留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磺化聚乙烯醇/侧链交联型磺化聚芳醚酮复合质子交换膜的制备与性能

程海龙 郑锐 孙娇娇 韩康辉 李奥 管丹丹 栾立伟 陶璐静

程海龙, 郑锐, 孙娇娇, 等. 磺化聚乙烯醇/侧链交联型磺化聚芳醚酮复合质子交换膜的制备与性能[J]. 复合材料学报, 2024, 41(5): 2465-2476. doi: 10.13801/j.cnki.fhclxb.20230825.006
引用本文: 程海龙, 郑锐, 孙娇娇, 等. 磺化聚乙烯醇/侧链交联型磺化聚芳醚酮复合质子交换膜的制备与性能[J]. 复合材料学报, 2024, 41(5): 2465-2476. doi: 10.13801/j.cnki.fhclxb.20230825.006
CHENG Hailong, ZHENG Rui, SUN Jiaojiao, et al. Preparation and properties of sulfonated poly(vinyl alcohol)/sulfonated poly(aryl ether ketone) copolymer with pendant crosslinked structure composite membranes[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2465-2476. doi: 10.13801/j.cnki.fhclxb.20230825.006
Citation: CHENG Hailong, ZHENG Rui, SUN Jiaojiao, et al. Preparation and properties of sulfonated poly(vinyl alcohol)/sulfonated poly(aryl ether ketone) copolymer with pendant crosslinked structure composite membranes[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2465-2476. doi: 10.13801/j.cnki.fhclxb.20230825.006

磺化聚乙烯醇/侧链交联型磺化聚芳醚酮复合质子交换膜的制备与性能

doi: 10.13801/j.cnki.fhclxb.20230825.006
基金项目: 吉林省教育厅科学技术研究项目(JJKH20220238KJ);吉林省自然科学基金(YDZJ202301ZYTS299)
详细信息
    通讯作者:

    程海龙,博士,讲师,硕士生导师,研究方向为高聚物功能膜材料 E-mail: chl_111@126.com

  • 中图分类号: O631.1;TB332

Preparation and properties of sulfonated poly(vinyl alcohol)/sulfonated poly(aryl ether ketone) copolymer with pendant crosslinked structure composite membranes

Funds: Jilin Province Department of Education Research Foundation for Science and Technology (JJKH20220238KJ); Natural Science Foundation of Jilin Province (YDZJ202301ZYTS299)
  • 摘要: 磺化芳香类聚合物质子交换膜(PEM)为了达到较好的质子传导性能就必需具有较高的磺化度,然而较高的磺化度就会增加PEM的溶胀率、降低PEM的尺寸稳定性及增加PEM的甲醇渗透率等一系列问题。为此,通过直接缩聚的方法合成了含有羧基的聚芳醚酮共聚物(PAEK-x),利用刚果红作为交联剂并引入磺酸基团,与磺化聚乙烯醇(SPVA)复合制备磺化聚乙烯醇/磺化聚芳醚酮交联复合膜(Cr-SPAEK-x),通过红外光谱对交联复合膜进行了表征。对膜的性能测试发现,该系列交联复合膜表现出了良好的热性能、力学性能、氧化稳定性和适度的吸水性。交联结构形成于PAEK-x的羧基与刚果红的氨基及SPVA的羟基之间,不消耗膜中的传导基团磺酸基,因此该系列交联复合膜表现出了较高的质子传导率,酚酞啉(PPL)摩尔含量为100mol%的磺化聚乙烯醇/磺化聚芳醚酮交联复合膜Cr-SPAEK-100在25℃和80℃分别达到了0.053 S·cm−1和0.109 S·cm−1。交联网络结构的形成,抑制了膜的水溶胀性,提高了膜的尺寸稳定性,即使是吸水率最高的Cr-SPAEK-100膜的溶胀率室温下也只有5.26%,同时由于致密的交联网络结构的形成及具有高阻醇性能的SPVA的引入,有效地降低了该系列交联复合膜的甲醇渗透系数,最高也只有3.92×10−7 cm2·s−1,可见该系列交联复合膜有望在直接甲醇燃料电池中得到应用。

