留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续玄武岩纤维/环氧树脂复合材料的润湿渗透剂表面改性及其非线性蠕变性能

张颜锋 朱四荣 别依诺 陆士平 贺攀

张颜锋, 朱四荣, 别依诺, 等. 连续玄武岩纤维/环氧树脂复合材料的润湿渗透剂表面改性及其非线性蠕变性能[J]. 复合材料学报, 2024, 41(4): 1798-1808. doi: 10.13801/j.cnki.fhclxb.20230825.002
引用本文: 张颜锋, 朱四荣, 别依诺, 等. 连续玄武岩纤维/环氧树脂复合材料的润湿渗透剂表面改性及其非线性蠕变性能[J]. 复合材料学报, 2024, 41(4): 1798-1808. doi: 10.13801/j.cnki.fhclxb.20230825.002
ZHANG Yanfeng, ZHU Sirong, BIE Yinuo, et al. Study on the surface modification of wetting penetrant and nonlinear creep of continuous basalt fiber/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1798-1808. doi: 10.13801/j.cnki.fhclxb.20230825.002
Citation: ZHANG Yanfeng, ZHU Sirong, BIE Yinuo, et al. Study on the surface modification of wetting penetrant and nonlinear creep of continuous basalt fiber/epoxy resin composites[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1798-1808. doi: 10.13801/j.cnki.fhclxb.20230825.002

连续玄武岩纤维/环氧树脂复合材料的润湿渗透剂表面改性及其非线性蠕变性能

doi: 10.13801/j.cnki.fhclxb.20230825.002
基金项目: 国家自然科学基金(12202325)
详细信息
    通讯作者:

    朱四荣,博士,教授,博士生导师,研究方向为复合材料结构设计及复合材料长期力学性能研究 E-mail: zhusirong@whut.edu.cn

  • 中图分类号: TB332

Study on the surface modification of wetting penetrant and nonlinear creep of continuous basalt fiber/epoxy resin composites

Funds: National Natural Science Foundation of China (12202325)
  • 摘要: 采用润湿渗透剂协同硅烷偶联剂对玄武岩纤维(BF)进行表面改性,并缠绕成型制备了玄武岩纤维/环氧树脂(BF/EP)复合材料。采用万能材料试验机测定了BF/EP的弯曲性能及在不同应力水平下测定了BF/EP复合材料240 min的蠕变性能,借助场发射扫描电子显微镜(FESEM)观察了纤维及弯曲断裂断口的表面形貌,并分析了纤维表面改性对各项力学性能的影响。结果表明:采用润湿渗透剂协同硅烷偶联剂对BF进行表面改性后,BF/EP弯曲性能得到有效改善,层间剪切强度得到提高,FESEM形貌显示BF的协同改性提高了纤维与树脂之间的界面性能;在多种应力水平下的短期蠕变实验中,均表现出蠕变柔量增量的显著降低。使用改进Findley模型可描述BF/EP复合材料在低于其断裂应力水平下的蠕变性能,以此可进行其在不同应力水平下的蠕变性能预测。

     

  • 图  1  壬基酚聚氧乙烯醚的结构

    Figure  1.  Structure diagram of nonylphenol polyoxyethylene ether

    图  2  润湿渗透剂协同硅烷偶联剂上浆剂对玄武岩纤维(BF)改性效果对比示意图

    Figure  2.  Comparison diagram of modification effect of wetting penetrant combined with silane coupling agent sizing agent on basalt fiber (BF)

    图  3  BF表面微观形貌

    Figure  3.  Surface morphology of BF

    KH-560-BF—BF modified by KH-560; WA-KH-560/570-BF—BF modified by wetting agent-KH-560/570

    图  4  BF/环氧树脂(EP)复合材料弯曲断口形貌

    Figure  4.  Morphologies of bending fracture of BF/epoxy resin (EP) composites

    KH-560-BF/EP—BF/EP made of BF modified by KH-560;WA-KH-560/570-BF/EP—BF/EP made of BF modified by wetting agent-KH-560/570

    图  5  BF/EP复合材料层间剪切破坏试样

    Figure  5.  Inter-laminar shear failure samples of BF/EP composites

    图  6  BF/EP复合材料蠕变柔量增量在各应力水平下随时间的变化曲线

    Figure  6.  Curves of creep compliance increment of BF/EP composites at various stress levels vs time

    图  7  BF/EP复合材料拟合曲线h(σ)

    Figure  7.  Fitting curves of BF/EP composites h(σ)

    图  8  BF/EP复合材料蠕变模型与试验结果对比

    Figure  8.  Comparison of creep model and test results of BF/EP composites

    图  9  BF/EP复合材料35%应力水平下预测曲线与试验结果对比

    Figure  9.  Comparison of prediction curve and test results of BF/EP composites at 35% stress level

