留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性羟基磷灰石/混酸氧化多壁碳纳米管的制备及应用

何迎迎 王瑞雪 周渊 樊林奎 窦妍

何迎迎, 王瑞雪, 周渊, 等. 改性羟基磷灰石/混酸氧化多壁碳纳米管的制备及应用[J]. 复合材料学报, 2024, 41(2): 735-747. doi: 10.13801/j.cnki.fhclxb.20230825.001
引用本文: 何迎迎, 王瑞雪, 周渊, 等. 改性羟基磷灰石/混酸氧化多壁碳纳米管的制备及应用[J]. 复合材料学报, 2024, 41(2): 735-747. doi: 10.13801/j.cnki.fhclxb.20230825.001
HE Yingying, WANG Ruixue, ZHOU Yuan, et al. Preparation of modified hydroxyapatite/mixed acid-oxidized multi-walled carbon nanotubes and applications[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 735-747. doi: 10.13801/j.cnki.fhclxb.20230825.001
Citation: HE Yingying, WANG Ruixue, ZHOU Yuan, et al. Preparation of modified hydroxyapatite/mixed acid-oxidized multi-walled carbon nanotubes and applications[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 735-747. doi: 10.13801/j.cnki.fhclxb.20230825.001

改性羟基磷灰石/混酸氧化多壁碳纳米管的制备及应用

doi: 10.13801/j.cnki.fhclxb.20230825.001
基金项目: 陕西省自然科学基金(2021SF-443)
详细信息
    通讯作者:

    窦妍,博士,副教授,硕士生导师,研究方向为水环境污染与治理 E-mail:douyan@chd.edu.cn

  • 中图分类号: X523;TB332

Preparation of modified hydroxyapatite/mixed acid-oxidized multi-walled carbon nanotubes and applications

Funds: Natural Science Foundation of Shaanxi Province (2021SF-443)
  • 摘要: 开发高分散性及吸附性能良好的纳米复合材料对水体中重金属离子的去除具有重要的意义。以混酸氧化多壁碳纳米管(AO-MWCNTs)为基体,引入羟基磷灰石(HAP),通过微波/光波组合加热辅助化学沉淀法分步制备氟碳掺杂的羟基磷灰石(FCHAP),并将其负载到AO-MWCNTs上,合成FCH/AO-MWCNTs复合材料。将制备材料在含Mn(II)废水中进行去除效果实验,结果表明,FCH/AO-MWCNTs对Mn(II)的理论最大吸附量为317.5 mg/g,高于AO-MWCNTs及各制备中间体。结合材料的SEM-EDS、FTIR、XPS、Zeta、BET等表征结果推测,新材料FCH/AO-MWCNTs形成更丰富的孔隙结构及吸附位点,且其分散性及稳定性能表现优异,同时新材料在去除其他重金属及再生利用方面也具有一定的应用前景。

     

  • 图  1  氟碳掺杂羟基磷灰石/混酸氧化多壁碳纳米管(FCH/AO-MWCNTs)的制备

    Figure  1.  Schematic diagram of the preparation of fluorine/carbon-doped hydroxyapatite/mixed-acid oxidized multi-walled carbon nanotubes (FCH/AO-MWCNTs)

    图  2  辅助方法对HAP吸附性能的影响

    Figure  2.  Influence of auxiliary methods on the adsorption performance of HAP

    图  3  AO-MWCNTs、HAP、氟碳掺杂的羟基磷灰石(FCHAP)、FCH/AO-MWCNTs的EDS结果

    Figure  3.  EDS results of AO-MWCNTs, HAP, fluorine/carbon-doped hydroxyapatite (FCHAP), FCH/AO-MWCNTs

    图  4  HAP ((a), (b))、FCHAP ((c), (d))及FCH/AO-MWCNTs ((e), (f))的SEM图像

    Figure  4.  SEM images of HAP ((a), (b)), FCHAP ((c), (d)) and FCH/AO-MWCNTs ((e), (f))

    图  5  HAP、FCHAP和FCH/AO-MWCNTs的FTIR图谱

    Figure  5.  FTIR spectra of HAP, FCHAP and FCH/AO-MWCNTs

    图  6  HAP、FCHAP和FCH/AO-MWCNTs的XPS全谱

    Figure  6.  XPS full spectra of HAP, FCHAP and FCH/AO-MWCNTs

    图  7  HAP、FCHAP和FCH/AO-MWCNTs的XRD图谱

    Figure  7.  XRD patterns of HAP, FCHAP and FCH/AO-MWCNTs

    图  8  HAP、FCHAP和FCH/AO-MWCNTs的Zeta电位

    Figure  8.  Zeta potential test results of HAP, FCHAP and FCH/AO-MWCNTs

    图  9  HAP (a)、FCHAP (b)、FCH/AO-MWCNTs (c)的粒径测试结果

    Figure  9.  Particle size test results of HAP (a), FCHAP (b), FCH/AO-MWCNTs (c)

