留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维增强树脂基复合材料气瓶电磁超声在线监测方法及失效机制

孟凌霄 石文泽 卢超 黄良 凌建

孟凌霄, 石文泽, 卢超, 等. 碳纤维增强树脂基复合材料气瓶电磁超声在线监测方法及失效机制[J]. 复合材料学报, 2024, 41(4): 1820-1829. doi: 10.13801/j.cnki.fhclxb.20230824.002
引用本文: 孟凌霄, 石文泽, 卢超, 等. 碳纤维增强树脂基复合材料气瓶电磁超声在线监测方法及失效机制[J]. 复合材料学报, 2024, 41(4): 1820-1829. doi: 10.13801/j.cnki.fhclxb.20230824.002
MENG Lingxiao, SHI Wenze, LU Chao, et al. Electromagnetic ultrasonic on-line monitoring method and failure mechanism of carbon fiber reinforced resin matrix composite material gas cylinder[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1820-1829. doi: 10.13801/j.cnki.fhclxb.20230824.002
Citation: MENG Lingxiao, SHI Wenze, LU Chao, et al. Electromagnetic ultrasonic on-line monitoring method and failure mechanism of carbon fiber reinforced resin matrix composite material gas cylinder[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1820-1829. doi: 10.13801/j.cnki.fhclxb.20230824.002

碳纤维增强树脂基复合材料气瓶电磁超声在线监测方法及失效机制

doi: 10.13801/j.cnki.fhclxb.20230824.002
基金项目: 国家市场监督管理总局科技计划项目(2021MK168);中国特检院内部项目(2021青年10);江西省重点研发计划(20212BBE51006;20223BBE51034)
详细信息
    通讯作者:

    石文泽,博士,副教授,硕士生导师,研究方向为电磁超声检测 E-mail:70658@nchu.edu.cn

  • 中图分类号: TB332;TH878;TK91

Electromagnetic ultrasonic on-line monitoring method and failure mechanism of carbon fiber reinforced resin matrix composite material gas cylinder

Funds: Science and Technology Program of the State Administration for Market Regulation (2021MK168); Science and Technology Program of CSEI (2021youth10); The Key R&D Program of Jiangxi Province (20212BBE51006; 20223BBE51034)
  • 摘要: 氢能具有来源广泛、清洁无碳等优点,随着氢能源的广泛应用,氢能储运逐渐成为研究热点。目前,国家大力发展的碳纤维增强树脂基复合材料气瓶已被广泛应用于氢能储运领域,然而气瓶在使用和运输过程中,容易出现纤维断裂、划伤,严重影响使用安全,故亟需发展碳纤维增强树脂基复合材料气瓶在线监测技术。针对复合材料气瓶的纤维断裂、划伤缺陷在长期、多次充放气过程中发生扩展的问题,采用电磁超声换能器(Electromagnetic acoustic transducer,EMAT)在线监测方法,并结合90TJ3-140 MPa水压疲劳系统,分别采用超声导波反射式和透射式方法,分析了纤维损伤对导波幅值的影响,并研究了含纤维损伤的气瓶在不同疲劳状态下的导波信号特征的变化规律。结果表明:纤维损伤会降低透射波幅值,且幅值减少量由纤维损伤程度决定;随着气瓶内压的增加,超声导波的声速和中心频率逐渐减小;长20 mm、宽0.5 mm和深1 mm的裂纹对应的缺陷波幅值呈先增大后减小的趋势,经过110 MPa、80次循环后,缺陷波幅值由19.33 mV减小至8.02 mV,声速减小了6.6%,中心频率从0.24 MHz减小至0.17 MHz,纤维完全分层;针对长20 mm、宽0.5 mm和深0.5 mm的裂纹,当气瓶内压由0 MPa增加至105 MPa时,直达波幅值由80.17 mV减小至20.08 mV,降低了75%;采用的电磁超声技术能够很好地解决碳纤维增强树脂基复合材料气瓶在线监测技术难题。

     

