Loading [MathJax]/jax/output/SVG/jax.js

改性羟基磷灰石/混酸氧化多壁碳纳米管的制备及应用

何迎迎, 王瑞雪, 周渊, 樊林奎, 窦妍

何迎迎, 王瑞雪, 周渊, 等. 改性羟基磷灰石/混酸氧化多壁碳纳米管的制备及应用[J]. 复合材料学报, 2024, 41(2): 735-747. DOI: 10.13801/j.cnki.fhclxb.20230825.001
引用本文: 何迎迎, 王瑞雪, 周渊, 等. 改性羟基磷灰石/混酸氧化多壁碳纳米管的制备及应用[J]. 复合材料学报, 2024, 41(2): 735-747. DOI: 10.13801/j.cnki.fhclxb.20230825.001
HE Yingying, WANG Ruixue, ZHOU Yuan, et al. Preparation of modified hydroxyapatite/mixed acid-oxidized multi-walled carbon nanotubes and applications[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 735-747. DOI: 10.13801/j.cnki.fhclxb.20230825.001
Citation: HE Yingying, WANG Ruixue, ZHOU Yuan, et al. Preparation of modified hydroxyapatite/mixed acid-oxidized multi-walled carbon nanotubes and applications[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 735-747. DOI: 10.13801/j.cnki.fhclxb.20230825.001

改性羟基磷灰石/混酸氧化多壁碳纳米管的制备及应用

基金项目: 陕西省自然科学基金(2021SF-443)
详细信息
    通讯作者:

    窦妍,博士,副教授,硕士生导师,研究方向为水环境污染与治理 E-mail:douyan@chd.edu.cn

  • 中图分类号: X523;TB332

Preparation of modified hydroxyapatite/mixed acid-oxidized multi-walled carbon nanotubes and applications

Funds: Natural Science Foundation of Shaanxi Province (2021SF-443)
  • 摘要: 开发高分散性及吸附性能良好的纳米复合材料对水体中重金属离子的去除具有重要的意义。以混酸氧化多壁碳纳米管(AO-MWCNTs)为基体,引入羟基磷灰石(HAP),通过微波/光波组合加热辅助化学沉淀法分步制备氟碳掺杂的羟基磷灰石(FCHAP),并将其负载到AO-MWCNTs上,合成FCH/AO-MWCNTs复合材料。将制备材料在含Mn(II)废水中进行去除效果实验,结果表明,FCH/AO-MWCNTs对Mn(II)的理论最大吸附量为317.5 mg/g,高于AO-MWCNTs及各制备中间体。结合材料的SEM-EDS、FTIR、XPS、Zeta、BET等表征结果推测,新材料FCH/AO-MWCNTs形成更丰富的孔隙结构及吸附位点,且其分散性及稳定性能表现优异,同时新材料在去除其他重金属及再生利用方面也具有一定的应用前景。

     

    Abstract: The development of nanocomposites with high dispersion and good adsorption properties is important for the removal of heavy metal ions from water bodies. Fluorine/carbon-doped hydroxyapatite (FCHAP) was prepared stepwise by microwave/light-wave combined heating assisted chemical precipitation using mixed-acid oxidized multi-walled carbon nanotubes (AO-MWCNTs) as the matrix and hydroxyapatite (HAP) was introduced and loaded onto AO-MWCNTs to synthesize FCH/AO-MWCNTs composites. The results show that the theoretical maximum adsorption capacity of FCH/AO-MWCNTs for Mn(II) is 317.5 mg/g, which is higher than that of AO-MWCNTs and each preparation intermediate. Combined with the characterization results of SEM-EDS, FTIR, XPS, Zeta, and BET, it is speculated that the new material FCH/AO-MWCNTs form more abundant pore structure and adsorption sites, and their dispersion and stability performance are excellent, and at the same time, the new material has broad application prospects in the removal of other heavy metals and recycling.

     

  • 随着我国桥梁建设的快速发展,交通量的增加,桥梁结构遭遇火灾情况也时有发生[1-4],2007年10月广东广深高速虎门大桥,油罐车爆炸引发大火,拉索和桥墩都被大火湮灭;2014年,湖南郴州在建赤石特大桥在主跨合拢前6号桥墩左幅塔顶突发大火,事故导致6号桥墩左幅9根斜拉索断裂,这些火灾事故对缆索的受力性能构成了极大的考验。文献[5-8]对钢丝缆索的高温力学性能进行研究,在火灾高温下钢丝力学性能会明显下降,导致缆索的承载能力急剧下降。

    采用轻质、高强、耐腐蚀、抗疲劳的碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)用于桥梁缆索,可提高桥梁跨径,从根本上解决钢质拉索的腐蚀及疲劳问题。但CFRP索内的CFRP筋遇到火灾后环氧树脂会燃烧分解,影响其极限承载性能,对桥梁结构的安全造成影响。文献[9-12]通过试验研究发现,高温下CFRP筋的力学性能下降十分明显。付成龙等[11]研究了温度对CFRP筋弯曲强度和压缩强度的影响,研究显示温度对试样弯曲强度和压缩强度的影响较大,CFRP筋的强度保留率随温度升高而降低。方志等[12]对较高玻璃化转变温度Tg(Tg >200℃)的CFRP筋高温后力学性能进行研究,处理温度为100℃时,筋材静力性能与常温试件相比未发生明显变化,筋材经历200℃和300℃温升作用后,其抗拉强度、弹性模量和极限拉应变均有所下降。

    文献[13-15]对桥梁缆索的阻燃防火措施做了一些研究。李艳等[13]在索体外表面设置一种导热系数很低的耐高温防火涂层,从而降低火源热辐射传给索体的温度。张凯等[14]研究了带砂浆包覆层CFRP筋的高温力学性能,在砂浆包覆层保持完好未爆裂的情况下,包覆层为CFRP筋提供了较好的隔氧环境,CFRP筋在长时间高温作用后具有较高的残余强度。徐玉林等[15]对外包陶瓷纤维防火层的CFRP索的耐火性进行了火灾试验研究,对CFRP 缆索外包陶瓷纤维防火层可大幅提高缆索的临界安全耐火时长。