     

  • 图  1  磺化聚乙烯醇(SPVA)合成示意图

    Figure  1.  Synthesis of sulfonated polyvinyl alcohol (SPVA)

    图  2  交联复合膜的制备示意图

    Figure  2.  Preparation of the crosslinked composite membranes

    PAEK-x—Poly(aryl ether ketone) containing carboxyl group carboxyl group; TMS—Tetramethylsilane

    图  3  PAEK-100核磁氢谱

    Figure  3.  1H NMR spectrum of PAEK-100

    图  4  PAEK-60膜和Cr-SPAEK-60膜红外图谱

    Figure  4.  FTIR of PAEK-60 membrane and Cr-SPAEK-60 membrane

    图  5  交联复合膜Cr-SPAEK-x及SPVA的TGA曲线

    Figure  5.  TGA curves of crosslinked composite membranes Cr-SPAEK-x and SPVA

    图  6  交联复合膜的AFM相图:(a) PAEK-80;(b) Cr-SPAEK-80;(c) Cr-SPAEK-100

    Figure  6.  AFM tapping phase images of crosslinked composite membranes: (a) PAEK-80; (b) Cr-SPAEK-80; (c) Cr-SPAEK-100

    图  7  交联复合膜Cr-SPAEK-x的吸水率曲线

    Figure  7.  Water uptake of the crosslinked composite membrane Cr-SPAEK-x

    图  8  交联复合膜Cr-SPAEK-x的溶胀率曲线

    Figure  8.  Water swelling rate of the crosslinked composite membrane Cr-SPAEK-x

    图  9  交联复合膜Cr-SPAEK-x的质子传导率

    Figure  9.  Proton conductivity of crosslinked composite membrane Cr-SPAEK-x

    图  10  交联复合膜Cr-SPAEK-x质子传导率Arrhenius图

    T—Temperature

    Figure  10.  Arrhenius plot of proton conductivity of crosslinked composite membrane Cr-SPAEK- x

    图  11  交联复合膜Cr-SPAEK-x的结构及传输机制

    Figure  11.  Schematic structure and transmission mechanism of the crosslinked composite membrane Cr-SPAEK-x

    表  1  交联复合膜Cr-SPAEK-x的力学性能、凝胶分数和氧化稳定性数据

    Table  1.   Mechanical properties, gel fraction and oxidative stability of crosslinked composite membranes Cr-SPAEK-x

    SamplePPL/DFB
    mol/mol
    Young's
    modulus/MPa
    Tensile
    strength/MPa
    Elongation
    at break/%
    Gel fraction/%Oxidative
    stability/%
    Cr-SPAEK-100100/01549.3173.57 5.3293.9297.98
    Cr-SPAEK-8080/201388.4362.65 6.9478.1592.11
    Cr-SPAEK-6060/401264.5750.84 9.3972.1484.62
    Cr-SPAEK-4040/601085.2845.8711.7457.2780.37
    Notes: PPL—Phenolphthalin; DFB—4, 4'-difluorobenzophenone.
    下载: 导出CSV

    表  2  交联复合膜Cr-SPAEK-x的离子交换容量(IEC)、质子传导率、甲醇渗透率、质子选择性及活化能(Ea)数据

    Table  2.   Ion exchange capacity (IEC), proton conductivity, methanol permeability, proton selectivity and activation energy (Ea) of crosslinked composite membranes Cr-SPAEK-x