  • 图  1  贴附式周期性永磁体序列电磁超声换能器(PPM-EMAT)的结构示意图及换能机制

    Figure  1.  Structure diagram and energy exchange mechanism of attached periodic permanent magnet electromagnetic acoustic transducer (PPM-EMAT)

    SH—Shear horizontal

    图  2  PPM-EMAT配置图

    Figure  2.  PPM-EMAT configuration diagram

    图  3  电磁超声在线监测系统及碳纤维增强树脂基复合材料高压气瓶

    Figure  3.  Electromagnetic ultrasonic on-line monitoring system and carbon fiber reinforced resin matrix composite high pressure gas cylinder

    图  4  碳纤维增强树脂基复合材料高压气瓶的结构

    Figure  4.  Structure of carbon fiber reinforced resin matrix composite high pressure gas cylinder

    图  5  水压疲劳试验系统

    Figure  5.  Hydraulic fatigue test system

    图  6  导波EMAT反射法检测示意图

    Figure  6.  Guided wave EMAT reflection detection diagram

    图  7  不同疲劳状态下的超声A扫信号

    Figure  7.  Ultrasonic A scanning signal under different fatigue conditions

    图  8  不同疲劳状态下的反射水平剪切(SH)导波幅值

    Figure  8.  Amplitude of reflected shear horizontal (SH) guide wave under different fatigue states

    图  9  不同疲劳状态下的碳纤维分层情况:(a) 50 MPa-15次; (b) 60 MPa-15次;(c) 100 MPa-30次;(d) 110 MPa-80次

    Figure  9.  Stratification of carbon fiber under different fatigue conditions: (a) 50 MPa-15 cycles; (b) 60 MPa-15 cycles; (c) 100 MPa-30 cycles; (d) 110 MPa-80 cycles

    图  10  碳纤维增强树脂基复合材料高压气瓶的SH导波频谱

    Figure  10.  SH guided wave spectrum of carbon fiber reinforced resin matrix composite high pressure gas cylinder

    图  11  不同损伤状态下碳纤维增强树脂基复合材料高压气瓶SH导波的中心频率

    Figure  11.  Center frequency of SH guided wave of carbon fiber reinforced resin matrix composite high pressure gas cylinder under different damage states

    图  12  碳纤维增强树脂基复合材料高压气瓶有无缺陷时的超声A扫信号

    Figure  12.  Ultrasonic A scanning signal with and without defect of carbon fiber reinforced resin matrix composite high pressure gas cylinder

    图  13  碳纤维增强树脂基复合材料高压气瓶透射式不同损伤状态下的超声A扫信号

    Figure  13.  Transmission type ultrasonic A scanning signal of carbon fiber reinforced resin matrix composite high pressure gas cylinder under different damage states

    图  14  15次循环下碳纤维增强树脂基复合材料高压气瓶不同损伤状态下的透射SH导波幅值

    Figure  14.  Amplitude of transmitted SH guide wave of carbon fiber reinforced resin matrix composite high pressure gas cylinder under different damage states with 15 cycles

    图  15  碳纤维增强树脂基复合材料高压气瓶不同疲劳状态下的纤维分层情况:(a) 0 MPa;(b) 50 MPa;(c) 60 MPa;(d) 70 MPa;(e) 87.5 MPa;(f) 105 MPa

    Figure  15.  Fiber delamination of carbon fiber reinforced resin matrix composite high pressure gas cylinder under different fatigue conditions: (a) 0 MPa; (b) 50 MPa; (c) 60 MPa; (d) 70 MPa; (e) 87.5 MPa; (f) 105 MPa

    表  1  水压疲劳试验参数

    Table  1.   Hydraulic fatigue test parameters

    ParameterValue
    High pressure holding deviation setting/MPa 4
    High pressure holding time setting/s 2
    Low pressure holding deviation setting/MPa 1
    Low pressure holding time setting/s 2
    Unloading proportional valve close setting80.0
    Pressure relief proportional valve close setting80.0
    Pressure relief proportional valve close minimum 0.2
    Pressure relief proportional valve close extreme
    dead zone value
    0.2
    Step-down time increment setting/s 1
    下载: 导出CSV