    综上所述,目前已有一些缆索的阻燃防火措施,如外包砂浆或陶瓷纤维防火层,但这些措施会大幅度增大索体直径,严重影响索体外表面的空气动力学特性。本文针对桥梁缆索用CFRP筋在高温下的力学性能及CFRP索的阻燃防火措施进行系统研究,研制开发具有阻燃防火特性的CFRP索,避免火灾带来的风险,保障应用安全,有助于CFRP索的推广应用。

    CFRP筋采用拉挤成型工艺制备,为了便于锚固,筋材表面带有螺旋肋,筋材底径7 mm,纤维体积分数为72vol%,密度为1.52 g/cm3,玻璃化转变温度Tg为120℃。

    图1为CFRP筋高温拉伸试验。可见,筋材两端采用粘结型锚固方式,筋材锚固后穿过试验台架,在筋材中间自由段部位外套金属铝筒,金属铝筒外缠绕加热带对筒内空气进行加热,采用热电偶监测空气温度,采用温度继电器控制温度,使金属铝筒内温度保持设定温度,采用千斤顶加载,加载速度不超过300 MPa/min。筋材拉伸强度为筋材破断时压力传感器载荷读数除以筋材承载面积。

    图  1  碳纤维增强树脂复合材料(CFRP)筋高温拉伸试验
    Figure  1.  High temperature tensile test of carbon fiber reinforced polymer (CFRP) tendon

    对筋材中间自由段部位进行加热,加热至指定温度,保温2 h后进行破断拉伸试验,获得筋材在高温下的拉伸强度。

    图2为不同温度下保温 2 h后的CFRP筋材抗拉强度。可以看出,随着试验温度的升高,筋材拉伸强度呈线性下降趋势,270℃加热2 h,筋材强度降为2000 MPa左右,210℃加热2 h,筋材强度最低为2245.8 MPa,比初始强度下降26.13%。图3为保温2 h后筋材高温拉伸破断照片。可以看出,筋材发生了散丝状断裂。

    图  2  不同温度下保温 2 h后的CFRP筋材抗拉强度
    Figure  2.  Tensile strength of CFRP tendons at different temperatures with heat preservation 2 h
    图  3  CFRP筋材高温拉伸破断状态
    Figure  3.  Tensile fracture state of CFRP tendons at high temperature

    对筋材中间自由段部位进行加热,加热至210℃,分别保温1、2、3 h后进行破断拉伸试验,获得筋材在高温下的拉伸强度。图4为210℃不同保温时间下的CFRP筋材抗拉强度。

    图  4  210℃不同保温时间下的CFRP筋材抗拉强度
    Figure  4.  Tensile strength of CFRP tendons with different holding time at 210℃

    可以看出,筋材高温拉伸强度仅与试验温度有关,当筋材芯部温度达到保温温度时,筋材的高温拉伸强度与保温时间无关,210℃的高温3 h内,筋材剩余拉伸强度均能达到2245.8 MPa以上。

    对筋材中间自由段部位进行加热,加热至指定温度,保温2 h,待筋材充分冷却至室温后进行破断拉伸试验,获得筋材经历高温冷却后的拉伸强度,如图5所示。可以看出,筋材高温加热冷却后继续进行拉伸试验,拉伸强度会存在一定的可逆性恢复,且恢复后的剩余强度均能达到2800 MPa以上,但最终剩余拉伸强度较原始强度呈略微下降趋势,且加热温度越高,剩余拉伸强度越低,最大下降幅度为6.13%。

    图  5  经历不同温度加热2 h冷却后CFRP筋材抗拉强度
    Figure  5.  Tensile strength of CFRP tendons after heating at different temperatures for 2 h and cooling

    分别采用石棉布、陶瓷纤维布及阻燃防火涂层材料来研究对CFRP筋/索的阻燃防火效果。

    对在持荷状态下的7 mm直径CFRP筋试验件中间部位用火焰温度1000℃的高温火焰枪进行灼烧,如图6所示,其中图6(a)中筋材无保护,图6(b)中筋材包裹陶瓷纤维布,观测不同时间筋材的受力状态及筋材表面的温度变化,灼烧2 h后,进行破断拉伸试验,获得剩余强度。

    表1为不同防护措施下筋材温度及持荷性能。可以看出,在无任何防护条件下,对拉伸应力水平1170 MPa条件下的CFRP筋用火焰温度1000℃的高温火焰枪进行灼烧,25 min后,筋材灼烧部位树脂热解,筋材断裂;采用45 mm厚度陶瓷纤维布与石棉包裹筋材,施加1170 MPa拉伸应力,经过1000℃火焰灼烧2 h,筋材表面温度最高分别为562℃与635℃,筋材高温部位树脂发生热解,没有发生断裂(图7),剩余强度分别为1646 MPa与1249 MPa,图8为其破断试样;采用60 mm厚度石棉包裹筋材,施加1170 MPa拉伸应力,经过1000℃火焰灼烧2 h,筋材表面温度最高为170℃,筋材完好,没有发生断裂,剩余强度为3121 MPa,筋材基本没有发生损伤。

    图  6  持荷条件下CFRP筋阻燃防火措施对比
    Figure  6.  Comparison on fire retardant measures of CFRP tendons under load conditions
    表  1  不同防护类型下CFRP筋材温度及持荷性能
    Table  1.  Temperature and load carrying capacity of CFRP tendons under different protection types
    Protection
    type
    Protection thickness/mmBurning time/minCFRP tendons temperature/℃Stress level/MPaTest resultResident strength/MPa
    2510001170Resin pyrolysis,
    tendon tensile fracture
    Ceramic fiber cloth451205621170Resin pyrolysis,
    tendon is not fracture
    1646
    Asbestos451206351170Resin pyrolysis,
    tendon is not fracture
    1249
    Asbestos601201701170The tendon is not damaged3121
    下载: 导出CSV 
    | 显示表格
    图  7  CFRP筋材高温下树脂热解(562℃,2 h)
    Figure  7.  Resin pyrolysis of tendons at high temperature (562℃, 2 h)
    图  8  树脂热解后CFRP筋材极限拉伸破断
    Figure  8.  Ultimate tensile fracture of CFRP tendons after resin pyrolysis