    SampleIEC/
    (mmol·g−1)
    Proton conductivity/
    (S·cm−1)
    Methanol diffusion
    coefficient/(cm2·s−1)
    Proton selectivity/
    (104 S·cm−3)
    Ea/
    (kJ·mol−1)
    25℃80℃
    Cr-SPAEK-1001.580.0530.1093.92×10−713.5211.37
    Cr-SPAEK-801.360.0400.0862.53×10−715.8112.08
    Cr-SPAEK-601.190.0290.0641.14×10−725.4412.50
    Cr-SPAEK-400.810.0170.0450.39×10−743.5915.85
    Nafion 117a0.0760.14623.8×10−7 3.67 9.10
    Note: a—Data adapted from the Ref.[32].
    下载: 导出CSV
  • [1] XIE T T, PANG Y, FAN H, et al. Controlling the microphase morphology and performance of cross-linked highly sulfonated polyimide membranes by varying the molecular structure and volume of the hydrophobic cross-linkable diamine monomers[J]. Journal of Membrane Science,2023,666:121177. doi: 10.1016/j.memsci.2022.121177
    [2] YE C C, WANG A Q, BREAKWELL C, et al. Development of efficient aqueous organic redox flow batteries using ion-sieving sulfonated polymer membranes[J]. Nature Communications,2022,13(1):3184-3188. doi: 10.1038/s41467-022-30943-y
    [3] JIA W, TANG B B, WU P Y. Novel composite proton exchange membrane with connected long-range ionic nanochannels constructed via exfoliated nafion-boron nitride nanocomposite[J]. ACS Applied Materials & Interfaces,2017,9(17):14791-14800.
    [4] LIU X, LI Y, XUE J D, et al. Magnetic field alignment of stable proton-conducting channels in an electrolyte membrane[J]. Nature Communications,2019,10(1):842. doi: 10.1038/s41467-019-08622-2
    [5] ZHANG H Q, YAN X M, GAO L, et al. Novel triple tertiary amine polymer-based hydrogen bond network inducing highly efficient proton-conducting channels of amphoteric membranes for high-performance vanadium redox flow battery[J]. ACS Applied Materials & Interfaces,2019,11(5):5003-5014.
    [6] PRYKHODKO Y, FATYEYEVA K, HESPEL L, et al. Progress in hybrid composite Nafion®-based membranes for proton exchange fuel cell application[J]. Chemical Engineering Journal,2021,409:127329. doi: 10.1016/j.cej.2020.127329
    [7] NEDERSTEDT H, JANNASCH P. Poly(p-terphenyl alkylene)s grafted with highly acidic sulfonated polypentafluorostyrene side chains for proton exchange membranes[J]. Journal of Membrane Science,2022,647:120270. doi: 10.1016/j.memsci.2022.120270
    [8] LIU D, XIE Y J, ZHONG J D, et al. High methanol resistance semi-crystalline sulfonated poly(ether ketone) proton exchange membrane for direct methanol fuel cell[J]. Journal of Membrane Science,2022,650:120413. doi: 10.1016/j.memsci.2022.120413
    [9] BAN T, GUO M L, WANG Y J, et al. Densely functionalized proton exchange membrane from sulfonated poly(aryl ether ketone) containing multiple fexible side chains for fuel cell[J]. Solid State Ion,2021,372:115777. doi: doi.org/10.1016/j.ssi.2021.115777
    [10] LIU D, XIE Y J, CUI N, et al. Structure and properties of sulfonated poly(arylene ether)s with densely sulfonated segments containing mono-, di- and tri-tetraphenylmethane as proton exchange membrane[J]. Journal of Membrane Science,2021,620:118856. doi: 10.1016/j.memsci.2020.118856
    [11] CAI S J, WANG C Y, TAO Z W, et al. Proton exchange membranes containing densely alkyl sulfide sulfonated side chains for vanadium redox flow battery[J]. International Journal of Hydrogen Energy,2022,47(15):9319-9330. doi: 10.1016/j.ijhydene.2021.12.263
    [12] DIVYA K M, SRI ABIRAMI SARASWATHI M S, RANA D, et al. Custom-made sulfonated poly(ether sulfone) nanocomposite proton exchange mambranes using exfoliated molybdenum disulfide nanosheets for DMFC applications[J]. Polymer,2018,147:48-55. doi: 10.1016/j.polymer.2018.05.054
    [13] 韩光鲁, 陈哲, 蔡立芳, 等. 磺化来瓦希尔骨架(MIL-101(Cr)-SO3H)/磺化酚酞侧基聚芳醚砜杂化质子交换膜的制备及性能[J]. 复合材料学报, 2020, 37(3):504-511.

