Peridynamic modeling of composite laminate under low-velocity impactusing energy-based criteria
-
摘要: 近场动力学模拟复合材料层合板低速冲击损伤具有一定优势。本文在球型域常规态近场动力学复合材料模型基础上,建立了考虑时间步长下不同断裂混合比的能量失效判定准则,并开展了基于能量准则的复合材料层合板低速冲击近场动力学模拟。首先对复合材料低速冲击近场动力学模拟的模型刚度进行了验证,近场动力学模拟的冲击接触力、冲击速度及冲击位移与有限元结果具有较好的一致性。在此基础上,开展了复合材料低速冲击近场动力学损伤模拟,给出了冲击过程中复合材料层合板纤维断裂、基体开裂及分层损伤扩展过程。对比试验结果,近场动力学模拟的分层损伤面积和分层形状与试验结果具有较好的一致性,验证了所开展的基于能量准则的复合材料层合板低速冲击近场动力学模拟的有效性。Abstract: Peridynamic (PD) theory has been proven to be of advantages in low-velocity impact modeling of composite laminate. Based on ordinary state-based PD composite spherical-horizon model, energy-based failure criteria was established, which considered mixed-mode fracture in each time step. PD modeling of composite laminate under low-velocity impact was conducted using the established energy-based criteria. Firstly, the modeling stiffness was validated. PD modeling impact load, impact velocity and impact displacement agree well with finite element method (FEM) results. Then, PD damage modeling of composite laminate under low-velocity impact was conducted, and the fiber breakage, matrix crack and delamination damage process were illustrated. Compared with test results, PD modeling delamination area and shape are in good accordance, which validates the conducted PD modeling of composite laminate under low-velocity impact using energy-based criteria.
-
Key words:
- composite /
- peridynamics /
- low-velocity impact /
- delamination damage /
- matrix crack
-
表 1 复合材料圆形板材料参数
Table 1. Composite circular laminate material parameters
$ {E_1}/{\text{GPa}} $ $ {E_2}/{\text{GPa}} $ $ {G_{12}}/{\text{GPa}} $ $ {\nu _{12}} $ ρ/(kg·m−3) 153 10.3 6.0 0.3 1600 Notes: $ {E_1} $, $ {E_2} $ and $ {G_{12}} $—Modulus; $ {\nu _{12}} $—Poisson's ratio; $ \rho $—Density. 表 2 碳纤维增强环氧树脂复合材料(T700/M21)的面内材料性能[25]
Table 2. In-plane material parameters of carbon fiber reinforced epoxy resin composite (T700/M21)[25]
ρ=1580 kg/m3 E1/
GPaE2/
GPaG12/
GPaν12 XT/
MPaXC/
MPaYT/
MPaYC/
MPa130 7.7 4.8 0.3 2080 1250 60 290 Note: XT, XC, YT and YC—Strength. ${G_{{\text{IC}}}}/{\text{MPa}}$ ${G_{{\text{IIC}}}}/{\text{MPa}}$ $\eta $ 0.5 1.6 1.45 Notes: ${G_{{\text{IC}}}}$ and ${G_{{\text{IIC}}}}$—Fracture toughness; $\eta $—Exponent. 表 4 复合材料低速冲击损伤模拟分层面积比较
Table 4. Delamination area comparison of composite under low-velocity impact
Method Test[25] PD modeling Delamination aera/mm2 312.3 $93.56 \times 4 = 374.24$ -
[1] CHANG F K, CHANG K Y. A progressive damage model for laminated composites containing stress concentrations[J]. Journal of Composite Materials,1987,21(9):834-855. doi: 10.1177/002199838702100904 [2] CAMANHO P P, MATTHEWS F L. A progressive damage model for mechanically fastened joints in composite laminates[J]. Journal of Composite Materials,1999,33(24):2248-2280. doi: 10.1177/002199839903302402 [3] CAMANHO P P, DÁVILA C G, DEMOURA M F. Numerical simulation of mixed-mode progressive delamination in composite materials[J]. Journal of Composite Materials,2003,37(16):1415-1438. doi: 10.1177/0021998303034505 [4] XU J F, ASKARI A, WECKNER O, et al. Peridynamic analysis of impact damage in composite laminates[J]. Journal of Aerospace Engineering,2008,21(3):187-194. doi: 10.1061/(ASCE)0893-1321(2008)21:3(187) [5] KILIC B, AGWAI A, MADENCI E. Peridynamic theory for progressive damage prediction in center-cracked composite laminates[J]. Composite Structures,2009,90(2):141-151. doi: 10.1016/j.compstruct.2009.02.015 [6] HU Y L, DE CARVALHO N V, MADENCI E. Peridynamic modeling of delamination growth in composite laminates[J]. Composite Structures,2015,132:610-620. doi: 10.1016/j.compstruct.2015.05.079 [7] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids,2000,48(1):175-209. doi: 