    以上试验研究可以看出,包裹60 mm厚的石棉可以起到很好的阻燃防火效果,但是过厚的石棉必然影响索体直径,给CFRP索的盘卷带来困难,同时会改变索体表面原有的空气动力学特性,不方便应用。

    选用一种阻燃防火涂层,刷在CFRP索股索体双层聚乙烯(PE)护套外表面,其中索股直径61 mm,PE护套厚度6 mm,阻燃防火涂层厚度2 mm,如图9所示。所用阻燃防火涂料层由基料丙烯酸乳液、膨胀催化剂聚磷酸铵、碳化剂季戊四醇、膨胀发泡剂三聚氰胺与氯化石蜡、颜料钛白粉、成膜助剂醇酯等组成。

    图  9  刷有阻燃防火涂层的CFRP索股
    Figure  9.  CFRP cable strand coated with fire retardant coating

    在PE表面刷有2 mm阻燃防火涂层,并在索体PE内表面预埋测温线,用火焰温度1000℃的高温火焰枪对索股局部进行长达2 h的高温灼烧试验(图10),阻燃防火涂料层发生膨胀并形成均匀而致密蜂窝状碳化层,保护双层PE护套不发生燃烧,使得缆索具有阻燃防火特性,PE护套仅发生软化。无阻燃防火涂层保护的索体5 min内PE护套燃烧殆尽,漏出索体(图11)。图12为2 mm阻燃防火涂层温度-时间曲线。可以看出,2 h灼烧索股PE内表面最高温度为206℃。

    图  10  阻燃防火涂层遇火焰发泡
    Figure  10.  Fire retardant coating foams when expose to fire
    图  11  无阻燃防火涂层聚乙烯(PE)燃烧
    Figure  11.  Combustion of polyethylene (PE) sheath without fire retardant coating
    图  12  2 mm厚阻燃防火涂层温度-时间曲线
    Figure  12.  Temperature-time curve of 2 mm thickness fire retardant coating

    为探究发生火灾时CFRP索股内部PE内筋材温度,将测温线置于不同位置处测量灼烧试验时各位置的温度(图13),分别为索股PE内表面、距离PE内表面7 mm、距离PE内表面14 mm。图14为灼烧2 h索股内部不同位置处温度-时间曲线。可以看出,紧贴PE内表面的温度最高,为206℃,其次是测温线与PE内表层间隔7 mm处的温度(次外层筋材),为156℃,温度最低的是与PE内表层距离14 mm处的温度(第三层筋材),为100℃。

    图  13  CFRP索股测温位置
    Figure  13.  Temperature measurement position of CFRP cable strand
    图  14  CFRP索股不同位置处温度-时间曲线
    Figure  14.  Temperature-time curves at different positions of CFRP cable strand

    针对阻燃防火涂层的不同厚度,试验研究在1000℃火焰灼烧下阻燃防火效果的持续性,索股规格同2.2节。图15为不同厚度阻燃防火涂层温度-时间曲线。可知无阻燃防火涂层防护,索股PE层5 min燃烧殆尽;0.3 mm厚度阻燃防火涂层可保护索股PE层20 min;1.4 mm厚度阻燃防火涂层可保护索股PE层160 min;刷有2 mm厚度阻燃防火涂层的索股在长达360 min的火焰灼烧下,PE内表面最高温度为245℃,PE层未发生破坏,仅发生软化,建议阻燃防火涂层厚度为2 mm。

    图  15  不同厚度阻燃防火涂层的温度-时间曲线
    Figure  15.  Temperature-time curves of fire retardant coating with different thickness

    图16为2 mm厚度阻燃防火涂层的索股燃烧360 min试验过程的发泡过程。可以看出,随着火焰灼烧时间的增长,发泡层高度逐渐增大,发泡尺寸也逐渐增大,6 h熄火后形成一个6 cm×8 cm、高4 cm的发泡层,长达6 h的灼烧试验,PE内表面最高温度为245℃,熄火后,拨开厚厚的发泡层,PE护套仅发生软化。结合图15图16,可以看出,燃烧前20 min为快速发泡升温阶段,发泡层快速增大,PE内表面温度从室温上升到196℃;20~140 min为稳定阶段,发泡层缓慢增大,PE内表面温度维持在203~209℃之间;140~360 min为动态平衡阶段,继续燃烧温度缓慢升高,燃烧至180 min,PE内表面温度达到216℃,阻燃防火涂层内层达到发泡温度开始发泡,发泡层高度增加,PE内表面温度下降,燃烧至240 min,PE内表面温度降至200℃,燃烧至280 min左右,发泡层表层开始发生热解,PE内表面温度升高至230℃左右,阻燃防火涂层内层达到发泡温度进一步发泡,发泡层高度持续增加,PE内表面温度下降,但随着发泡层表层热解,PE内表面温度又缓慢上升。

    图  16  2 mm厚度阻燃防火涂层的CFRP索股膨胀发泡过程
    Figure  16.  Intumescent process of CFRP cable strand coated with 2 mm thickness fire retardant coating

    (1) 碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)筋材高温剩余强度随温度升高呈线性下降趋势,210℃加热3 h,剩余强度最低为2245.8 MPa,比初始强度下降26.13%。

    (2) CFRP筋材高温加热冷却后强度存在一定程度的可逆性恢复,剩余强度均能达到2800 MPa以上,但较原始强度略微下降,且经历温度越高剩余强度越低,最大下降幅度为6.13%。

    (3) 对比3种阻燃防火措施,阻燃防火涂层具有较好的阻燃防火效果,2 h灼烧索股聚乙烯(PE)内表面最高温度为206℃,次外层筋材最高温度为156℃,第三层筋材最高温度为100℃,火灾2 h内,索股仍可承载,剩余强度≥2245 MPa。