    HAN Guanglu, CHEN Zhe, CAI Lifang, et al. Preparation and properties of sulfonated lavoisier framework (MIL-101(Cr)-SO3H)/sulfonated polyarylethersulfone with cardo hybrid proton exchange membranes[J]. Acta Materiae Compositae Sinica,2020,37(3):504-511(in Chinese).
    [14] WANG C Y, SHEN B, ZHOU Y, et al. Sulfonated aromatic polyamides containing nitrile groups as proton exchange fuel cell membranes[J]. International Journal of Hydrogen Energy,2015,40(19):6422-6429. doi: 10.1016/j.ijhydene.2015.03.078
    [15] JO T S, OZAWA C H, EAGAR B R, et al. Synthesis of sulfonated aromatic poly(ether amide)s and their application to proton exchange membrane fuel cells[J]. Journal of Polymer Science Part A: Polymer Chemistry,2009,47(2):485-496. doi: 10.1002/pola.23165
    [16] WANG G, LI J L, LI H B, et al. In situ crosslinking of polyoxometalate-polymer nanocomposites for robust high-temperature proton exchange membranes[J]. Chinese Chemical Letters,2023,34(2):107497. doi: 10.1016/j.cclet.2022.05.011
    [17] LUO H C. Crosslinked polybenzimidazole by [2+3] Huisgen cycloaddition for proton exchange membrane[J]. Polymer Testing,2021,103:107353. doi: 10.1016/j.polymertesting.2021.107353
    [18] DANYLIV O, IOJOIU C, LYONNARD S, et al. Highly phase separated aromatic ionomers bearing perfluorosulfonic acids by bottom-up synthesis: Effect of cation on membrane morphology and functional properties[J]. Macromolecules,2016,49(11):4164-4177. doi: 10.1021/acs.macromol.6b00629
    [19] WEI P, HUANG D, LUO C, et al. High-performance sandwich-structure PI/SPEEK+HPW nanofiber composite membrane with balanced proton conductivity and stability[J]. Polymer,2023,271:125800. doi: 10.1016/j.polymer.2023.125800
    [20] CUI W H, LYU Y N, SUN P, et al. SPEEK/CMABPBI ionic and self-covalent cross-linked composite membrane: A method to comprehensively enhance the properties of high-temperature proton exchange membranes[J]. ACS Applied Energy Materials,2020,3(12):12115-12126. doi: 10.1021/acsaem.0c02224
    [21] 程海龙, 徐晶美, 王哲, 等. 侧链型磺化聚芳醚酮/磺化聚乙烯醇复合型直接甲醇燃料电池用质子交换膜[J]. 物理化学学报, 2013, 29(7):1515-1523. doi: 10.3866/PKU.WHXB201304261

    CHENG Hailong, XU Jingmei, WANG Zhe, et al. Sulfonated poly(aryl ether ketone) on side chain/sulfonated poly(vinyl alcohol) composite proton exchange membrane for direct methanol fuel cells[J]. Acta Physico-Chimica Sinica,2013,29(7):1515-1523(in Chinese). doi: 10.3866/PKU.WHXB201304261
    [22] 徐晶美, 程海龙, 任春丽, 等. 用于直接甲醇燃料电池的侧链型磺化聚芳醚酮/聚乙烯醇交联膜的制备与性能研究[J]. 高分子学报, 2013, 44(8):999-1005.

