delivery system
-
图 1 ((a), (b)) 负载阿维菌素的介孔 SiO2纳米颗粒(Aba/MSNs)的TEM图像;(c) 单宁酸(TA)包覆的阿维菌素/介孔SiO2纳米载药系统(Aba/MSNs@TA)的TEM图像;(d) Aba/MSNs@TA和Aba/MSNs的实物图
Figure 1. ((a), (b)) TEM images of abamectin-loaded mesoporous silica nanospheres (Aba/MSNs); (c) Tannic acid (TA)-coated abamectin/mesoporous silica nanospheres (Aba/MSNs@TA); (d) Photo of Aba/MSNs@TA and Aba/MSNs
表 1 文献中不同载药系统载药量的对比
Table 1. Comparison of drug loading capacities of different drug loading systems in literature
Carrier material Pesticides Loading rate/% Ref. MSNs-chitosan@prochloraz nanoparticles Prochloraz 25.40 [20] Avermectin@MSNs-SS-starch nanoparticles Avermectin 9.30 [21] DMM@HMS-SS-COS Dimethomorph 24.36 [22] Py@F-DSH-MSNs Pyraclostrobin 28.50 [23] CHT@MSNs-β-glucans Chlorothalonil 24.99 [24] Aba/MSNs@TA Abamectin 23.50 This study Notes: MSNs—Mesoporous silica nanoparticles; SS—Disulfide bond; DMM—Dimethomorph; HMS—Hollow mesoporous silica; COS—Chitosan oligosaccharide; Py—Pyraclostrobin; F-DSH-MSNs—Fluorophore-free luminescent double-shelled hollow MSNs; CHT—Chlorothalonil; MSNs-β-glucans—β-glucans attached MSNs. 表 2 通过拟合几个动力学方程计算Aba/MSNs@TA释放Aba的参数
Table 2. Parameters of Aba released from Aba/MSNs@TA by fitting several kinetic equations
Model pH value a n r2 Zero-order 5 0.469 — 0.825 7 0.329 — 0.878 9 0.132 — 0.831 First-order 5 86.801 — 0.998 7 61.858 — 0.996 9 25.843 — 0.956 Higuchi 5 7.415 — 0.961 7 5.094 — 0.982 9 2.088 — 0.966 Ritger-Peppas 5 7.537 0.488 0.960 7 4.235 0.526 0.978 9 3.764 0.396 0.982 Notes: a—Release rate constant; n—Release characteristic index; r2—Regression coefficient. -
[1] SARATOVSKIKH E A. Molecular mechanisms of the damage effect of pesticides of various structures on target organisms[J]. Russian Journal of Physical Chemistry B,2017,11(4):652-662. doi: 10.1134/S1990793117040224 [2] SØRENSEN G, NIELSEN A L, PEDERSEN M M, et al. Controlled release of biocide from silica microparticles in wood paint[J]. Progress in Organic Coatings,2010,68(4):299-306. doi: 10.1016/j.porgcoat.2010.03.009 [3] ZHAO W, LIU Y, ZHANG P, et al. Engineered Zn-based nano-pesticides as an opportunity for treatment of phytopathogens in agriculture[J]. NanoImpact,2022,28:100420. doi: 10.1016/j.impact.2022.100420 [4] HAMMING L M, FAN X W, MESSERSMITH P B, et al. Mimicking mussel adhesion to improve interfacial properties in composites[J]. Composites Science and Technology,2008,68(9):2042-2048. doi: 10.1016/j.compscitech.2008.02.036 [5] GUVENDIREN M, BRASS D A, MESSERSMITH P B, et al. Adhesion of DOPA-functionalized model membranes to hard and soft surfaces[J]. The Journal of Adhesion,2009,85(9):631-645. doi: 10.1080/00218460902997000 [6] JIA X, SHENG W B, LI W, et al. Adhesive polydopamine coated avermectin microcapsules for prolonging foliar pesticide retention[J]. ACS Applied Materials & Interfaces,2014,6(22):19552-19558. doi: 10.1021/am506458t [7] ZHI H, YU M, YAO J, et al. A facile approach to increasing the foliage retention of pesticides based on coating with a tannic acid/Fe3+ complex[J]. Coatings,2020,10(4):359. doi: 10.3390/coatings10040359 [8] JEVREMOVIC A, BOZINOVIC N, ARSENIJEVIC D, et al. Modulation of cytotoxicity by consecutive adsorption of tannic acid and pesticides on surfactant functionalized zeolites[J]. Environmental Science: Processes & Impacts,2020,22(11):2199-2211. [9] YU M, SUN C, XUE Y, et al. Tannic acid-based nanopesticides coating with highly improved foliage adhesion to enhance foliar retention[J]. RSC Advances,2019,9(46):27096-27104. doi: 10.1039/C9RA05843E [10] XIAO D, CHENG J, LIANG W, et al. Metal-phenolic coated and prochloraz-loaded calcium carbonate carriers with