    表  1  硅烷偶联剂改性法(对照组)的上浆剂成分

    Table  1.   Sizing agent composition of silane coupling agent modified method (control group)

    Type of reagentMass fraction/wt%
    Silane coupling agent (KH-560)0.50
    Glacial acetic acid0.05
    Epoxy emulsion6.00
    Film-forming additive0.30
    下载: 导出CSV

    表  2  润湿渗透剂/硅烷偶联剂协同改性法的上浆剂成分

    Table  2.   Sizing agent composition of wetting penetrant/silane coupling agent synergistic modification method

    Type of reagentMass fraction/wt%
    Silane coupling agent (KH-560)0.30
    Silane coupling agent (KH-570)0.20
    Glacial acetic acid0.08
    Epoxy emulsion6.00
    Film-forming additive0.30
    Wetting agent0.50
    Lubricant0.20
    下载: 导出CSV

    表  3  BF丝束及其浸胶纱的拉伸性能

    Table  3.   Tensile properties of BF tow and its resin-impregnated yarn

    SampleP/(N·tex−1)σt/MPaEt/GPa
    KH-560-BF0.5702722.889.1
    WA-KH-560/570-BF0.6742938.292.0
    Notes: P—Tensile strength of BF bundle; σt—Tensile strength of BF resin-impregnated yarn; Et—Tensile modulus of BF resin-impregnated yarn.
    下载: 导出CSV

    表  4  BF/EP复合材料弯曲性能

    Table  4.   Banding property of BF/EP composites

    Sampleσf /MPaEf /GPa
    KH-560-BF/EP 837.526.6
    WA-KH-560/570-BF/EP1157.032.2
    Notes: σf—Flexural strength; Ef—Flexural modulus.
    下载: 导出CSV

    表  5  BF/EP复合材料层间剪切强度

    Table  5.   Inter-laminar shear strength of BF/EP composites

    Sampleτs/MPa
    KH-560-BF/EP39.0
    WA-KH-560/570-BF/EP49.9
    Note: τs—Interlaminar shear strength.
    下载: 导出CSV

    表  6  不同应力水平下BF/EP复合材料的蠕变柔量增量(240 min)

    Table  6.   Creep compliance increment of BF/EP composites at various stress levels (240 min)

    Stress level Creep compliance increment/(10−12 Pa−1)
    KH-560-BF/EP WA-KH-560/570-BF/EP
    20% 1.882 0.675
    30% 1.842 0.765
    40% 2.375 1.210
    45% 2.420 1.490
    50% 3.140 1.870
    下载: 导出CSV

    表  7  不同应力水平下h(σ)的拟合值

    Table  7.   Fitting values of h(σ) at different stress levels

    Stress level h(σ)
    KH-560-BF/EP WA-KH-560/570-BF/EP
    20% 1 1
    30% 1.01 1.18
    40% 1.28 1.82
    45% 1.32 2.19
    50% 1.69 2.71
    Note: h(σ)—Functions related to stress level.
    下载: 导出CSV

    表  8  BF/EP复合材料不同应力水平的拟合优度R2

    Table  8.   Goodness-of-fit R2 of BF/EP composites at different stress levels

    Stress level R2
    KH-560-BF/EP WA-KH-560/570-BF/EP
    20% 0.998 0.997
    30% 0.994 0.994
    40% 0.999 0.999
    45% 0.997 0.994
    50% 0.999 0.988
    下载: 导出CSV

    表  9  BF/EP复合材料蠕变柔量增量预测值误差(240 min)

    Table  9.   Predicted value error of creep compliance increment in BF/EP composites (240 min)

    SampleJt/(10−13 Pa−1)Jc/(10−13 Pa−1)Deviation/%
    KH-560-BF/EP20.7020.500.90
    WA-KH-560/570-BF/EP 9.53 9.742.18
    Notes: Jt—Experimental value of creep compliance; Jc—Calculated value of creep compliance.
    下载: 导出CSV
  • [1] LIU C B, FAN X Q, ZHU M H. Regulating the grinding performance of grindstones via using basalt fibers[J]. Tribology International,2022,173:107611. doi: 10.1016/j.triboint.2022.107611
    [2] KATOUZIAN M, VLASE S, MARIN M, et al. Modeling study of the creep behavior of carbon-fiber-reinforced composites: A review[J]. Polymers,2023,15(1):194. doi: 10.3390/polym15010194
    [3] 叶国锐, 晏义伍, 曹海琳. 氧化石墨烯改性玄武岩纤维及其增强环氧树脂复合材料性能[J]. 复合材料学报, 2014, 31(6):1402-1408. doi: 10.13801/j.cnki.fhclxb.20141202.001

