留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于能量准则的复合材料层合板低速冲击近场动力学模拟

姜晓伟 汪海 朱建辉

姜晓伟, 汪海, 朱建辉. 基于能量准则的复合材料层合板低速冲击近场动力学模拟[J]. 复合材料学报, 2024, 41(4): 2126-2136. doi: 10.13801/j.cnki.fhclxb.20230824.003
引用本文: 姜晓伟, 汪海, 朱建辉. 基于能量准则的复合材料层合板低速冲击近场动力学模拟[J]. 复合材料学报, 2024, 41(4): 2126-2136. doi: 10.13801/j.cnki.fhclxb.20230824.003
JIANG Xiaowei, WANG Hai, ZHU Jianhui. Peridynamic modeling of composite laminate under low-velocity impactusing energy-based criteria[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2126-2136. doi: 10.13801/j.cnki.fhclxb.20230824.003
Citation: JIANG Xiaowei, WANG Hai, ZHU Jianhui. Peridynamic modeling of composite laminate under low-velocity impactusing energy-based criteria[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2126-2136. doi: 10.13801/j.cnki.fhclxb.20230824.003

基于能量准则的复合材料层合板低速冲击近场动力学模拟

doi: 10.13801/j.cnki.fhclxb.20230824.003
详细信息
    通讯作者:

    姜晓伟,博士,工程师,研究方向为复合材料强度设计 E-mail: jiangxiaowei@alumni.sjtu.edu.cn

  • 中图分类号: TB330.1

Peridynamic modeling of composite laminate under low-velocity impactusing energy-based criteria

  • 摘要: 近场动力学模拟复合材料层合板低速冲击损伤具有一定优势。本文在球型域常规态近场动力学复合材料模型基础上,建立了考虑时间步长下不同断裂混合比的能量失效判定准则,并开展了基于能量准则的复合材料层合板低速冲击近场动力学模拟。首先对复合材料低速冲击近场动力学模拟的模型刚度进行了验证,近场动力学模拟的冲击接触力、冲击速度及冲击位移与有限元结果具有较好的一致性。在此基础上,开展了复合材料低速冲击近场动力学损伤模拟,给出了冲击过程中复合材料层合板纤维断裂、基体开裂及分层损伤扩展过程。对比试验结果,近场动力学模拟的分层损伤面积和分层形状与试验结果具有较好的一致性,验证了所开展的基于能量准则的复合材料层合板低速冲击近场动力学模拟的有效性。

     

  • 图  1  近场动力学符号

    Figure  1.  Peridynamic notations

    $ {\boldsymbol{x}}_{(k)}^{(n)} $—Material point; $ {\boldsymbol{u}}_{(k)}^{(n)} $—Deformation; $\mathcal{H}$—Horizon zone; $\delta $—Radius of horizon zone; x(j)—Bond material point; u(j)—Displacement of x(j); ξ—Bond; η'—Bond deformation

    图  2  复合材料低速冲击刚度验证示意图

    Figure  2.  Composite low-velocity impact stiffness validation diagram

    图  3  复合材料低速冲击刚度验证变形云图

    Figure  3.  Deformation cloud for low velocity impact of composite

    uz—Displacement in z direction

    图  4  复合材料低速冲击刚度验证冲击力-时间曲线

    Figure  4.  Low velocity impact load-time curves of composite

    FEM—Finite element method; PD—Peridynamics

    图  5  复合材料低速冲击刚度验证冲击速度-时间曲线

    Figure  5.  Low velocity impact velocity-time curves of composite

    图  6  复合材料低速冲击刚度验证冲击位移-时间曲线

    Figure  6.  Low velocity impact displacement-time curves of composite

    图  7  复合材料低速冲击损伤模拟示意图

    Figure  7.  Schematic diagram of low velocity impact damage simulation of composite

    ux, uy, uz—Displacement in x, y, z directions

    图  8  复合材料冲击损伤模拟冲击力-时间曲线

    Figure  8.  Low velocity impact damage modeling load-time curves of composite materials

    FEM_NoDamage—Finite element method result without damage; PD_NoDamage—Peridynamic results without damage; PD_Damage—Peridynamic results with damage

    图  9  复合材料低速冲击损伤模拟每一层的分层损伤随冲击时间的变化

    Figure  9.  Delamination variation of composite each ply under low-velocity impact with time