    图  10  HAP、FCHAP和FCH/AO-MWCNTs的N2吸附-脱附等温线及孔径分布图

    STP—Standard temperature and pressure

    Figure  10.  N2 adsorption-desorption isotherms and pore size distributions of HAP, FCHAP, and FCH/AO-MWCNTs

    图  11  FCH/AO-MWCNTs吸附Mn(II)的热力学模型拟合结果

    Ce—Concentration of adsorbent at adsorption equilibrium; qe—Equilibrium adsorption capacity; Kd—Equilibrium constant; R2—Correlation coefficient of model fit; T—Temperature

    Figure  11.  Thermodynamic model fitting results for the adsorption of Mn(II) by FCH/AO-MWCNTs

    图  12  多离子共存情况下FCH/AO-MWCNTs的去除效率

    Figure  12.  Removal efficiency of FCH/AO-MWCNTs in case of multiple ion coexistence

    图  13  FCH/AO-MWCNTs的再生循环实验

    Figure  13.  Regeneration cycle experiment of FCH/AO-MWCNTs

    图  14  MWCNTs、AO-MWCNTs、HAP、FCHAP、FCH/AO-MWCNTs的Langmuir模型拟合

    Figure  14.  Langmuir model fitting for MWCNTs, AO-MWCNTs, HAP, FCHAP, FCH/AO-MWCNTs

    图  15  吸附Mn(II)前后的FCH/AO-MWCNTs的表征结果:(a) FTIR图谱;(b) XPS全谱

    Figure  15.  Characterization results of FCH/AO-MWCNTs before and after adsorption of Mn(II): (a) FTIR spectra; (b) XPS full spectra

    图  16  FCH/AO-MWCNTs对Mn(II)的吸附原理图

    Figure  16.  Schematic diagram of adsorption of Mn(II) by FCH/AO-MWCNTs

    表  1  羟基磷灰石(HAP)的合成方法及名称

    Table  1.   Synthesis methods and names of hydroxyapatite (HAP)

    Name HAP synthesis method
    HAP-1 Microwave/light-wave combined heating
    HAP-2 Microwave
    HAP-3 Heating
    HAP-4 Traditional chemical precipitation
    HAP-5 Ultrasouic
    下载: 导出CSV

    表  2  不同质量比AO-MWCNTs制备的FCH/AO-MWCNTs对Mn(II)的吸附率

    Table  2.   Adsorption rates of Mn(II) on FCH/AO-MWCNTs prepared with different mass ratios of AO-MWCNTs

    AO-MWCNTs/wt%Mn(II) adsorption rate/%
    095.3778
    0.2594.9556
    0.596.7556
    195.7333
    295.6676
    594.0667
    Note: Initial concentration of Mn(II) is 30 mg/L.
    下载: 导出CSV

    表  3  HAP、FCHAP和FCH/AO-MWCNTs的比表面积、孔容及孔径

    Table  3.   BET surface area, pore volume and pore size of HAP, FCHAP and FCH/AO-MWCNTs

    MaterialSurface area/
    (m2·g−1)
    Pore volume/
    (cm3·g−1)
    Pore size/
    nm
    HAP101.200.617924.4186
    FCHAP 54.440.384128.2206
    FCH/AO-MWCNTs 57.330.244517.0544
    下载: 导出CSV

    表  4  FCH/AO-MWCNTs吸附Mn(II)的准一级和准二级动力学模型参数

    Table  4.   Pseudo-first-order and pseudo-second-order kinetic parameters for the adsorption of Mn(II) by FCH/AO-MWCNTs

    ModelParameterFCH/AO-MWCNTs
    Pseudo first-order modelqe.cal/(mg·g−1)3.75
    k1/min−10.0138
    R20.9309
    Pseudo second-order modelqe.cal/(mg·g−1)29.8
    k2/(min−1)0.0041
    R20.9989
    qe.exp/(mg·g−1)29.40
    Notes: qe.cal—Calculated equilibrium adsorption capacity; k1—Adsorption rate constant of the Pseudo first-order kinetic equation; R2—Correlation coefficient of model fit; k2—Adsorption rate constant of the Pseudo second-order kinetic equation; qe.exp—Experimental equilibrium adsorption capacity.
    下载: 导出CSV