    YE Guorui, YAN Yiwu, CAO Hailin. Basalt fiber modified with graphene oxide and properties of its reinforced epoxy composites[J]. Acta Materiae Compositae Sinica,2014,31(6):1402-1408(in Chinese). doi: 10.13801/j.cnki.fhclxb.20141202.001
    [4] SAMAREH-MOUSAVI S S, TAHERI-BEHROOZ F. A novel creep-fatigue stiffness degradation model for composite materials[J]. Composite Structures,2020,237:111955. doi: 10.1016/j.compstruct.2020.111955
    [5] 靳婷婷, 申士杰, 李静, 等. 低温等离子处理对玄武岩纤维表面及复合材料性能的影响[J]. 玻璃钢/复合材料, 2015, 6(6):29-35.

    JIN Tingting, SHEN Shijie, LI Jing, et al. Impact on the surface of basalt fiber and composite material properties of low-temperature plasma treatment[J]. Fiber Reinforced Plastics/Composites,2015,6(6):29-35(in Chinese).
    [6] 别依诺, 朱四荣, 贺攀, 等. 纳米SiO2-硅烷协同改性对玄武岩纤维/环氧树脂复合材料力学性能及蠕变性能的影响[J]. 复合材料学报, 2022, 39(8):3723-3732.

    BIE Yinuo, ZHU Sirong, HE Pan, et al. Effect of nano-SiO2 particles-silane synergistic modification on mechanical properties and creep properties of basalt fiber/epoxy composites[J]. Acta Materiae Compositae Sinica,2022,39(8):3723-3732(in Chinese).
    [7] BERARDI V P, PERRELLA M, ARMENTANI E, et al. Experimental investigation and numerical modeling of creep response of glass fiber reinforced polymer composites[J]. Fatigue & Fracture of Engineering Materials & Structures,2021,44(4):1085-1095.
    [8] 王晓东, 云斯宁, 张太宏, 等. 硅烷偶联剂表面改性玄武岩纤维增强复合材料研究进展[J]. 材料导报, 2017, 31(5):77-83.

    WANG Xiaodong, YUN Sining, ZHANG Taihong, et al. Advances in basalt fiber-reinforced composites modified by silane coupling agents[J]. Materials Reports,2017,31(5):77-83(in Chinese).
    [9] 张运华, 姚丽萍, 徐仕进, 等. 表面处理玄武岩纤维增强水泥基复合材料力学性能[J]. 复合材料学报, 2017, 34(5):1159-1166. doi: 10.13801/j.cnki.fhclxb.20170302.003

    ZHANG Yunhua, YAO Liping, XU Shijin, et al. Mechanical properties of cement matrix composites reinforced with surface treated basalt fibers[J]. Acta Materiae Compositae Sinica,2017,34(5):1159-1166(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170302.003
    [10] BEHERA S, GAUTAM R K, MOHAN S. Polylactic acid and polyhydroxybutyrate coating on hemp fiber: Its effect on hemp fiber reinforced epoxy composites performance[J]. Journal of Composite Materials,2022,56(6):929-939. doi: 10.1177/00219983211066991
    [11] ZANKER H, RAJABIPOUR A, HUANG D S, et al. Creep analysis of bamboo composite for structural applications[J]. Polymers,2023,15(3):711. doi: 10.3390/polym15030711
    [12] OĞUZ Z A, ERKLIĞ A. Evaluation of the hydrothermal aging effect on the buckling behavior of hybrid glass/aramid/epoxy composite plates: Comparison of distilled water and seawater[J]. Polymer Composites,2022,43(7):4463-4477. doi: 10.1002/pc.26705
    [13] WANG Z T, LUO H J, ZHANG J, et al. Water-soluble polysiloxane sizing for improved heat resistance of basalt fiber[J]. Materials Chemistry and Physics,2021,272:125024. doi: 10.1016/j.matchemphys.2021.125024
    [14] IBRAHIM N A, EID B M, EL-ZAIRY E M, et al. Development of eco-friendly colored/multifunctionalized cellulose/polyester blended fabrics using plasma preactivation and subsequent coloration/multifunctionalization in single stage[J]. Polymer Bulletin, 2023, 80(11): 12353-12372.
    [15] LI M, XING F, LI T S, et al. Multiscale interfacial enhancement of surface grown carbon nanotubes carbon fiber composites[J]. Polymer Composites, 2023, 44(5): 2766-2777.
    [16] TAMRAKAR S, GANESH R, SOCKALINGAM S, et al. Strain rate-dependent large deformation inelastic behavior of an epoxy resin[J]. Journal of Composite Materials,2020,54(1):71-87. doi: 10.1177/0021998319859054
    [17] 梁娜, 朱四荣, 陈建中. 一种新的聚合物基复合材料应力松弛经验模型[J]. 复合材料学报, 2017, 34(10):2205-2210. doi: 10.13801/j.cnki.fhclxb.20170302.008

    LIANG Na, ZHU Sirong, CHEN Jianzhong. A new empirical model for stress relaxation of polymer matrix[J]. Acta Materiae Compositae Sinica,2017,34(10):2205-2210(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170302.008
    [18] 贾彩霞, 王乾, 任荣, 等. 超高分子量聚乙烯(UHMWPE)纤维表面处理对UHMWPE/环氧树脂复合材料界面性能的影响机制[J]. 复合材料学报, 2020, 37(3): 573-580.