    XU Jingmei, CHENG Hailong, REN Chunli, et al. Preparation and properties of sulfonated poly(aryl ether ketone) bearing pendant sulfonic acid groups/PVA crosslinked composite membranes for direct methanol fuel cells[J]. Acta Polymerica Sinica,2013, 44(8):999-1005(in Chinese).
    [23] XUAN Y N, GAO Y, HUANG Y, et al. Synthesis and characterization of a novel phthalazinone poly(aryl ether sulfone ketone) with carboxyl group[J]. Journal of Applied Polymer Science,2003,88(5):1111-1114. doi: 10.1002/app.12039
    [24] GU S, HE G H, WU X M, et al. Preparation and characteristics of crosslinked sulfonated poly(phthalazinone ether sulfone ketone) with poly(vinyl alcohol) for proton exchange membrane[J]. Journal of Membrane Science,2008,312(1-2):48-58. doi: 10.1016/j.memsci.2007.12.053
    [25] XU J M, MA L, HAN H L, et al. Synthesis and properties of a novel sulfonated poly(arylene ether ketone sulfone) membrane with a high β-value for direct methanol fuel cell applications[J]. Electrochimica Acta,2014,146:688-696. doi: 10.1016/j.electacta.2014.09.071
    [26] LIU D, DONG B, ZHANG H B, et al. High methanol resistant polyelectrolyte membrane based on semi-crystalline poly(ether ketone) with densely sulfonated side chain for direct methanol fuel cell [J]. Journal of Power Sources, 2021, 482: 228982.
    [27] 姜永燚, 杨溟洋, 侯明, 等. 面向氢空、无增湿操作条件的高保水性质子交换膜的制备与性能[J]. 复合材料学报, 2021, 38(11):3884-3895. doi: 10.13801/j.cnki.fhclxb.20210302.001

    JIANG Yongyi, YANG Mingyang, HOU Ming, et al. Preparation and application research of super absorbent polymer membrane for proton exchange membrane fuel cells[J]. Acta Materiae Compositae Sinica,2021,38(11):3884-3895(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210302.001
    [28] ZHANG Y, WAN Y, ZHAO C J, et al. Novel side-chain-type sulfonated poly(arylene ether ketone)with pendant sulfoalkyl groups for direct methanol fuel cells[J]. Polymer,2009,50(19):4471-4478. doi: 10.1016/j.polymer.2009.07.036
    [29] GUO M M, LIU B J, LI L, et al. Preparation of sulfonated poly(ether ether ketone)s containing amino groups/epoxy resin composite membranes and their in situ crosslinking for application in fuel cells [J]. Journal of Power Sources, 2010, 195(1): 11-20.
    [30] CHEN L, REN Y W, FAN F Y, et al. Artificial frameworks towards ion-channel construction in proton exchange membranes[J]. Journal of Power Sources,2023,574:233081. doi: 10.1016/j.jpowsour.2023.233081
    [31] MIYAKE T, ROLANDI M. Grotthuss mechanisms: From proton transport in proton wires to bioprotonic devices[J]. Journal of Physics: Condensed Matter,2016,28(2):023001. doi: 10.1088/0953-8984/28/2/023001
    [32] CHENG H L, XU J M, MA L, et al. Preparation and characterization of sulfonated poly(arylene ether ketone) copolymers with pendant sulfoalkyl groups as proton exchange membranes[J]. Journal of Power Sources,2014,260:307-316. doi: 10.1016/j.jpowsour.2014.03.023
    [33] DUAN Y T, RU C Y, LI J L, et al. Enhancing proton conductivity and methanol resistance of SPAEK membrane by incorporating MOF with flexible alkyl sulfonic acid for DMFC[J]. Journal of Membrane Science,2022,641:119906. doi: 10.1016/j.memsci.2021.119906
    [34] KIM D S, PARK H B, RHIM J W, et al. Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications[J]. Journal of Membrane Science,2004,240(1-2):37-48. doi: 10.1016/j.memsci.2004.04.010
    [35] ZHANG H W, SHEN P K. Recent development of polymer electrolyte membranes for fuel cells[J]. Chemical Reviews,2012,112(5):2780-2832. doi: 10.1021/cr200035s
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  410
  • HTML全文浏览量:  249
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-05
  • 修回日期:  2023-08-04
  • 录用日期:  2023-08-10
  • 网络出版日期:  2023-08-28
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回