Preparation of modified hydroxyapatite/mixed acid-oxidized multi-walled carbon nanotubes and applications
-
摘要: 开发高分散性及吸附性能良好的纳米复合材料对水体中重金属离子的去除具有重要的意义。以混酸氧化多壁碳纳米管(AO-MWCNTs)为基体,引入羟基磷灰石(HAP),通过微波/光波组合加热辅助化学沉淀法分步制备氟碳掺杂的羟基磷灰石(FCHAP),并将其负载到AO-MWCNTs上,合成FCH/AO-MWCNTs复合材料。将制备材料在含Mn(II)废水中进行去除效果实验,结果表明,FCH/AO-MWCNTs对Mn(II)的理论最大吸附量为317.5 mg/g,高于AO-MWCNTs及各制备中间体。结合材料的SEM-EDS、FTIR、XPS、Zeta、BET等表征结果推测,新材料FCH/AO-MWCNTs形成更丰富的孔隙结构及吸附位点,且其分散性及稳定性能表现优异,同时新材料在去除其他重金属及再生利用方面也具有一定的应用前景。Abstract: The development of nanocomposites with high dispersion and good adsorption properties is important for the removal of heavy metal ions from water bodies. Fluorine/carbon-doped hydroxyapatite (FCHAP) was prepared stepwise by microwave/light-wave combined heating assisted chemical precipitation using mixed-acid oxidized multi-walled carbon nanotubes (AO-MWCNTs) as the matrix and hydroxyapatite (HAP) was introduced and loaded onto AO-MWCNTs to synthesize FCH/AO-MWCNTs composites. The results show that the theoretical maximum adsorption capacity of FCH/AO-MWCNTs for Mn(II) is 317.5 mg/g, which is higher than that of AO-MWCNTs and each preparation intermediate. Combined with the characterization results of SEM-EDS, FTIR, XPS, Zeta, and BET, it is speculated that the new material FCH/AO-MWCNTs form more abundant pore structure and adsorption sites, and their dispersion and stability performance are excellent, and at the same time, the new material has broad application prospects in the removal of other heavy metals and recycling.
-
图 11 FCH/AO-MWCNTs吸附Mn(II)的热力学模型拟合结果
Ce—Concentration of adsorbent at adsorption equilibrium; qe—Equilibrium adsorption capacity; Kd—Equilibrium constant; R2—Correlation coefficient of model fit; T—Temperature
Figure 11. Thermodynamic model fitting results for the adsorption of Mn(II) by FCH/AO-MWCNTs
表 1 羟基磷灰石(HAP)的合成方法及名称
Table 1. Synthesis methods and names of hydroxyapatite (HAP)
Name HAP synthesis method HAP-1 Microwave/light-wave combined heating HAP-2 Microwave HAP-3 Heating HAP-4 Traditional chemical precipitation HAP-5 Ultrasouic 表 2 不同质量比AO-MWCNTs制备的FCH/AO-MWCNTs对Mn(II)的吸附率
Table 2. Adsorption rates of Mn(II) on FCH/AO-MWCNTs prepared with different mass ratios of AO-MWCNTs
AO-MWCNTs/wt% Mn(II) adsorption rate/% 0 95.3778 0.25 94.9556 0.5 96.7556 1 95.7333 2 95.6676 5 94.0667 Note: Initial concentration of Mn(II) is 30 mg/L. 表 3 HAP、FCHAP和FCH/AO-MWCNTs的比表面积、孔容及孔径
Table 3. BET surface area, pore volume and pore size of HAP, FCHAP and FCH/AO-MWCNTs
Material Surface area/
(m2·g−1)Pore volume/
(cm3·g−1)Pore size/
nmHAP 101.20 0.6179 24.4186 FCHAP 54.44 0.3841 28.2206 FCH/AO-MWCNTs 57.33 0.2445 17.0544 表 4 FCH/AO-MWCNTs吸附Mn(II)的准一级和准二级动力学模型参数
Table 4. Pseudo-first-order and pseudo-second-order kinetic parameters for the adsorption of Mn(II) by FCH/AO-MWCNTs
Model Parameter FCH/AO-MWCNTs Pseudo first-order model qe.cal/(mg·g−1) 3.75 k1/min−1 0.0138 R2 0.9309 Pseudo second-order model qe.cal/(mg·g−1) 29.8 k2/(min−1) 0.0041 R2 0.9989 qe.exp/(mg·g−1) 29.40 Notes: qe.cal—Calculated equilibrium adsorption capacity; k1—Adsorption rate constant of the Pseudo first-order kinetic equation; R2—Correlation coefficient of model fit; k2—Adsorption rate constant of the Pseudo second-order kinetic equation; qe.exp—Experimental equilibrium adsorption capacity. 表 5 FCH/AO-MWCNTs吸附Mn(II)的热力学模型参数