    表  2  不同损伤状态下的碳纤维增强树脂基复合材料声速

    Table  2.   Sound velocity of carbon fiber reinforced resin matrix composites under different damage states

    Fatigue stateVelocity of sound/(m·s−1)
    0 MPa1833.07
    20 MPa-15 cycles1828.60
    30 MPa-15 cycles1827.49
    40 MPa-15 cycles1827.15
    50 MPa-15 cycles1767.83
    60 MPa-15 cycles1718.21
    70 MPa-15 cycles1713.31
    80 MPa-15 cycles1713.30
    90 MPa-15 cycles1718.21
    100 MPa-30 cycles1718.21
    110 MPa-30 cycles1711.74
    110 MPa-80 cycles1711.74
    下载: 导出CSV
  • [1] CHEN S, WANG Y, LANG X, et al. Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure[J]. Energy, 2023, 286: 126638.
    [2] 吕洪, 黄港淇, 沈亚皓, 等. 燃料电池汽车车载高压IV型储氢瓶耐火烧性能仿真[J]. 中南大学学报(自然科学版), 2022, 53(12):4637-4647.

    LYU Hong, HUANG Gangqi, SHEN Yahao, et al. Numerical simulation of fire resistance performance of high-pressure type IV hydrogen storage tank for fuel cell vehicle[J]. Journal of Central South University (Science and Technology),2022,53(12):4637-4647(in Chinese).
    [3] 刘培启, 杨帆, 黄强华, 等. T700碳纤维增强树脂复合材料气瓶封头非测地线缠绕强度[J]. 复合材料学报, 2019, 36(12):2772-2778.

    LIU Peiqi, YANG Fan, HUANG Qianghua, et al. Non-geodetic winding strength of T700 carbon fiber reinforced resin composite cylinder head[J]. Acta Materiae Compositae Sinica,2019,36(12):2772-2778(in Chinese).
    [4] 李玉峰, 靳庆臣, 刘志栋. 复合材料高压气瓶的碳纤维缠绕设计和ANSYS分析技术[J]. 推进技术, 2013, 34(7):968-976.

    LI Yufeng, JIN Qingchen, LIU Zhidong. Filament-wound design and ANSYS analysis for composite material high-pressure vessel[J]. Journal of Propulsion Technology,2013,34(7):968-976(in Chinese).
    [5] DENG G, WANG H, JIA G, et al. Effect of outer surface defects on large capacity composite cylinders for tube trailers[C]//ASME 2019 Pressure Vessels & Piping Conference. San Antonio: Pressure Vessels and Piping Division, 2019, 58943: V003T03A065.
    [6] DAVIS P, BROCKHURST J. Subsea pipeline infrastructure monitoring: A framework for technology review and selection[J]. Ocean Engineering,2015,104:540-548. doi: 10.1016/j.oceaneng.2015.04.025
    [7] EYBPOOSH M, BERGES M, NOH H Y. An energy-based sparse representation of ultrasonic guided-waves for online damage detection of pipelines under varying environmental and operational conditions[J]. Mechanical Systems and Signal Processing,2017,82:260-278. doi: 10.1016/j.ymssp.2016.05.022
    [8] BIE H, LI X, LIU P, et al. Fatigue life evaluation of high pressure hydrogen storage vessel[J]. International Journal of Hydrogen Energy,2010,35(7):2633-2636. doi: 10.1016/j.ijhydene.2009.04.037
    [9] HO J K M, CHAU J P C, CHEUNG N M C. Effectiveness of emergency nurses' use of the Ottawa Ankle Rules to initiate radiographic tests on improving healthcare outcomes for patients with ankle injuries: A systematic review[J]. International Journal of Nursing Studies,2016,63:37-47. doi: 10.1016/j.ijnurstu.2016.08.016
    [10] TOKURA S, HARA M, KAWAGUCHI N, et al. Contactless magnetic manipulation of magnetic particles in a fluid[J]. Journal of Magnetism and Magnetic Materials,2016,411:68-78. doi: 10.1016/j.jmmm.2016.03.021
    [11] SCHRÖDER M, BIEDERMANN C, VILBRANDT R. On the applicability of dye penetrant tests on vacuum components: Allowed or forbidden[J]. Fusion Engineering and Design,2013,88(9-10):1947-1950. doi: 10.1016/j.fusengdes.2012.11.019
    [12] DAVID N, VON SCHILLING K, WILD P M, et al. In situ measurement of relative humidity in a PEM fuel cell using fibre Bragg grating sensors[J]. International Journal of Hydrogen Energy,2014,39(31):17638-17644. doi: 10.1016/j.ijhydene.2014.08.010
    [13] WESTERWAAL R J, ROOIJMANS J S A, LECLERCQ L, et al. Nanostructured Pd-Au based fiber optic sensors for probing hydrogen concentrations in gas mixtures[J]. International Journal of Hydrogen Energy,2013,38(10):4201-4212. doi: 10.1016/j.ijhydene.2012.12.146
    [14] LIU T, WANG W, QIANG W, et al. Mechanical properties and eddy current testing of thermally aged Z3CN20.09M cast duplex stainless steel[J]. Journal of Nuclear Materials,2018,501:1-7. doi: 10.1016/j.jnucmat.2018.01.028
    [15] YANG B, XIANG Y, XUAN F Z, et al. Damage localization in hydrogen storage vessel by guided waves based on a real-time monitoring system[J]. International Journal of Hydrogen Energy,2019,44(40):22740-22751. doi: 10.1016/j.ijhydene.2019.01.009
    [16] 骆辉, 李桐, 黄强华, 等. 基于声发射技术的大容积玻璃纤维缠绕气瓶冲击损伤评定[J]. 振动与冲击, 2023, 42(5):143-149.