pH responsiveness for environmentally-safe fungicide delivery[J]. Chemical Engineering Journal, 2021, 418: 129274. [11] GAO Y, XIAO Y, MAO K, et al. Thermoresponsive polymer-encapsulated hollow mesoporous silica nanoparticles and their application in insecticide delivery[J]. Chemical Engineering Journal,2020,383:123169. doi: 10.1016/j.cej.2019.123169 [12] NEVES J, CARDOSO D N, MALHEIRO C, et al. Copper toxicity to Folsomia candida in different soils: A comparison between nano and conventional formulations[J]. Environmental Chemistry,2019,16(6):419-429. doi: 10.1071/EN19061 [13] ZHAO P, CAO L, MA D, et al. Translocation, distribution and degradation of prochloraz-loaded mesoporous silica nanoparticles in cucumber plants[J]. Nanoscale,2018,10(4):1798-1806. doi: 10.1039/C7NR08107C [14] SINGH A, DHIMAN N, KAR A K, et al. Advances in controlled release pesticide formulations: Prospects to safer integrated pest management and sustainable agriculture[J]. Journal of Hazardous Materials,2020,385:121525. doi: 10.1016/j.jhazmat.2019.121525 [15] YIN J, SU X, YAN S, et al. Multifunctional nanoparticles and nanopesticides in agricultural application[J]. Nanomaterials,2023,13(7):1255. doi: 10.3390/nano13071255 [16] LI G B, WANG J, KONG X P. Coprecipitation-based synchronous pesticide encapsulation with chitosan for controlled spinosad release[J]. Carbohydrate Polymers,2020,249:116865. doi: 10.1016/j.carbpol.2020.116865 [17] ZIVAN O, SEGAL-ROSENHEIMER M, DUBOWSKI Y. Airborne organophosphate pesticides drift in mediterranean climate: The importance of secondary drift[J]. Atmospheric Environment,2016,127:155-162. doi: 10.1016/j.atmosenv.2015.12.003 [18] SCHOLTZ M T, BIDLEMAN T F. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues[J]. Science of the Total Environment,2007,377(1):61-80. doi: 10.1016/j.scitotenv.2007.01.084 [19] SINGH H, SHARMA A, BHARDWAJ S K, et al. Recent advances in the applications of nano-agrochemicals for sustainable agricultural development[J]. Environmental Science: Processes & Impacts,2021,23(2):213-239. [20] LIANG Y, FAN C, DONG H, et al. Preparation of MSNs-chitosan@prochloraz nanoparticles for reducing toxicity and improving release properties of prochloraz[J]. ACS Sustainable Chemistry & Engineering,2018,6(8):10211-10220. [21] LIANG Y, GAO Y, WANG W, et al. Fabrication of smart stimuli-responsive mesoporous organosilica nano-vehicles for targeted pesticide delivery[J]. Journal of Hazardous Materials, 2020, 389: 122075. [22] YANG L, CHEN H, YAN W, et al. A pH- and redox-stimulated responsive hollow mesoporous silica for triggered delivery of fungicides to control downy mildew of Luffa cylindrica[J]. Pest Management Science,2022,78(8):3365-3375. doi: 10.1002/ps.6964 [23] CAO L, ZHANG H, ZHOU Z, et al. Fluorophore-free luminescent double-shelled hollow mesoporous silica nanoparticles as pesticide delivery vehicles[J]. Nanoscale,2018,10(43):20354-20365. doi: 10.1039/C8NR04626C [24] KAZIEM A E, YANG L, LIN Y, et al. Pathogenic invasion-responsive carrier based on mesoporous silica/β-glucan nanoparticles for smart delivery of fungicides[J]. ACS Sustainable Chemistry & Engineering,2021,9(27):9126-9138. [25] ZHAO Y, WENDLING L A, WANG C, et al. Behavior of chlorpyrifos and its major metabolite TCP (3, 5, 6-trichloro-2-pyridinol) in agricultural soils amended with drinking water treatment residuals[J]. Journal of Soils and Sediments,2016,17(4):889-900. [26] GENG Y, MA J, ZHOU R, et al. Assessment of insecticide risk to human health in groundwater in Northern China by using the China-PEARL model[J]. Pest Management Science,2017,73(10):2063-2070. doi: 10.1002/ps.4572