Table 5. Thermodynamic model parameters for the adsorption of Mn(II) by FCH/AO-MWCNTs
T/K $ {{\Delta }{S}} $/
(J·K−1·mol−1)$ {{\Delta }{H}} $/
(kJ·mol−1)$ {{\Delta }{G}} $/
(kJ·mol−1)R2 293 34.85 −7.989 −1.821 0.9930 303 −1.856 0.9981 313 −1.891 0.9987 323 −1.923 0.9930 Notes: ΔS—Entropy change under standard conditions; ΔH—Standard enthalpy change under standard conditions; ΔG—Gibbs free energy change under standard conditions at different temperatures. 表 6 FCH/AO-MWCNTs吸附Mn(II)的等温吸附模型参数
Table 6. Isothermal adsorption model parameters for Mn(II) adsorption by FCH/AO-MWCNTs
Model Parameter FCH/AO-MWCNTs Langmuir
isothermqmax1/(mg·g−1) 317.5 KL/(L·mg−1) 0.292 R2 0.9977 Freundlich
isothermKF/(mg·g−1·(L·mg−1)1/n) 72.53 1/n 0.541 R2 0.9553 Dubinin-
Radushkevichqmax2/(mol·g−1) 466.1 K/(mol2·kJ−2) 0.00084 E/(kJ·mol−1) 24.37 R2 0.9964 Notes: qmax1—Maximum adsorption capacity calculated by Langmuir isotherm model; KL—Langmuir constant; KF—Freundlich constant; 1/n—Ion exchange strength constant; qmax2—Maximum adsorption capacity calculated by Dubinin-Radushkevich isotherm model; K—Dubinin-Radushkevich constant; E—Average free energy of adsorption. 表 7 材料的理论最大Mn(II)吸附量计算结果
Table 7. Calculation of the theoretical maximum Mn(II) adsorption amount of the material
Materials KL/
(L·mg−1)R2 qmax/
(mg·g−1)Surface area/
(m2·g−1)Number of adsorbed metal atoms
per unit surface area/(atoms·nm−2)MWCNTs 0.249 0.9887 0.58 91.45 0.069 AO-MWCNTs 1.192 0.9995 5.77 91.44 0.690 HAP 0.063 0.9954 36.34 101.20 3.940 FCHAP 0.179 0.9800 273.97 54.44 55.140 FCH/AO-MWCNTs 0.292 0.9977 317.50 57.33 60.680 Notes: The adsorption data of MWCNTs and AO-MWCNTs materials were obtained from the literature [28]; qmax—Maximum adsorption capacity calculated by Langmuir isotherm model. -
[1] 覃德亮, 陈南雄. 2020年全球锰矿及我国锰产品生产简述[J]. 中国锰业, 2021, 39(4):10-12, 21. doi: 10.14101/j.cnki.issn.1002-4336.2021.04.003QIN Deliang, CHEN Nanxiong. 2020 global manganese ore and the production brief in China's manganese products[J]. China Manganese Industry,2021,39(4):10-12, 21(in Chinese). doi: 10.14101/j.cnki.issn.1002-4336.2021.04.003 [2] 任辉, 吴昊, 王自国, 等. 依托国内超大型锰矿构建我国自主可控的锰矿产业供应链[J]. 中国煤炭地质, 2021, 33(11):1-3, 18. doi: 10.3969/j.issn.1674-1803.2021.11.01REN Hui, WU Hao, WANG Ziguo, et al. Country's autonomousand controllable manganese industry supply chain building rely on domestic superhuge manganese ore[J]. Coal Geology of China,2021,33(11):1-3, 18(in Chinese). doi: 10.3969/j.issn.1674-1803.2021.11.01 [3] 张钱荣, 何兆钦, 邓蓉. 浅谈云南斗南锰矿地质特征及经济意义[J]. 世界有色金属, 2017(15):120-121.ZHANG Qianrong, HE Zhaoqin, DENG Rong. The geological characteristics and economic significance on Yunnan Dounan Manganese Mine[J]. World Nonferrous Metals,2017(15):120-121(in Chinese). [4] 程湘, 胡鹏, 张海坤, 等. 锰矿主要类型、分布特点及开发现状[J]. 