    表  5  FCH/AO-MWCNTs吸附Mn(II)的热力学模型参数

    Table  5.   Thermodynamic model parameters for the adsorption of Mn(II) by FCH/AO-MWCNTs

    T/K$ {{\Delta }{S}} $/
    (J·K−1·mol−1)
    $ {{\Delta }{H}} $/
    (kJ·mol−1)
    $ {{\Delta }{G}} $/
    (kJ·mol−1)
    R2
    29334.85−7.989−1.8210.9930
    303−1.8560.9981
    313−1.8910.9987
    323−1.9230.9930
    Notes: ΔS—Entropy change under standard conditions; ΔH—Standard enthalpy change under standard conditions; ΔG—Gibbs free energy change under standard conditions at different temperatures.
    下载: 导出CSV

    表  6  FCH/AO-MWCNTs吸附Mn(II)的等温吸附模型参数

    Table  6.   Isothermal adsorption model parameters for Mn(II) adsorption by FCH/AO-MWCNTs

    ModelParameterFCH/AO-MWCNTs
    Langmuir
    isotherm
    qmax1/(mg·g−1)317.5
    KL/(L·mg−1)0.292
    R20.9977
    Freundlich
    isotherm
    KF/(mg·g−1·(L·mg−1)1/n)72.53
    1/n0.541
    R20.9553
    Dubinin-
    Radushkevich
    qmax2/(mol·g−1)466.1
    K/(mol2·kJ−2)0.00084
    E/(kJ·mol−1)24.37
    R20.9964
    Notes: qmax1—Maximum adsorption capacity calculated by Langmuir isotherm model; KL—Langmuir constant; KF—Freundlich constant; 1/n—Ion exchange strength constant; qmax2—Maximum adsorption capacity calculated by Dubinin-Radushkevich isotherm model; K—Dubinin-Radushkevich constant; E—Average free energy of adsorption.
    下载: 导出CSV

    表  7  材料的理论最大Mn(II)吸附量计算结果

    Table  7.   Calculation of the theoretical maximum Mn(II) adsorption amount of the material

    MaterialsKL/
    (L·mg−1)
    R2qmax/
    (mg·g−1)
    Surface area/
    (m2·g−1)
    Number of adsorbed metal atoms
    per unit surface area/(atoms·nm−2)
    MWCNTs 0.249 0.9887 0.58 91.45 0.069
    AO-MWCNTs 1.192 0.9995 5.77 91.44 0.690
    HAP 0.063 0.9954 36.34 101.20 3.940
    FCHAP 0.179 0.9800 273.97 54.44 55.140
    FCH/AO-MWCNTs 0.292 0.9977 317.50 57.33 60.680
    Notes: The adsorption data of MWCNTs and AO-MWCNTs materials were obtained from the literature [28]; qmax—Maximum adsorption capacity calculated by Langmuir isotherm model.
    下载: 导出CSV

    表  8  FCH/AO-MWCNTs与其他材料锰吸附性能对比

    Table  8.   Comparison of Mn(II) adsorption performance of FCH/AO-MWCNTs and other materials

    Materialqmax/(mg·g−1)
    FCH/AO-MWCNTs317.5
    Banana stalk biochar[38]109.1
    N-acetylcysteine on multi-walled
    Carbon nanotubes[39]
    146.7
    Magnetic hydroxyapatite[40] 0.7
    Cellulose[41] 52.9
    下载: 导出CSV
  • [1] 覃德亮, 陈南雄. 2020年全球锰矿及我国锰产品生产简述[J]. 中国锰业, 2021, 39(4):10-12, 21. doi: 10.14101/j.cnki.issn.1002-4336.2021.04.003

    QIN Deliang, CHEN Nanxiong. 2020 global manganese ore and the production brief in China's manganese products[J]. China Manganese Industry,2021,39(4):10-12, 21(in Chinese). doi: 10.14101/j.cnki.issn.1002-4336.2021.04.003
    [2] 任辉, 吴昊, 王自国, 等. 依托国内超大型锰矿构建我国自主可控的锰矿产业供应链[J]. 中国煤炭地质, 2021, 33(11):1-3, 18. doi: 10.3969/j.issn.1674-1803.2021.11.01

    REN Hui, WU Hao, WANG Ziguo, et al. Country's autonomousand controllable manganese industry supply chain building rely on domestic superhuge manganese ore[J]. Coal Geology of China,2021,33(11):1-3, 18(in Chinese). doi: 10.3969/j.issn.1674-1803.2021.11.01
    [3] 张钱荣, 何兆钦, 邓蓉. 浅谈云南斗南锰矿地质特征及经济意义[J]. 世界有色金属, 2017(15):120-121.