    (4) 阻燃防火涂层越厚防护时间越长,2 mm厚阻燃防火涂层的索股在长达360 min的火焰灼烧下,PE内表面最高温度为245℃,PE层未发生破坏,仅发生软化,建议阻燃防火涂层的厚度为2 mm。

  • 图  1   氟碳掺杂羟基磷灰石/混酸氧化多壁碳纳米管(FCH/AO-MWCNTs)的制备

    Figure  1.   Schematic diagram of the preparation of fluorine/carbon-doped hydroxyapatite/mixed-acid oxidized multi-walled carbon nanotubes (FCH/AO-MWCNTs)

    图  2   辅助方法对HAP吸附性能的影响

    Figure  2.   Influence of auxiliary methods on the adsorption performance of HAP

    图  3   AO-MWCNTs、HAP、氟碳掺杂的羟基磷灰石(FCHAP)、FCH/AO-MWCNTs的EDS结果

    Figure  3.   EDS results of AO-MWCNTs, HAP, fluorine/carbon-doped hydroxyapatite (FCHAP), FCH/AO-MWCNTs

    图  4   HAP ((a), (b))、FCHAP ((c), (d))及FCH/AO-MWCNTs ((e), (f))的SEM图像

    Figure  4.   SEM images of HAP ((a), (b)), FCHAP ((c), (d)) and FCH/AO-MWCNTs ((e), (f))

    图  5   HAP、FCHAP和FCH/AO-MWCNTs的FTIR图谱

    Figure  5.   FTIR spectra of HAP, FCHAP and FCH/AO-MWCNTs

    图  6   HAP、FCHAP和FCH/AO-MWCNTs的XPS全谱

    Figure  6.   XPS full spectra of HAP, FCHAP and FCH/AO-MWCNTs

    图  7   HAP、FCHAP和FCH/AO-MWCNTs的XRD图谱

    Figure  7.   XRD patterns of HAP, FCHAP and FCH/AO-MWCNTs

    图  8   HAP、FCHAP和FCH/AO-MWCNTs的Zeta电位

    Figure  8.   Zeta potential test results of HAP, FCHAP and FCH/AO-MWCNTs

    图  9   HAP (a)、FCHAP (b)、FCH/AO-MWCNTs (c)的粒径测试结果

    Figure  9.   Particle size test results of HAP (a), FCHAP (b), FCH/AO-MWCNTs (c)

    图  10   HAP、FCHAP和FCH/AO-MWCNTs的N2吸附-脱附等温线及孔径分布图

    STP—Standard temperature and pressure

    Figure  10.   N2 adsorption-desorption isotherms and pore size distributions of HAP, FCHAP, and FCH/AO-MWCNTs

    图  11   FCH/AO-MWCNTs吸附Mn(II)的热力学模型拟合结果

    Ce—Concentration of adsorbent at adsorption equilibrium; qe—Equilibrium adsorption capacity; Kd—Equilibrium constant; R2—Correlation coefficient of model fit; T—Temperature

    Figure  11.   Thermodynamic model fitting results for the adsorption of Mn(II) by FCH/AO-MWCNTs

    图  12   多离子共存情况下FCH/AO-MWCNTs的去除效率

    Figure  12.   Removal efficiency of FCH/AO-MWCNTs in case of multiple ion coexistence

    图  13   FCH/AO-MWCNTs的再生循环实验

    Figure  13.   Regeneration cycle experiment of FCH/AO-MWCNTs

    图  14   MWCNTs、AO-MWCNTs、HAP、FCHAP、FCH/AO-MWCNTs的Langmuir模型拟合

    Figure  14.   Langmuir model fitting for MWCNTs, AO-MWCNTs, HAP, FCHAP, FCH/AO-MWCNTs

    图  15   吸附Mn(II)前后的FCH/AO-MWCNTs的表征结果:(a) FTIR图谱;(b) XPS全谱

    Figure  15.   Characterization results of FCH/AO-MWCNTs before and after adsorption of Mn(II): (a) FTIR spectra; (b) XPS full spectra

    图  16   FCH/AO-MWCNTs对Mn(II)的吸附原理图

    Figure  16.   Schematic diagram of adsorption of Mn(II) by FCH/AO-MWCNTs

    表  1   羟基磷灰石(HAP)的合成方法及名称

    Table  1   Synthesis methods and names of hydroxyapatite (HAP)

    Name HAP synthesis method
    HAP-1 Microwave/light-wave combined heating
    HAP-2 Microwave
    HAP-3 Heating
    HAP-4 Traditional chemical precipitation
    HAP-5 Ultrasouic
    下载: 导出CSV

    表  2   不同质量比AO-MWCNTs制备的FCH/AO-MWCNTs对Mn(II)的吸附率

    Table  2   Adsorption rates of Mn(II) on FCH/AO-MWCNTs prepared with different mass ratios of AO-MWCNTs

    AO-MWCNTs/wt%Mn(II) adsorption rate/%
    095.3778
    0.2594.9556
    0.596.7556
    195.7333
    295.6676
    594.0667
    Note: Initial concentration of Mn(II) is 30 mg/L.
    下载: 导出CSV

    表  3   HAP、FCHAP和FCH/AO-MWCNTs的比表面积、孔容及孔径

    Table  3   BET surface area, pore volume and pore size of HAP, FCHAP and FCH/AO-MWCNTs

    MaterialSurface area/
    (m2·g−1)
    Pore volume/
    (cm3·g−1)
    Pore size/
    nm
    HAP101.200.617924.4186
    FCHAP 54.440.384128.2206
    FCH/AO-MWCNTs 57.330.244517.0544
    下载: 导出CSV

    表  4   FCH/AO-MWCNTs吸附Mn(II)的准一级和准二级动力学模型参数

    Table  4   Pseudo-first-order and pseudo-second-order kinetic parameters for the adsorption of Mn(II) by FCH/AO-MWCNTs