中国地质, 2021, 48(1):102-119. doi: 10.12029/gc20210107CHENG Xiang, HU Peng, ZHANG Haikun, et al. The main types, distribution and current development of manganese ore deposits[J]. Geology in China,2021,48(1):102-119(in Chinese). doi: 10.12029/gc20210107 [5] YU Q, LI S, LI H, et al. Synthesis and characterization of Mn-slag based geopolymer for immobilization of Co[J]. Journal of Cleaner Production,2019,234:97-104. doi: 10.1016/j.jclepro.2019.06.149 [6] ZHANG R, MA X, SHEN X, et al. Life cycle assessment of electrolytic manganese metal production[J]. Journal of Cleaner Production,2020,253(C):119951. [7] 吕晓立, 刘景涛, 周冰, 等. 新疆塔城盆地地下水中铁锰分布特征及人类活动的影响[J]. 中国地质, 2020, 47(6):1765-1775. doi: 10.12029/gc20200613LYU Xiaoli, LIU Jingtao, ZHOU Bing, et al. Fe and Mn distribution of groundwater in the Tacheng Basin, Xinjiang and its impact of human activities[J]. Geology in China,2020,47(6):1765-1775(in Chinese). doi: 10.12029/gc20200613 [8] 沈良辰, 胡文勇, 张丽娟, 等. 典型废弃锰矿厂渣库土壤重金属污染特征与评价[J]. 有色金属工程, 2022, 12(8):187-197.SHEN Liangchen, HU Wenyong, ZHANG Lijuan, et al. Characteristics and evaluation of heavy metal contamination in soil of typical waste dumping area[J]. Nonferrous Metals Engineering,2022,12(8):187-197(in Chinese). [9] NKELE K, MPENYANA-MONYATSI L, MASINDI V. Challenges, advances and sustainabilities on the removal and recovery of manganese from wastewater: A review[J]. Journal of Cleaner Production,2022,377:134152. doi: 10.1016/j.jclepro.2022.134152 [10] DEY S, TRIPATHY B, KUMAR M S, et al. Ecotoxicological consequences of manganese mining pollutants and their biological remediation[J]. Environmental Chemistry and Ecotoxicology,2023,5:55-61. doi: 10.1016/j.enceco.2023.01.001 [11] SANTHOSH C, VELMURUGAN V, JACOB G, et al. Role of nanomaterials in water treatment applications: A review[J]. Chemical Engineering Journal,2016,306:1116-1137. doi: 10.1016/j.cej.2016.08.053 [12] 申惠娟, 韩太坤, 邓锂强, 等. 碳纳米管对环境污染物的吸附机理的研究进展[J]. 化工技术与开发, 2022, 51(6):73-78. doi: 10.3969/j.issn.1671-9905.2022.06.016SHEN Huijuan, HAN Taikun, DENG Liqiang, et al. Research progress on adsorption mechanism of carbon nanotubes in environmental governance[J]. Technology & Development of Chemical Industry,2022,51(6):73-78(in Chinese). doi: 10.3969/j.issn.1671-9905.2022.06.016 [13] IHSANULLAH, ABBAS A, AL-AMER A M, et al. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications[J]. Separation and Purification Technology,2016,157:141-161. doi: 10.1016/j.seppur.2015.11.039 [14] REN X, CHEN C, NAGATSU M, et al. Carbon nanotubes as adsorbents in environmental pollution management: A review[J]. Chemical Engineering Journal,2010,170(2):395-410. [15] GANZOURY M A, CHIDIAC C, KURTZ J, et al. CNT-sorbents for heavy metals: Electrochemical regeneration and closed-loop recycling[J]. Journal of Hazardous Materials,2020,393:122432. doi: 10.1016/j.jhazmat.2020.122432 [16] MISHRA S, SUNDARAM B. Efficacy and challenges of carbon nanotube in wastewater and water treatment[J]. Environmental Nanotechnology, Monitoring & Management,2023,19:100764. [17] MUHAMMADAHSON A M, HSIONWEN K, WALTER D, et al. Functionalized carbon nanotubes (CNTs) for water and wastewater treatment: Preparation to application[J]. Sustainability,2021,13(10):5717-5771. doi: 10.3390/su13105717 [18] 侯嫔, 杨晓瑜, 霍燕龙, 等. 