    ZHANG Qianrong, HE Zhaoqin, DENG Rong. The geological characteristics and economic significance on Yunnan Dounan Manganese Mine[J]. World Nonferrous Metals,2017(15):120-121(in Chinese).
    [4] 程湘, 胡鹏, 张海坤, 等. 锰矿主要类型、分布特点及开发现状[J]. 中国地质, 2021, 48(1):102-119. doi: 10.12029/gc20210107

    CHENG Xiang, HU Peng, ZHANG Haikun, et al. The main types, distribution and current development of manganese ore deposits[J]. Geology in China,2021,48(1):102-119(in Chinese). doi: 10.12029/gc20210107
    [5] YU Q, LI S, LI H, et al. Synthesis and characterization of Mn-slag based geopolymer for immobilization of Co[J]. Journal of Cleaner Production,2019,234:97-104. doi: 10.1016/j.jclepro.2019.06.149
    [6] ZHANG R, MA X, SHEN X, et al. Life cycle assessment of electrolytic manganese metal production[J]. Journal of Cleaner Production,2020,253(C):119951.
    [7] 吕晓立, 刘景涛, 周冰, 等. 新疆塔城盆地地下水中铁锰分布特征及人类活动的影响[J]. 中国地质, 2020, 47(6):1765-1775. doi: 10.12029/gc20200613

    LYU Xiaoli, LIU Jingtao, ZHOU Bing, et al. Fe and Mn distribution of groundwater in the Tacheng Basin, Xinjiang and its impact of human activities[J]. Geology in China,2020,47(6):1765-1775(in Chinese). doi: 10.12029/gc20200613
    [8] 沈良辰, 胡文勇, 张丽娟, 等. 典型废弃锰矿厂渣库土壤重金属污染特征与评价[J]. 有色金属工程, 2022, 12(8):187-197.

    SHEN Liangchen, HU Wenyong, ZHANG Lijuan, et al. Characteristics and evaluation of heavy metal contamination in soil of typical waste dumping area[J]. Nonferrous Metals Engineering,2022,12(8):187-197(in Chinese).
    [9] NKELE K, MPENYANA-MONYATSI L, MASINDI V. Challenges, advances and sustainabilities on the removal and recovery of manganese from wastewater: A review[J]. Journal of Cleaner Production,2022,377:134152. doi: 10.1016/j.jclepro.2022.134152
    [10] DEY S, TRIPATHY B, KUMAR M S, et al. Ecotoxicological consequences of manganese mining pollutants and their biological remediation[J]. Environmental Chemistry and Ecotoxicology,2023,5:55-61. doi: 10.1016/j.enceco.2023.01.001
    [11] SANTHOSH C, VELMURUGAN V, JACOB G, et al. Role of nanomaterials in water treatment applications: A review[J]. Chemical Engineering Journal,2016,306:1116-1137. doi: 10.1016/j.cej.2016.08.053
    [12] 申惠娟, 韩太坤, 邓锂强, 等. 碳纳米管对环境污染物的吸附机理的研究进展[J]. 化工技术与开发, 2022, 51(6):73-78. doi: 10.3969/j.issn.1671-9905.2022.06.016

    SHEN Huijuan, HAN Taikun, DENG Liqiang, et al. Research progress on adsorption mechanism of carbon nanotubes in environmental governance[J]. Technology & Development of Chemical Industry,2022,51(6):73-78(in Chinese). doi: 10.3969/j.issn.1671-9905.2022.06.016
    [13] IHSANULLAH, ABBAS A, AL-AMER A M, et al. Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications[J]. Separation and Purification Technology,2016,157:141-161. doi: 10.1016/j.seppur.2015.11.039
    [14] REN X, CHEN C, NAGATSU M, et al. Carbon nanotubes as adsorbents in environmental pollution management: A review[J]. Chemical Engineering Journal,2010,170(2):395-410.
    [15] GANZOURY M A, CHIDIAC C, KURTZ J, et al. CNT-sorbents for heavy metals: Electrochemical regeneration and closed-loop recycling[J]. Journal of Hazardous Materials,2020,393:122432. doi: 10.1016/j.jhazmat.2020.122432
    [16] MISHRA S, SUNDARAM B. Efficacy and challenges of carbon nanotube in wastewater and water treatment[J]. Environmental Nanotechnology, Monitoring & Management,2023,19:100764.
    [17] MUHAMMADAHSON A M, HSIONWEN K, WALTER D, et al. Functionalized carbon nanotubes (CNTs) for water and wastewater treatment: Preparation to application[J]. Sustainability,2021,13(10):5717-5771. doi: 10.3390/su13105717
    [18] 侯嫔, 杨晓瑜, 霍燕龙, 等. 超声氧化多壁碳纳米管对水中Ni(II)的吸附效能[J]. 环境工程学报, 2021, 15(7):2256-2264.