    JIA Caixia, WANG Qian, REN Rong, et al. Influence mechanism of ultra high molecular weight polyethylene (UHMWPE) fiber surface modification on interfacial performance of UHMWPE/epoxy composites[J]. Acta Materiae Compositae Sinica, 2020, 37(3): 573-580(in Chinese).
    [19] 栗越, 张京发, 易顺民, 等. 改性芳纶纤维增强木粉/高密度聚乙烯复合材料的力学性能[J]. 复合材料学报, 2019, 36(3):638-645. doi: 10.13801/j.cnki.fhclxb.20180530.006

    LI Yue, ZHANG Jingfa, YI Shunmin, et al. Mechanical properties of modified aramid fiber reinforced wood flour/high density polyethylene composites[J]. Acta Materiae Compositae Sinica,2019,36(3):638-645(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180530.006
    [20] 黄灵丽, 侯锐钢, 刘育建. 弯曲应力/混酸溶液共同作用对FRP性能的影响[J]. 热固性树脂, 2020, 35(6): 33-37.

    HUANG Lingli, HOU Ruigang, LIU Yujian. Synergetic effects of flexural stress and mixed acid solution on the properties of FRP[J]. Thermosetting Resin, 2020, 35(6): 33-37(in Chinese).
    [21] ZHANG S F, XING T Z, ZHU H B, et al. Experimental identification of statistical correlation between mechanical properties of FRP composite[J]. Materials,2020,13(3):674. doi: 10.3390/ma13030674
    [22] 马燕, 刘秀, 罗利, 等. 双轴拉伸下高聚物的时间-应力等效原理试验研究[J]. 材料导报, 2019, 33(24):4188-4192.

    MA Yan, LIU Xiu, LUO Li, et al. Time-stress superposition principle of polymers under biaxial tension: Experimental study[J]. Materials Reports,2019,33(24):4188-4192(in Chinese).
    [23] KRAUKLIS A E, AKULICHEV A G, GAGANI A I, et al. Time-temperature-plasticization superposition principle: Predicting creep of a plasticized epoxy[J]. Polymers,2019,11(11):1848. doi: 10.3390/polym11111848
    [24] 中国国家标准化管理委员会. 玄武岩纤维无捻粗纱: GB/T 25045—2010[S]. 北京: 中国标准出版社, 2010.

    Standardization Administration of the People's Republic of China. Basalt fiber roving: GB/T 25045—2010[S]. Beijing: China Standards Press, 2010(in Chinese).
    [25] 中国国家标准化管理委员会. 玻璃纤维无捻粗纱浸胶纱试样的制作和拉伸强度的测定: GB/T 20310—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People's Republic of China. Textile glass—Rovings—Manufacture of test specimens and determination of tensile strength of impregnated rovings: GB/T 20310—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [26] 中国国家标准化管理委员会. 纤维增强塑料弯曲性能试验方法: GB/T 1449—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic of China. Fibre-reinforced plastic composites—Determination of flexural properties: GB/T 1449—2005[S]. Beijing: China Standards Press, 2005(in Chinese)
    [27] 中国国家标准化管理委员会. 纤维缠绕增强塑料环形试样力学性能试验方法: GB/T 1458—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Test method for mechanical properties of ring of filament-winding reinforced plastics: GB/T 1458—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [28] The British Standards Institution. GRP tanks and vessels for use above ground—Part 3: Design and workmanship: EN 13121-3—2016[S]. London: BSI Standards Limited, 2016.
    [29] FINDLEY W N, DAVIS F A. Creep and relaxation of nonlinear viscoelastic materials[M]. New York: Courier Corporation, 2013.
    [30] TOMLINS P E, READ B E. Creep and physical ageing of polypropylene: A comparison of models[J]. Polymer,1998,39(2):355-367. doi: 10.1016/S0032-3861(97)00258-9
  • 加载中
图(9) / 表(9)
计量
  • 文章访问数:  398
  • HTML全文浏览量:  190
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-12
  • 修回日期:  2023-08-08
  • 录用日期:  2023-08-14
  • 网络出版日期:  2023-08-28
  • 刊出日期:  2024-04-15

目录

    /

    返回文章
    返回