    ModelParameterFCH/AO-MWCNTs
    Pseudo first-order modelqe.cal/(mg·g−1)3.75
    k1/min−10.0138
    R20.9309
    Pseudo second-order modelqe.cal/(mg·g−1)29.8
    k2/(min−1)0.0041
    R20.9989
    qe.exp/(mg·g−1)29.40
    Notes: qe.cal—Calculated equilibrium adsorption capacity; k1—Adsorption rate constant of the Pseudo first-order kinetic equation; R2—Correlation coefficient of model fit; k2—Adsorption rate constant of the Pseudo second-order kinetic equation; qe.exp—Experimental equilibrium adsorption capacity.
    下载: 导出CSV

    表  5   FCH/AO-MWCNTs吸附Mn(II)的热力学模型参数

    Table  5   Thermodynamic model parameters for the adsorption of Mn(II) by FCH/AO-MWCNTs

    T/KΔS/
    (J·K−1·mol−1)
    ΔH/
    (kJ·mol−1)
    ΔG/
    (kJ·mol−1)
    R2
    29334.85−7.989−1.8210.9930
    303−1.8560.9981
    313−1.8910.9987
    323−1.9230.9930
    Notes: ΔS—Entropy change under standard conditions; ΔH—Standard enthalpy change under standard conditions; ΔG—Gibbs free energy change under standard conditions at different temperatures.
    下载: 导出CSV

    表  6   FCH/AO-MWCNTs吸附Mn(II)的等温吸附模型参数

    Table  6   Isothermal adsorption model parameters for Mn(II) adsorption by FCH/AO-MWCNTs

    ModelParameterFCH/AO-MWCNTs
    Langmuir
    isotherm
    qmax1/(mg·g−1)317.5
    KL/(L·mg−1)0.292
    R20.9977
    Freundlich
    isotherm
    KF/(mg·g−1·(L·mg−1)1/n)72.53
    1/n0.541
    R20.9553
    Dubinin-
    Radushkevich
    qmax2/(mol·g−1)466.1
    K/(mol2·kJ−2)0.00084
    E/(kJ·mol−1)24.37
    R20.9964
    Notes: qmax1—Maximum adsorption capacity calculated by Langmuir isotherm model; KL—Langmuir constant; KF—Freundlich constant; 1/n—Ion exchange strength constant; qmax2—Maximum adsorption capacity calculated by Dubinin-Radushkevich isotherm model; K—Dubinin-Radushkevich constant; E—Average free energy of adsorption.
    下载: 导出CSV

    表  7   材料的理论最大Mn(II)吸附量计算结果

    Table  7   Calculation of the theoretical maximum Mn(II) adsorption amount of the material

    MaterialsKL/
    (L·mg−1)
    R2qmax/
    (mg·g−1)
    Surface area/
    (m2·g−1)
    Number of adsorbed metal atoms
    per unit surface area/(atoms·nm−2)
    MWCNTs 0.249 0.9887 0.58 91.45 0.069
    AO-MWCNTs 1.192 0.9995 5.77 91.44 0.690
    HAP 0.063 0.9954 36.34 101.20 3.940
    FCHAP 0.179 0.9800 273.97 54.44 55.140
    FCH/AO-MWCNTs 0.292 0.9977 317.50 57.33 60.680
    Notes: The adsorption data of MWCNTs and AO-MWCNTs materials were obtained from the literature [28]; qmax—Maximum adsorption capacity calculated by Langmuir isotherm model.
    下载: 导出CSV

    表  8   FCH/AO-MWCNTs与其他材料锰吸附性能对比

    Table  8   Comparison of Mn(II) adsorption performance of FCH/AO-MWCNTs and other materials

    Materialqmax/(mg·g−1)
    FCH/AO-MWCNTs317.5
    Banana stalk biochar[38]109.1
    N-acetylcysteine on multi-walled
    Carbon nanotubes[39]
    146.7
    Magnetic hydroxyapatite[40] 0.7
    Cellulose[41] 52.9
    下载: 导出CSV
  • [1] 覃德亮, 陈南雄. 2020年全球锰矿及我国锰产品生产简述[J]. 中国锰业, 2021, 39(4):10-12, 21. DOI: 10.14101/j.cnki.issn.1002-4336.2021.04.003

    QIN Deliang, CHEN Nanxiong. 2020 global manganese ore and the production brief in China's manganese products[J]. China Manganese Industry,2021,39(4):10-12, 21(in Chinese). DOI: 10.14101/j.cnki.issn.1002-4336.2021.04.003

    [2] 任辉, 吴昊, 王自国, 等. 依托国内超大型锰矿构建我国自主可控的锰矿产业供应链[J]. 中国煤炭地质, 2021, 33(11):1-3, 18. DOI: 10.3969/j.issn.1674-1803.2021.11.01

    REN Hui, WU Hao, WANG Ziguo, et al. Country's autonomousand controllable manganese industry supply chain building rely on domestic superhuge manganese ore[J]. Coal Geology of China,2021,33(11):1-3, 18(in Chinese). DOI: 10.3969/j.issn.1674-1803.2021.11.01

    [3] 张钱荣, 何兆钦, 邓蓉. 浅谈云南斗南锰矿地质特征及经济意义[J]. 世界有色金属, 2017(15):120-121.

    ZHANG Qianrong, HE Zhaoqin, DENG Rong. The geological characteristics and economic significance on Yunnan Dounan Manganese Mine[J]. World Nonferrous Metals,2017(15):120-121(in Chinese).

    [4] 程湘, 胡鹏, 张海坤, 等. 锰矿主要类型、分布特点及开发现状[J]. 中国地质, 2021, 48(1):102-119. DOI: 10.12029/gc20210107

    CHENG Xiang, HU Peng, ZHANG Haikun, et al. The main types, distribution and current development of manganese ore deposits[J]. Geology in China,2021,48(1):102-119(in Chinese). DOI: 10.12029/gc20210107

    [5]

    YU Q, LI S, LI H, et al. Synthesis and characterization of Mn-slag based geopolymer for immobilization of Co[J]. Journal of Cleaner Production,2019,234:97-104. DOI: 10.1016/j.jclepro.2019.06.149

    [6]

    ZHANG R, MA X, SHEN X, et al. Life cycle assessment of electrolytic manganese metal production[J]. Journal of Cleaner Production,2020,253(C):119951.