    HOU Pin, YANG Xiaoyu, HUO Yanlong, et al. Adsorption efficiency of Ni(II) in water by ultrasonically oxidized multi-walled carbon nanotubes[J]. Chinese Journal of Environmental Engineering,2021,15(7):2256-2264(in Chinese).
    [19] RODRÍGUEZ C, LEIVA E. Enhanced heavy metal removal from acid mine drainage wastewater using double-oxidized multiwalled carbon nanotubes[J]. Molecules,2019,25(1):111-133. doi: 10.3390/molecules25010111
    [20] SHAHRYARI T, SINGH P, RAIZADA P, et al. Adsorption properties of Danthron-impregnated carbon nanotubes and their usage for solid phase extraction of heavy metal ions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,641:128528. doi: 10.1016/j.colsurfa.2022.128528
    [21] 刘莹, 杨瑞, 刘井来, 等. 单相、双相及多相离子掺杂的羟基磷灰石研究进展[J]. 表面技术, 2022, 51(10):143-154.

    LIU Ying, YANG Rui, LIU Jinglai, et al. Hydroxyapatite nanomaterials doped with single-phase, dual-phase and multiphase ions[J]. Surface Technology,2022,51(10):143-154(in Chinese).
    [22] 殷海荣, 杨明珍. 碳羟基磷灰石的吸附性能研究[J]. 材料导报, 2010, 24(15):73-76.

    YIN Hairong, YANG Mingzhen. Studies on the adsorption property of carbonated hydroxyapatite[J]. Materials Reports,2010,24(15):73-76(in Chinese).
    [23] NORTON J, MALIK K R, DARR J A, et al. Recent developments in processing and surface modification of hydroxyapatite[J]. Advances in Applied Ceramics,2006,105(3):113-139. doi: 10.1179/174367606X102278
    [24] 任卫, 曹献英, 冯凌云, 等. 纳米羟基磷灰石合成及表面改性的途径和方法[J]. 硅酸盐通报, 2002(1):38-43. doi: 10.3969/j.issn.1001-1625.2002.01.009

    REN Wei, CAO Xianying, FENG Lingyun, et al. Methods of synthetic nanometer hydroxyapatite and modification of its surface[J]. Bulletin of the Chinese Ceramic Society,2002(1):38-43(in Chinese). doi: 10.3969/j.issn.1001-1625.2002.01.009
    [25] LIU Z, CHEN L, ZHANG Z, et al. Synthesis of multi-walled carbon nanotube-hydroxyapatite composites and its application in the sorption of Co(II) from aqueous solutions[J]. Journal of Molecular Liquids,2013,179:46-53. doi: 10.1016/j.molliq.2012.12.011
    [26] LI G, ZHANG J, LI Y, et al. Adsorption characteristics of Pb(II), Cd(II) and Cu(II) on carbon nanotube-hydroxyapatite[J]. Environmental Technology,2021,42(10):1560-1581. doi: 10.1080/09593330.2019.1674385
    [27] OJOK W P, BOLENDER J, WASSWA J, et al. Facile synthesis and characterization of multi-walled carbon nanotubes decorated with hydroxyapatite from cattle horns for adsorptive removal of fluoride[J]. Heliyon,2023,9(3):e14341. doi: 10.1016/j.heliyon.2023.e14341
    [28] ZHOU Y, HE Y, WANG R, et al. Modification of multiwalled carbon nanotubes and their mechanism of demanganization[J]. Molecules, 2023, 28(4): 1870.
    [29] MOHD YUSOFF M F, ABU KASIM N H, HIMRATUL-AZNITA W H, et al. Physicochemical, antibacterial and biocompatibility assessments of silver incorporated nano-hydroxyapatite synthesized using a novel microwave-assisted wet precipitation technique[J]. Materials Characterization,2021,178:111169. doi: 10.1016/j.matchar.2021.111169
    [30] 苏可心. 掺镁羟基磷灰石-腐植酸复合吸附剂的制备及其吸附性能研究[D]. 兰州: 兰州交通大学, 2022.