    $\varphi_{\text {delamination }}^{(n)(n+1)}$—Delamination damage factor

    图  10  复合材料低速冲击损伤模拟每一层的纤维断裂随冲击时间的变化

    Figure  10.  Fiber breakage variation of composite each ply under low-velocity impact with time

    $ {\varphi _{{\text{fiber breakage}}}} $—Fiber breakage damage factor

    图  11  复合材料低速冲击损伤模拟每一层的基体开裂随冲击时间的变化

    Figure  11.  Matrix crack variation of composite each ply under low-velocity impact with time

    $ {\varphi _{{\text{matrix cracking}}}} $—Matrix cracking damage factor

    图  12  复合材料低速冲击损伤模拟分层形状对比

    Figure  12.  Delamination shape comparison of composite under low-velocity impact

    Legend in the figure is envelope of delamination damage factor

    表  1  复合材料圆形板材料参数

    Table  1.   Composite circular laminate material parameters

    $ {E_1}/{\text{GPa}} $$ {E_2}/{\text{GPa}} $$ {G_{12}}/{\text{GPa}} $$ {\nu _{12}} $ρ/(kg·m−3)
    15310.36.00.31600
    Notes: $ {E_1} $, $ {E_2} $ and $ {G_{12}} $—Modulus; $ {\nu _{12}} $—Poisson's ratio; $ \rho $—Density.
    下载: 导出CSV

    表  2  碳纤维增强环氧树脂复合材料(T700/M21)的面内材料性能[25]

    Table  2.   In-plane material parameters of carbon fiber reinforced epoxy resin composite (T700/M21)[25] ρ=1580 kg/m3

    E1/
    GPa
    E2/
    GPa
    G12/
    GPa
    ν12XT/
    MPa
    XC/
    MPa
    YT/
    MPa
    YC/
    MPa
    1307.74.80.32080125060290
    Note: XT, XC, YT and YC—Strength.
    下载: 导出CSV

    表  3  T700/M21复合材料面外材料性能[25]

    Table  3.   Out-plane material parameters of T700/M21[25]

    ${G_{{\text{IC}}}}/{\text{MPa}}$${G_{{\text{IIC}}}}/{\text{MPa}}$$\eta $
    0.51.61.45
    Notes: ${G_{{\text{IC}}}}$ and ${G_{{\text{IIC}}}}$—Fracture toughness; $\eta $—Exponent.
    下载: 导出CSV