超声氧化多壁碳纳米管对水中Ni(II)的吸附效能[J]. 环境工程学报, 2021, 15(7):2256-2264.HOU Pin, YANG Xiaoyu, HUO Yanlong, et al. Adsorption efficiency of Ni(II) in water by ultrasonically oxidized multi-walled carbon nanotubes[J]. Chinese Journal of Environmental Engineering,2021,15(7):2256-2264(in Chinese). [19] RODRÍGUEZ C, LEIVA E. Enhanced heavy metal removal from acid mine drainage wastewater using double-oxidized multiwalled carbon nanotubes[J]. Molecules,2019,25(1):111-133. doi: 10.3390/molecules25010111 [20] SHAHRYARI T, SINGH P, RAIZADA P, et al. Adsorption properties of Danthron-impregnated carbon nanotubes and their usage for solid phase extraction of heavy metal ions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,641:128528. doi: 10.1016/j.colsurfa.2022.128528 [21] 刘莹, 杨瑞, 刘井来, 等. 单相、双相及多相离子掺杂的羟基磷灰石研究进展[J]. 表面技术, 2022, 51(10):143-154.LIU Ying, YANG Rui, LIU Jinglai, et al. Hydroxyapatite nanomaterials doped with single-phase, dual-phase and multiphase ions[J]. Surface Technology,2022,51(10):143-154(in Chinese). [22] 殷海荣, 杨明珍. 碳羟基磷灰石的吸附性能研究[J]. 材料导报, 2010, 24(15):73-76.YIN Hairong, YANG Mingzhen. Studies on the adsorption property of carbonated hydroxyapatite[J]. Materials Reports,2010,24(15):73-76(in Chinese). [23] NORTON J, MALIK K R, DARR J A, et al. Recent developments in processing and surface modification of hydroxyapatite[J]. Advances in Applied Ceramics,2006,105(3):113-139. doi: 10.1179/174367606X102278 [24] 任卫, 曹献英, 冯凌云, 等. 纳米羟基磷灰石合成及表面改性的途径和方法[J]. 硅酸盐通报, 2002(1):38-43. doi: 10.3969/j.issn.1001-1625.2002.01.009REN Wei, CAO Xianying, FENG Lingyun, et al. Methods of synthetic nanometer hydroxyapatite and modification of its surface[J]. Bulletin of the Chinese Ceramic Society,2002(1):38-43(in Chinese). doi: 10.3969/j.issn.1001-1625.2002.01.009 [25] LIU Z, CHEN L, ZHANG Z, et al. Synthesis of multi-walled carbon nanotube-hydroxyapatite composites and its application in the sorption of Co(II) from aqueous solutions[J]. Journal of Molecular Liquids,2013,179:46-53. doi: 10.1016/j.molliq.2012.12.011 [26] LI G, ZHANG J, LI Y, et al. Adsorption characteristics of Pb(II), Cd(II) and Cu(II) on carbon nanotube-hydroxyapatite[J]. Environmental Technology,2021,42(10):1560-1581. doi: 10.1080/09593330.2019.1674385 [27] OJOK W P, BOLENDER J, WASSWA J, et al. Facile synthesis and characterization of multi-walled carbon nanotubes decorated with hydroxyapatite from cattle horns for adsorptive removal of fluoride[J]. Heliyon,2023,9(3):e14341. doi: 10.1016/j.heliyon.2023.e14341 [28] ZHOU Y, HE Y, WANG R, et al. Modification of multiwalled carbon nanotubes and their mechanism of demanganization[J]. Molecules, 2023, 28(4): 1870. [29] MOHD YUSOFF M F, ABU KASIM N H, HIMRATUL-AZNITA W H, et al. Physicochemical, antibacterial and biocompatibility assessments of silver incorporated nano-hydroxyapatite synthesized using a novel microwave-assisted wet precipitation technique[J]. Materials Characterization,2021,178:111169. doi: 10.1016/j.matchar.2021.111169 [30] 苏可心. 掺镁羟基磷灰石-腐植酸复合吸附剂的制备及其吸附性能研究[D]. 