    LUO Hui, LI Tong, HUANG Qianghua, et al. Impact damage evaluation of large volume glass fiber wrapped gas cylinder based on AE technology[J]. Journal of Vibration and Shock,2023,42(5):143-149(in Chinese).
    [17] CHOU H Y, MOURITZ A P, BANNISTER M K, et al. Acoustic emission analysis of composite pressure vessels under constant and cyclic pressure[J]. Composites Part A: Applied Science and Manufacturing,2015,70:111-120. doi: 10.1016/j.compositesa.2014.11.027
    [18] LIAO B B, WANG D L, HAMDI M, et al. Acoustic emission-based damage characterization of 70 MPa type IV hydrogen composite pressure vessels during hydraulic tests[J]. International Journal of Hydrogen Energy,2019,44(40):22494-22506. doi: 10.1016/j.ijhydene.2019.02.217
    [19] BO K, LIU S, CHENG L, et al. Experiment research on acoustic emission of impact-damaged fully-wrapped composite gas cylinder with non-metallic liner[C]//Advances in Acoustic Emission Technology: Proceedings of the World Conference on Acoustic Emission. Singapore: Springer Proceedings in Physics, 2021: 383-391.
    [20] 杨斌, 胡超杰, 轩福贞, 等. 基于超声导波的压力容器健康监测I: 波传导行为及损伤定位[J]. 机械工程学报, 2020, 56(4):1-10. doi: 10.3901/JME.2020.04.001

    YANG Bin, HU Chaojie, XUAN Fuzhen, et al. Structural health monitoring of pressure vessel based on guided wave technology. Part I: Wave propagating and damage localization[J]. Journal of Mechanical Engineering,2020,56(4):1-10(in Chinese). doi: 10.3901/JME.2020.04.001
    [21] 杨斌, 胡超杰, 轩福贞, 等. 基于超声导波的压力容器健康监测II: 定位精度的影响因素[J]. 机械工程学报, 2020, 56(8):133-140. doi: 10.3901/JME.2020.08.133

    YANG Bin, HU Chaojie, XUAN Fuzhen, et al. Structural health monitoring of pressure vessel based on guided wave technology. Part II: Damage localization accuracy influencing factors[J]. Journal of Mechanical Engineering,2020,56(8):133-140(in Chinese). doi: 10.3901/JME.2020.08.133
    [22] 杨斌, 胡超杰, 轩福贞, 等. 基于超声导波的压力容器健康监测III: 纤维缠绕压力容器的在线监测[J]. 机械工程学报, 2020, 56(10):19-26. doi: 10.3901/JME.2020.10.019