    表  4  复合材料低速冲击损伤模拟分层面积比较

    Table  4.   Delamination area comparison of composite under low-velocity impact

    MethodTest[25]PD modeling
    Delamination aera/mm2312.3$93.56 \times 4 = 374.24$
    下载: 导出CSV
  • [1] CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentrations[J]. Journal of Composite Materials,1987,21(9):834-855. doi: 10.1177/002199838702100904
    [2] CAMANHO P P, MATTHEWS F L. A progressive damage model for mechanically fastened joints in composite laminates[J]. Journal of Composite Materials,1999,33(24):2248-2280. doi: 10.1177/002199839903302402
    [3] CAMANHO P P, DÁVILA C G, DEMOURA M F. Numerical simulation of mixed-mode progressive delamination in composite materials[J]. Journal of Composite Materials,2003,37(16):1415-1438. doi: 10.1177/0021998303034505
    [4] XU J F, ASKARI A, WECKNER O, et al. Peridynamic analysis of impact damage in composite laminates[J]. Journal of Aerospace Engineering,2008,21(3):187-194. doi: 10.1061/(ASCE)0893-1321(2008)21:3(187)
    [5] KILIC B, AGWAI A, MADENCI E. Peridynamic theory for progressive damage prediction in center-cracked composite laminates[J]. Composite Structures,2009,90(2):141-151. doi: 10.1016/j.compstruct.2009.02.015
    [6] HU Y L, DE CARVALHO N V, MADENCI E. Peridynamic modeling of delamination growth in composite laminates[J]. Composite Structures,2015,132:610-620. doi: 10.1016/j.compstruct.2015.05.079
    [7] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids,2000,48(1):175-209. doi: 10.1016/S0022-5096(99)00029-0
    [8] SILLING S A, EPTON M, WECKNER O, et al. Peridynamic states and constitutive modeling[J]. Journal of Elasticity,2007,88(2):151-184. doi: 10.1007/s10659-007-9125-1
    [9] SILLING S A, LEHOUCQ R B. Peridynamic theory of solid mechanics[J]. Advances in Applied Mechanics,2010,44:73-168.
    [10] ASKARI A, NELSON K, WECKNER O, et al. Hail impact characteristics of a hybrid material by advanced analysis techniques and testing[J]. Journal of Aerospace Engineering,2011,24(2):210-217. doi: 10.1061/(ASCE)AS.1943-5525.0000034
    [11] SUN C Y, HUANG Z X. Peridynamic simulation to impacting damage in composite laminate[J]. Composite Structures,2016,138:335-341. doi: 10.1016/j.compstruct.2015.12.001
    [12] ZHOU W, LIU D, LIU N. Analyzing dynamic fracture process in fiber-reinforced composite materials with a peridynamic model[J]. Engineering Fracture Mechanics,2017,178:60-76. doi: 10.1016/j.engfracmech.2017.04.022
    [13] ZHOU W, LIU D. Analyzing impact induced delamination in laminated composite materials with peridynamic modeling[C]//Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Virginia: AIAA, 2018: 1219.
    [14] BABER F, RANATUNGA V, GUVEN I. Peridynamic modeling of low-velocity impact damage in laminated composites reinforced with z-pins[J]. Journal of Composite Materials,2018,52(25):3491-3508. doi: 10.1177/0021998318774100
    [15] WECKNER O, CUENCA F, SILLING S, et al. Determination of ballistic limit for IM7/8552 using peridynamics[C]//Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Virginia: AIAA, 2018: 1703.
    [16] WU L W, WANG L, HUANG D, et al. An ordinary state-based peridynamic modeling for dynamic fracture of laminated glass under low-velocity impact[J]. Composite Structures,2020,234:111722. doi: 10.1016/j.compstruct.2019.111722
    [17] BABER F, HALL R, JUSTUSSON B, et al. An improved peridynamic approach for prediction of low velocity impact damage in fiber reinforced composites[C]//Proceedings of the AIAA Scitech 2021 Forum. Virginia: AIAA, 2021: 1622.
    [18] JIANG X W, WANG H. Ordinary state-based peridynamics for open-hole tensile strength prediction of fiber-reinforced composite laminates[J]. Journal of Mechanics of Materials and Structures,2018,13(1):53-82. doi: 10.2140/jomms.2018.13.53
    [19] MADENCI E, OTERKUS E. Peridynamic theory and its applications[M]. New York: Springer, 2014.
    [20] COLAVITO K, BARUT A, MADENCI E, et al. Residual strength of composite laminates with a hole by using peridynamic theory[C]//Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Virginia: AIAA, 2013: 1761.
    [21] COLAVITO K. Peridynamics for failure and residual strength prediction of fiber-reinforced composites[D]. Tucson: The University of Arizona, 2013.
    [22] JIANG X W, WANG H, GUO S J. Peridynamic open-hole tensile strength prediction of fiber-reinforced composite laminate using energy-based failure criteria[J]. Advances in Materials Science and Engineering,2019,2019:7694081.
    [23] HU Y L, MADENCI E. Bond-based peridynamic modeling of composite laminates with arbitrary fiber orientation and stacking sequence[J]. Composite Structures,2016,153:139-175. doi: 10.1016/j.compstruct.2016.05.063
    [24] HU Y L, YU Y, WANG H. Peridynamic analytical method for progressive damage in notched composite laminates[J]. Composite Structures,2014,108:801-810. doi: 10.1016/j.compstruct.2013.10.018
    [25] TAN W, FALZON B G, CHIU L N S, et al. Predicting low velocity impact damage and compression-after-impact (CAI) behaviour of composite laminates[J]. Composites Part A: Applied Science and Manufacturing,2015,71:212-226. doi: 10.1016/j.compositesa.2015.01.025
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  491
  • HTML全文浏览量:  290
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-25
  • 修回日期:  2023-07-25
  • 录用日期:  2023-08-12
  • 网络出版日期:  2023-09-01
  • 刊出日期:  2024-04-01

目录

    /

    返回文章
    返回