10.1016/S0022-5096(99)00029-0 [8] SILLING S A, EPTON M, WECKNER O, et al. Peridynamic states and constitutive modeling[J]. Journal of Elasticity,2007,88(2):151-184. doi: 10.1007/s10659-007-9125-1 [9] SILLING S A, LEHOUCQ R B. Peridynamic theory of solid mechanics[J]. Advances in Applied Mechanics,2010,44:73-168. [10] ASKARI A, NELSON K, WECKNER O, et al. Hail impact characteristics of a hybrid material by advanced analysis techniques and testing[J]. Journal of Aerospace Engineering,2011,24(2):210-217. doi: 10.1061/(ASCE)AS.1943-5525.0000034 [11] SUN C Y, HUANG Z X. Peridynamic simulation to impacting damage in composite laminate[J]. Composite Structures,2016,138:335-341. doi: 10.1016/j.compstruct.2015.12.001 [12] ZHOU W, LIU D, LIU N. Analyzing dynamic fracture process in fiber-reinforced composite materials with a peridynamic model[J]. Engineering Fracture Mechanics,2017,178:60-76. doi: 10.1016/j.engfracmech.2017.04.022 [13] ZHOU W, LIU D. Analyzing impact induced delamination in laminated composite materials with peridynamic modeling[C]//Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Virginia: AIAA, 2018: 1219. [14] BABER F, RANATUNGA V, GUVEN I. Peridynamic modeling of low-velocity impact damage in laminated composites reinforced with z-pins[J]. Journal of Composite Materials,2018,52(25):3491-3508. doi: 10.1177/0021998318774100 [15] WECKNER O, CUENCA F, SILLING S, et al. Determination of ballistic limit for IM7/8552 using peridynamics[C]//Proceedings of the 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Virginia: AIAA, 2018: 1703. [16] WU L W, WANG L, HUANG D, et al. An ordinary state-based peridynamic modeling for dynamic fracture of laminated glass under low-velocity impact[J]. Composite Structures,2020,234:111722. doi: 10.1016/j.compstruct.2019.111722 [17] BABER F, HALL R, JUSTUSSON B, et al. An improved peridynamic approach for prediction of low velocity impact damage in fiber reinforced composites[C]//Proceedings of the AIAA Scitech 2021 Forum. Virginia: AIAA, 2021: 1622. [18] JIANG X W, WANG H. Ordinary state-based peridynamics for open-hole tensile strength prediction of fiber-reinforced composite laminates[J]. Journal of Mechanics of Materials and Structures,2018,13(1):53-82. doi: 10.2140/jomms.2018.13.53 [19] MADENCI E, OTERKUS E. Peridynamic theory and its applications[M]. New York: Springer, 2014. [20] COLAVITO K, BARUT A, MADENCI E, et al. Residual strength of composite laminates with a hole by using peridynamic theory[C]//Proceedings of the 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Virginia: AIAA, 2013: 1761. [21] COLAVITO K. Peridynamics for failure and residual strength prediction of fiber-reinforced composites[D]. Tucson: The University of Arizona, 2013. [22] JIANG X W, WANG H, GUO S J. Peridynamic open-hole tensile strength prediction of fiber-reinforced composite laminate using energy-based failure criteria[J]. Advances in Materials Science and Engineering,2019,2019:7694081. [23] HU Y L, MADENCI E. Bond-based peridynamic modeling of composite laminates with arbitrary fiber orientation and stacking sequence[J]. Composite Structures,2016,153:139-175. doi: 10.1016/j.compstruct.2016.05.063 [24] HU Y L, YU Y, WANG H. Peridynamic analytical method for progressive damage in notched composite laminates[J]. Composite Structures,2014,108:801-810. doi: 10.1016/j.compstruct.2013.10.018 [25] TAN W, FALZON B G, CHIU L N S, et al. Predicting low velocity impact damage and compression-after-impact (CAI) behaviour of composite laminates[J]. Composites Part A: Applied Science and Manufacturing,2015,71:212-226. doi: 10.1016/j.compositesa.2015.01.025