    [7] 吕晓立, 刘景涛, 周冰, 等. 新疆塔城盆地地下水中铁锰分布特征及人类活动的影响[J]. 中国地质, 2020, 47(6):1765-1775. DOI: 10.12029/gc20200613

    LYU Xiaoli, LIU Jingtao, ZHOU Bing, et al. Fe and Mn distribution of groundwater in the Tacheng Basin, Xinjiang and its impact of human activities[J]. Geology in China,2020,47(6):1765-1775(in Chinese). DOI: 10.12029/gc20200613

    [8] 沈良辰, 胡文勇, 张丽娟, 等. 典型废弃锰矿厂渣库土壤重金属污染特征与评价[J]. 有色金属工程, 2022, 12(8):187-197.

    SHEN Liangchen, HU Wenyong, ZHANG Lijuan, et al. Characteristics and evaluation of heavy metal contamination in soil of typical waste dumping area[J]. Nonferrous Metals Engineering,2022,12(8):187-197(in Chinese).

    [9]

    NKELE K, MPENYANA-MONYATSI L, MASINDI V. Challenges, advances and sustainabilities on the removal and recovery of manganese from wastewater: A review[J]. Journal of Cleaner Production,2022,377:134152. DOI: 10.1016/j.jclepro.2022.134152

    [10]

    DEY S, TRIPATHY B, KUMAR M S, et al. Ecotoxicological consequences of manganese mining pollutants and their biological remediation[J]. Environmental Chemistry and Ecotoxicology,2023,5:55-61. DOI: 10.1016/j.enceco.2023.01.001

    [11]

    SANTHOSH C, VELMURUGAN V, JACOB G, et al. Role of nanomaterials in water treatment applications: A review[J]. Chemical Engineering Journal,2016,306:1116-1137. DOI: 10.1016/j.cej.2016.08.053

    [12] 申惠娟, 韩太坤, 邓锂强, 等. 碳纳米管对环境污染物的吸附机理的研究进展[J]. 化工技术与开发, 2022, 51(6):73-78. DOI: 10.3969/j.issn.1671-9905.2022.06.016

    SHEN Huijuan, HAN Taikun, DENG Liqiang, et al. Research progress on adsorption mechanism of carbon nanotubes in environmental governance[J]. Technology & Development of Chemical Industry,2022,51(6):73-78(in Chinese). DOI: 10.3969/j.issn.1671-9905.2022.06.016

    [13]

    IHSANULLAH, ABBAS A, AL-AMER A M, et al. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications[J]. Separation and Purification Technology,2016,157:141-161. DOI: 10.1016/j.seppur.2015.11.039

    [14]

    REN X, CHEN C, NAGATSU M, et al. Carbon nanotubes as adsorbents in environmental pollution management: A review[J]. Chemical Engineering Journal,2010,170(2):395-410.

    [15]

    GANZOURY M A, CHIDIAC C, KURTZ J, et al. CNT-sorbents for heavy metals: Electrochemical regeneration and closed-loop recycling[J]. Journal of Hazardous Materials,2020,393:122432. DOI: 10.1016/j.jhazmat.2020.122432

    [16]

    MISHRA S, SUNDARAM B. Efficacy and challenges of carbon nanotube in wastewater and water treatment[J]. Environmental Nanotechnology, Monitoring & Management,2023,19:100764.

    [17]

    MUHAMMADAHSON A M, HSIONWEN K, WALTER D, et al. Functionalized carbon nanotubes (CNTs) for water and wastewater treatment: Preparation to application[J]. Sustainability,2021,13(10):5717-5771. DOI: 10.3390/su13105717

    [18] 侯嫔, 杨晓瑜, 霍燕龙, 等. 超声氧化多壁碳纳米管对水中Ni(II)的吸附效能[J]. 环境工程学报, 2021, 15(7):2256-2264.

    HOU Pin, YANG Xiaoyu, HUO Yanlong, et al. Adsorption efficiency of Ni(II) in water by ultrasonically oxidized multi-walled carbon nanotubes[J]. Chinese Journal of Environmental Engineering,2021,15(7):2256-2264(in Chinese).

    [19]

    RODRÍGUEZ C, LEIVA E. Enhanced heavy metal removal from acid mine drainage wastewater using double-oxidized multiwalled carbon nanotubes[J]. Molecules,2019,25(1):111-133. DOI: 10.3390/molecules25010111

    [20]

    SHAHRYARI T, SINGH P, RAIZADA P, et al. Adsorption properties of Danthron-impregnated carbon nanotubes and their usage for solid phase extraction of heavy metal ions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,641:128528. DOI: 10.1016/j.colsurfa.2022.128528

    [21] 刘莹, 杨瑞, 刘井来, 等. 单相、双相及多相离子掺杂的羟基磷灰石研究进展[J]. 表面技术, 2022, 51(10):143-154.

    LIU Ying, YANG Rui, LIU Jinglai, et al. Hydroxyapatite nanomaterials doped with single-phase, dual-phase and multiphase ions[J]. Surface Technology,2022,51(10):143-154(in Chinese).

    [22] 殷海荣, 杨明珍. 碳羟基磷灰石的吸附性能研究[J]. 材料导报, 2010, 24(15):73-76.

    YIN Hairong, YANG Mingzhen. Studies on the adsorption property of carbonated hydroxyapatite[J]. Materials Reports,2010,24(15):73-76(in Chinese).