    SU Kexin. Preparation and adsorption properties of magnesium-mixed hydroxyapatite-humic acid composite adsorbent[D]. Lanzhou: Lanzhou Jiaotong University, 2022(in Chinese).
    [31] BRASIL H, BITTENCOURT A F B, YOKOO K C E S, et al. Synthesis modification of hydroxyapatite surface for ethanol conversion: The role of the acidic/basic sites ratio[J]. Journal of Catalysis,2021,404:802-813. doi: 10.1016/j.jcat.2021.08.050
    [32] AMRUTHALURU S, MAMIDI S K, HARILAL M, et al. Synthesis of carbonate and fluorine substituted nanocrystalline hydroxyapatite by mechanochemical method[J]. Key Engineering Materials,2020,833:204-208. doi: 10.4028/www.scientific.net/KEM.833.204
    [33] 李建欣, 宋党育, 张军营, 等. X射线衍射数据分析系统评价[J]. 岩矿测试, 2008(3):189-192, 196. doi: 10.15898/j.cnki.11-2131/td.2008.03.003

    LI Jianxin, SONG Dangyu, ZHANG Junying, et al. Evaluation of the X-ray diffraction data analysis system[J]. Rock and Mineral Analysis,2008(3):189-192, 196(in Chinese). doi: 10.15898/j.cnki.11-2131/td.2008.03.003
    [34] MCCAFFERTY E. Relationship between the isoelectric point (pHpzc) and the potential of zero charge (Epzc) for passive metals[J]. Electrochimica Acta,2010,55(5):1630-1637. doi: 10.1016/j.electacta.2009.10.040
    [35] GOLOSHCHAPOV D L, KASHKAROV V M, RUMYANTSEVA N A, et al. Synthesis of nanocrystalline hydroxyapatite by precipitation using hen's eggshell[J]. Ceramics International,2013,39(4):4539-4549. doi: 10.1016/j.ceramint.2012.11.050
    [36] HUA Y, XU D, LIU Z, et al. Effective adsorption and removal of malachite green and Pb2+ from aqueous samples and fruit juices by pollen-inspired magnetic hydroxyapatite nanoparticles/hydrogel beads[J]. Journal of Cleaner Production,2023,411:137233. doi: 10.1016/j.jclepro.2023.137233
    [37] 张益硕, 周仲魁, 李龙祥, 等. 羟基磷灰石改性膨润土对铀的吸附效果及其机制[J]. 复合材料学报, 2023, 40(12): 6740-6755.

    ZHANG Yishuo, ZHOU Zhongkui, LI Longxiang, et al. Study on adsorption effect and mechanism of uranium by hydroxyapatite modified bentonite[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6740-6755(in Chinese).
    [38] DENG H, LI Q, HUANG M, et al. Removal of Zn(II), Mn(II) and Cu(II) by adsorption onto banana stalk biochar: Adsorption process and mechanisms[J]. Water Science and Technology,2020,82(12):2962-2974. doi: 10.2166/wst.2020.543
    [39] RAKHTSHAH J, SHIRKHANLOO H, DEHGHANI MOBARAKE M. Simultaneously speciation and determination of manganese (II) and (VII) ions in water, food, and vegetable samples based on immobilization of N-acetylcysteine on multi-walled carbon nanotubes[J]. Food Chemistry,2022,389:133124. doi: 10.1016/j.foodchem.2022.133124
    [40] KADY M E, SHOKRY H, HAMAD H. Effect of superparamagnetic nanoparticles on the physicochemical properties of nano hydroxyapatite for groundwater treatment: Adsorption mechanism of Fe(II) and Mn(II)[J]. RSC Advances,2016,6(85):82244-82259. doi: 10.1039/C6RA14497G
    [41] HE Y, DIETRICH A M, JIN Q, et al. Cellulose adsorbent produced from the processing waste of brewer’s spent grain for efficient removal of Mn and Pb from contaminated water[J]. Food and Bioproducts Processing,2022,135:227-237. doi: 10.1016/j.fbp.2022.08.005
  • 加载中
图(16) / 表(8)
计量
  • 文章访问数:  352
  • HTML全文浏览量:  168
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-30
  • 修回日期:  2023-08-01
  • 录用日期:  2023-08-10
  • 网络出版日期:  2023-08-28
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回