    YANG Bin, HU Chaojie, XUAN Fuzhen, et al. Structural health monitoring of pressure vessel based on guided wave technology. Part III: Online monitoring of filament wound pressure vessel[J]. Journal of Mechanical Engineering,2020,56(10):19-26(in Chinese). doi: 10.3901/JME.2020.10.019
    [23] RIBICHINI R, CEGLA F, NAGY P B, et al. Study and comparison of different EMAT configurations for SH wave inspection[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2011,58(12):2571-2581. doi: 10.1109/TUFFC.2011.2120
    [24] 吴锐, 石文泽, 卢超, 等. 航空不锈钢薄板电磁超声SH导波检测定量分析方法[J]. 航空学报, 2022, 43(9):735-748.

    WU Rui, SHI Wenze, LU Chao, et al. Quantitative analysis method for electromagnetic ultrasonic SH guided wave detection of aerospace stainless steel sheet[J]. Aeronautica et Astronautice Sinica,2022,43(9):735-748(in Chinese).
    [25] 石文泽, 程进杰, 胡硕臻, 等. 脉冲压缩在铝薄板电磁超声导波检测中的应用[J]. 航空学报, 2022, 43(3):517-528.

    SHI Wenze, CHENG Jinjie, HU Shuozhen, et al. Application of pulse compression in electromagnetic ultrasonic guided wave detection of aluminum sheet[J]. Acta Aeronautica et Astronautice Sinica,2022,43(3):517-528(in Chinese).
    [26] 詹合林, 朱冰冰, 岳增柱, 等. 车用70 MPa压缩氢气铝内胆碳纤维全缠绕气瓶的应力分析[J]. 现代制造工程, 2018(12):114-118.

    ZHAN Helin, ZHU Bingbing, YUE Zengzhu, et al. The stress analysis of the fully-wrapped carbon fiber reinforced cylinders with an aluminum liner for the on-board storage of compressed hydrogen as a fuel for land vehicle with nominal working pressure of 70 MPa[J]. Modern Manufacturing Engineering,2018(12):114-118(in Chinese).
    [27] 李伟, 李建增, 周海林, 等. 多层碳纤维布复合材料超声检测的有限元模拟[J]. 纤维复合材料, 2011, 28(3):17-21.

    LI Wei, LI Jianzeng, ZHOU Hailin, et al. Finite element simulation of ultrasonic inspection in multi-layers carbon fiber composite[J]. Fiber Composites,2011,28(3):17-21(in Chinese).
    [28] 周正干, 朱甜甜, 马腾飞, 等. 先进树脂基复合材料纤维褶皱缺陷阵列超声全聚焦成像[J]. 复合材料学报, 2022, 39(9):4384-4392.

    ZHOU Zhenggan, ZHU Tiantian, MA Tengfei, et al. Array ultrasonic total-focus imaging for advanced resin matrix composite fiber wrinkle defect arrays[J]. Acta Materiae Compositae Sinica,2022,39(9):4384-4392(in Chinese).
    [29] 肖飚, 杨斌, 胡超杰, 等. 基于埋入式应变片的纤维缠绕压力容器的健康监测[J]. 高压物理学报, 2019, 33(4):56-62.

    XIAO Biao, YANG Bin, HU Chaojie, et al. Structural health monitoring of filament wound pressure vessel by embedded strain gauges[J]. Chinese Journal of High Pressure Physics,2019,33(4):56-62(in Chinese).
    [30] KIM Y S, KIM L H, PARK J S. The effect of composite damage on fatigue life of the high pressure vessel for natural gas vehicles[J]. Composite Structures,2011,93(11):2963-2968. doi: 10.1016/j.compstruct.2011.05.007
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  355
  • HTML全文浏览量:  103
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-19
  • 修回日期:  2023-08-06
  • 录用日期:  2023-08-15
  • 网络出版日期:  2023-08-25
  • 刊出日期:  2024-04-15

目录

    /

    返回文章
    返回