兰州: 兰州交通大学, 2022.SU Kexin. Preparation and adsorption properties of magnesium-mixed hydroxyapatite-humic acid composite adsorbent[D]. Lanzhou: Lanzhou Jiaotong University, 2022(in Chinese). [31] BRASIL H, BITTENCOURT A F B, YOKOO K C E S, et al. Synthesis modification of hydroxyapatite surface for ethanol conversion: The role of the acidic/basic sites ratio[J]. Journal of Catalysis,2021,404:802-813. doi: 10.1016/j.jcat.2021.08.050 [32] AMRUTHALURU S, MAMIDI S K, HARILAL M, et al. Synthesis of carbonate and fluorine substituted nanocrystalline hydroxyapatite by mechanochemical method[J]. Key Engineering Materials,2020,833:204-208. doi: 10.4028/www.scientific.net/KEM.833.204 [33] 李建欣, 宋党育, 张军营, 等. X射线衍射数据分析系统评价[J]. 岩矿测试, 2008(3):189-192, 196. doi: 10.15898/j.cnki.11-2131/td.2008.03.003LI Jianxin, SONG Dangyu, ZHANG Junying, et al. Evaluation of the X-ray diffraction data analysis system[J]. Rock and Mineral Analysis,2008(3):189-192, 196(in Chinese). doi: 10.15898/j.cnki.11-2131/td.2008.03.003 [34] MCCAFFERTY E. Relationship between the isoelectric point (pHpzc) and the potential of zero charge (Epzc) for passive metals[J]. Electrochimica Acta,2010,55(5):1630-1637. doi: 10.1016/j.electacta.2009.10.040 [35] GOLOSHCHAPOV D L, KASHKAROV V M, RUMYANTSEVA N A, et al. Synthesis of nanocrystalline hydroxyapatite by precipitation using hen's eggshell[J]. Ceramics International,2013,39(4):4539-4549. doi: 10.1016/j.ceramint.2012.11.050 [36] HUA Y, XU D, LIU Z, et al. Effective adsorption and removal of malachite green and Pb2+ from aqueous samples and fruit juices by pollen-inspired magnetic hydroxyapatite nanoparticles/hydrogel beads[J]. Journal of Cleaner Production,2023,411:137233. doi: 10.1016/j.jclepro.2023.137233 [37] 张益硕, 周仲魁, 李龙祥, 等. 羟基磷灰石改性膨润土对铀的吸附效果及其机制[J]. 复合材料学报, 2023, 40(12): 6740-6755.ZHANG Yishuo, ZHOU Zhongkui, LI Longxiang, et al. Study on adsorption effect and mechanism of uranium by hydroxyapatite modified bentonite[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6740-6755(in Chinese). [38] DENG H, LI Q, HUANG M, et al. Removal of Zn(II), Mn(II) and Cu(II) by adsorption onto banana stalk biochar: Adsorption process and mechanisms[J]. Water Science and Technology,2020,82(12):2962-2974. doi: 10.2166/wst.2020.543 [39] RAKHTSHAH J, SHIRKHANLOO H, DEHGHANI MOBARAKE M. Simultaneously speciation and determination of manganese (II) and (VII) ions in water, food, and vegetable samples based on immobilization of N-acetylcysteine on multi-walled carbon nanotubes[J]. Food Chemistry,2022,389:133124. doi: 10.1016/j.foodchem.2022.133124 [40] KADY M E, SHOKRY H, HAMAD H. Effect of superparamagnetic nanoparticles on the physicochemical properties of nano hydroxyapatite for groundwater treatment: Adsorption mechanism of Fe(II) and Mn(II)[J]. RSC Advances,2016,6(85):82244-82259. doi: 10.1039/C6RA14497G [41] HE Y, DIETRICH A M, JIN Q, et al. Cellulose adsorbent produced from the processing waste of brewer’s spent grain for efficient removal of Mn and Pb from contaminated water[J]. Food and Bioproducts Processing,2022,135:227-237. doi: 10.1016/j.fbp.2022.08.005