    [23]

    NORTON J, MALIK K R, DARR J A, et al. Recent developments in processing and surface modification of hydroxyapatite[J]. Advances in Applied Ceramics,2006,105(3):113-139. DOI: 10.1179/174367606X102278

    [24] 任卫, 曹献英, 冯凌云, 等. 纳米羟基磷灰石合成及表面改性的途径和方法[J]. 硅酸盐通报, 2002(1):38-43. DOI: 10.3969/j.issn.1001-1625.2002.01.009

    REN Wei, CAO Xianying, FENG Lingyun, et al. Methods of synthetic nanometer hydroxyapatite and modification of its surface[J]. Bulletin of the Chinese Ceramic Society,2002(1):38-43(in Chinese). DOI: 10.3969/j.issn.1001-1625.2002.01.009

    [25]

    LIU Z, CHEN L, ZHANG Z, et al. Synthesis of multi-walled carbon nanotube-hydroxyapatite composites and its application in the sorption of Co(II) from aqueous solutions[J]. Journal of Molecular Liquids,2013,179:46-53. DOI: 10.1016/j.molliq.2012.12.011

    [26]

    LI G, ZHANG J, LI Y, et al. Adsorption characteristics of Pb(II), Cd(II) and Cu(II) on carbon nanotube-hydroxyapatite[J]. Environmental Technology,2021,42(10):1560-1581. DOI: 10.1080/09593330.2019.1674385

    [27]

    OJOK W P, BOLENDER J, WASSWA J, et al. Facile synthesis and characterization of multi-walled carbon nanotubes decorated with hydroxyapatite from cattle horns for adsorptive removal of fluoride[J]. Heliyon,2023,9(3):e14341. DOI: 10.1016/j.heliyon.2023.e14341

    [28]

    ZHOU Y, HE Y, WANG R, et al. Modification of multiwalled carbon nanotubes and their mechanism of demanganization[J]. Molecules, 2023, 28(4): 1870.

    [29]

    MOHD YUSOFF M F, ABU KASIM N H, HIMRATUL-AZNITA W H, et al. Physicochemical, antibacterial and biocompatibility assessments of silver incorporated nano-hydroxyapatite synthesized using a novel microwave-assisted wet precipitation technique[J]. Materials Characterization,2021,178:111169. DOI: 10.1016/j.matchar.2021.111169

    [30] 苏可心. 掺镁羟基磷灰石-腐植酸复合吸附剂的制备及其吸附性能研究[D]. 兰州: 兰州交通大学, 2022.

    SU Kexin. Preparation and adsorption properties of magnesium-mixed hydroxyapatite-humic acid composite adsorbent[D]. Lanzhou: Lanzhou Jiaotong University, 2022(in Chinese).

    [31]

    BRASIL H, BITTENCOURT A F B, YOKOO K C E S, et al. Synthesis modification of hydroxyapatite surface for ethanol conversion: The role of the acidic/basic sites ratio[J]. Journal of Catalysis,2021,404:802-813. DOI: 10.1016/j.jcat.2021.08.050

    [32]

    AMRUTHALURU S, MAMIDI S K, HARILAL M, et al. Synthesis of carbonate and fluorine substituted nanocrystalline hydroxyapatite by mechanochemical method[J]. Key Engineering Materials,2020,833:204-208. DOI: 10.4028/www.scientific.net/KEM.833.204

    [33] 李建欣, 宋党育, 张军营, 等. X射线衍射数据分析系统评价[J]. 岩矿测试, 2008(3):189-192, 196. DOI: 10.15898/j.cnki.11-2131/td.2008.03.003

    LI Jianxin, SONG Dangyu, ZHANG Junying, et al. Evaluation of the X-ray diffraction data analysis system[J]. Rock and Mineral Analysis,2008(3):189-192, 196(in Chinese). DOI: 10.15898/j.cnki.11-2131/td.2008.03.003

    [34]

    MCCAFFERTY E. Relationship between the isoelectric point (pHpzc) and the potential of zero charge (Epzc) for passive metals[J]. Electrochimica Acta,2010,55(5):1630-1637. DOI: 10.1016/j.electacta.2009.10.040

    [35]

    GOLOSHCHAPOV D L, KASHKAROV V M, RUMYANTSEVA N A, et al. Synthesis of nanocrystalline hydroxyapatite by precipitation using hen's eggshell[J]. Ceramics International,2013,39(4):4539-4549. DOI: 10.1016/j.ceramint.2012.11.050

    [36]

    HUA Y, XU D, LIU Z, et al. Effective adsorption and removal of malachite green and Pb2+ from aqueous samples and fruit juices by pollen-inspired magnetic hydroxyapatite nanoparticles/hydrogel beads[J]. Journal of Cleaner Production,2023,411:137233. DOI: 10.1016/j.jclepro.2023.137233

    [37] 张益硕, 周仲魁, 李龙祥, 等. 羟基磷灰石改性膨润土对铀的吸附效果及其机制[J]. 复合材料学报, 2023, 40(12): 6740-6755.

    ZHANG Yishuo, ZHOU Zhongkui, LI Longxiang, et al. Study on adsorption effect and mechanism of uranium by hydroxyapatite modified bentonite[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6740-6755(in Chinese).

    [38]

    DENG H, LI Q, HUANG M, et al. Removal of Zn(II), Mn(II) and Cu(II) by adsorption onto banana stalk biochar: Adsorption process and mechanisms[J]. Water Science and Technology,2020,82(12):2962-2974. DOI: 10.2166/wst.2020.543

    [39]

    RAKHTSHAH J, SHIRKHANLOO H, DEHGHANI MOBARAKE M. Simultaneously speciation and determination of manganese (II) and (VII) ions in water, food, and vegetable samples based on immobilization of N-acetylcysteine on multi-walled carbon nanotubes[J]. Food Chemistry,2022,389:133124. DOI: 10.1016/j.foodchem.2022.133124

    [40]

    KADY M E, SHOKRY H, HAMAD H. Effect of superparamagnetic nanoparticles on the physicochemical properties of nano hydroxyapatite for groundwater treatment: Adsorption mechanism of Fe(II) and Mn(II)[J]. RSC Advances,2016,6(85):82244-82259. DOI: 10.1039/C6RA14497G

    [41]

    HE Y, DIETRICH A M, JIN Q, et al. Cellulose adsorbent produced from the processing waste of brewer’s spent grain for efficient removal of Mn and Pb from contaminated water[J]. Food and Bioproducts Processing,2022,135:227-237. DOI: 10.1016/j.fbp.2022.08.005

  • 期刊类型引用(2)

    1. 李友明,景昭,吴增文,李冰垚,刘琛,葛敬冉,梁军. 随机疲劳下复合材料剩余刚度-剩余强度关联模型及寿命预测. 强度与环境. 2024(01): 23-30 . 百度学术
    2. 马帅,金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用. 材料导报. 2022(S1): 252-256 . 百度学术

    其他类型引用(1)

  • 目的 

    近年来锰矿的开采和加工、工厂污染物的违规排放等因素导致水体中锰浓度超标现象频出,对人类健康及环境具有重大的威胁。吸附法是去除水体中锰的主要方式,纳米材料作为一类新型材料在该方面的研究尤为突出。因此,开发高分散性及吸附性能良好的纳米材料对水体中重金属离子的去除具有重要意义。本研究工作从吸附材料的去除性能、环境影响及经济适用的角度出发,合成水体中高效去除二价锰的复合材料。

    方法 

    本文利用微波/光波组合法辅助化学沉淀法,改性混酸氧化多壁碳纳米管(AO-MWCNTs),制备氟碳掺杂羟基磷灰石/混酸氧化多壁碳纳米管(FCH/AO-MWCNTs),并开展相应的研究工作。具体过程包括,多壁碳纳米管(MWCNTs)的混酸(浓HSO:浓HNO=3:1)氧化得到AO-MWCNTs,同时使用利用微波/光波组合法辅助化学沉淀法将羟基磷灰石进行氟、碳掺杂,得到氟碳掺杂羟基磷灰石(FCHAP),再将FCHAP负载到AO-MWCNTs,得到新型复合材料FCH/AO-MWCNTs。对FCH/AO-MWCNTs开展仪器表征(SEM-EDS、FT-IR、XPS、XRD、Zeta、BET)、Mn(II)吸附实验(时间、浓度、温度等系列实验)、竞争吸附(Pb、Cd)实验及再生(Ca(NO)·4HO)循环实验。

    结果 

    新复合材料的SEM扫描结果表明FCHAP负载在AO-MWCNTs的端口和弯折处,降低材料的团聚;FT-IR、XPS及XRD结果表明,CO和F取代PO和OH进入HAP晶格;Zeta电位及粒径分析结果表明新材料的表面负电荷增多,且其分散性、稳定性增强;BET表明新材料的晶体结构发生变化,比表面积和孔径分布异于FCHAP。吸附实验数据及拟合结果表明,准二级动力学拟合得到的与实验值接近,值为0.9989;吸附实验过程中不同温度下ΔG<0,ΔH<0,ΔS>0;Langmuir模型拟合的相关系数为0.9977,略高于Freundlich模型。在Mn、Pb、Cd、Cl、NO同时存在的情况下,FCH/AO-MWCNTs对重金属离子Pb、Cd、Mn的吸附率分别为100%、98.47%、91.23%。再生循环实验中,使用Ca(NO)·4HO溶液作为解吸剂,经过4次循环再生实验后,其对Mn的吸附率仍高于50%。

    结论 

    新复合材料FCH/AO-MWCNTs制备工艺简单,拥有丰富的孔隙结构,合成后的新材料吸附位点有所增加,同时稳定性和分散性能提升,材料表面负电荷增多,新材料上丰富的离子结构也为Mn(II)的去除(离子交换、络合、沉淀等)提供了有效途径。FCH/AO-MWCNTs对Mn(II)的吸附实验动力学、热力学拟合结果表明,吸附过程为放热反应,以单分子层吸附为主,也存在多层吸附,吸附过程包括离子交换、表面络合、静电吸附、溶解-沉淀等,其中离子交换和表面络合的化学吸附占主导地位。由Langmuir模型计算得到复合材料对Mn(II)的理论最大吸附量为317.5 mg/g,均优于合成前各单体材料的理论最大吸附量。竞争吸附实验和再生循环实验表明,该材料亦可以同时吸附多种重金属离子,且材料可再生循环使用。

  • 纳米材料的高比表面积、高表面活性和孔隙率等优势使得它被众多学者证明能够高效、快速地去除重金属离子和其它污染物。碳纳米管在重金属吸附方面的潜力受两端封帽的存在和极易团聚难在溶剂中分散的性能制约。

    文章先使用微波/光波辅助化学沉淀法制备羟基磷灰石(HAP),再进行一系列的合成条件优化和改性掺杂制备得到氟碳掺杂羟基磷灰石(FCHAP),最后将其成功负载于混酸氧化多壁碳纳米管(AO-MWCNTs),从而合成一种高效吸附Mn(Ⅱ)的复合材料,即氟碳掺杂羟基磷灰石/混酸氧化多壁碳纳米管(FCH/AO-MWCNTs)。从表征结果推断,新材料上FCHAP主要生长在AO-MWCNTs的端口处和弯折处,AO-MWCNTs与FCHAP相互支撑,形成更丰富的孔隙结构,同时可认为FCHAP颗粒在一定程度上阻碍AO-MWCNTs的团聚,使得更多的物理吸附位点暴露。FCH/AO-MWCNTs对Mn(Ⅱ)的吸附过程更符合准二级动力学和Langmuir模型;计算得复合材料对Mn(Ⅱ)的理论最大吸附量为317.5mg/g;热力学实验说明该吸附过程是自发进行的,升高温度对吸附不利。

    FCH/AO-MWCNTs的SEM图像(a);材料的Langmuir模型拟合(b)

图(16)  /  表(8)
计量
  • 文章访问数:  653
  • HTML全文浏览量:  254
  • PDF下载量:  36
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-05-29
  • 修回日期:  2023-07-31
  • 录用日期:  2023-08-09
  • 网络出版日期:  2023-08-27
  • 刊出日期:  2024-01-31

目录

/

返回文章
返回