留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应变硬化水泥基复合材料氯盐传输行为的细观数值分析

鲍玖文 孔令艳 张心钰 张鹏 秦玲 郭伟娜

鲍玖文, 孔令艳, 张心钰, 等. 应变硬化水泥基复合材料氯盐传输行为的细观数值分析[J]. 复合材料学报, 2024, 41(4): 2137-2147. doi: 10.13801/j.cnki.fhclxb.20230824.001
引用本文: 鲍玖文, 孔令艳, 张心钰, 等. 应变硬化水泥基复合材料氯盐传输行为的细观数值分析[J]. 复合材料学报, 2024, 41(4): 2137-2147. doi: 10.13801/j.cnki.fhclxb.20230824.001
BAO Jiuwen, KONG Lingyan, ZHANG Xinyu, et al. Mesoscale numerical analysis of chloride ingress behavior of strain hardening cement-based composites[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2137-2147. doi: 10.13801/j.cnki.fhclxb.20230824.001
Citation: BAO Jiuwen, KONG Lingyan, ZHANG Xinyu, et al. Mesoscale numerical analysis of chloride ingress behavior of strain hardening cement-based composites[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2137-2147. doi: 10.13801/j.cnki.fhclxb.20230824.001

应变硬化水泥基复合材料氯盐传输行为的细观数值分析

doi: 10.13801/j.cnki.fhclxb.20230824.001
基金项目: 国家重点研发计划(2021YFB2600704);国家自然科学基金(51922052);山东省自然科学基金(ZR2021JQ17);山东省高等学校青创科技创新团队项目(2021KJ019)
详细信息
    通讯作者:

    张鹏,博士,教授,博士生导师,研究方向为混凝土耐久性 E-mail: peng.zhang@qut.edu.cn

  • 中图分类号: TU528;TB330.1

Mesoscale numerical analysis of chloride ingress behavior of strain hardening cement-based composites

Funds: National Key Research and Development Program of China (2021YFB2600704); National Natural Science Foundation of China (51922052); Natural Science Foundation of Shandong Province (ZR2021JQ17); Youth Innovation Team Development Plan of Shandong Province in China (2021KJ019)
  • 摘要: 应变硬化水泥基复合材料(SHCC)因其具有高延性、裂缝宽度可控等优点已被广泛应用于海洋腐蚀严重区域的混凝土结构加固与修复工程中。基于此,提出了海洋干湿循环作用下SHCC中氯离子传输的对流-扩散模型,并利用COMSOL仿真软件建立考虑纤维乱向分布的二维细观模型;通过开展人工室内模拟海洋浪溅区SHCC氯离子传输试验,分析了不同干湿循环比(3.0∶1、11.0∶1和85.4∶1)和不同暴露时间(30天、90天和180天)下的氯离子含量时空分布规律,对比验证了模拟氯盐传输行为的细观数值模型的有效性。结果表明:随着暴露时间的延长,SHCC氯离子峰值浓度增大,且随着干湿循环比的增加峰值浓度升高;随着渗透深度增大,氯离子浓度迅速下降并最终趋于稳定,使氯离子浓度整体表现出峰值浓度较高而传输深度较小的规律;基于Fick第二定律解析解并考虑对流区的影响,SHCC的表面氯离子浓度(Cs)和表观氯离子扩散系数(Dapp)均呈现明显的时变性,干湿循环比一定时,随着暴露时间的延长而分别增大和减小;当干湿循环比为85.4∶1,暴露时间为90天和180天时Cs相较于30天分别提高了51.72%和83.45%,Dapp分别降低了27.71%和48.50%;暴露时间一定时,随着干湿循环比的增加,CsDapp均呈现先增大后减小的趋势;最后将氯离子含量分布实测值与计算值进行对比,验证了所建立的干湿循环作用下氯盐传输的扩散-对流模型的适用性。

     

  • 图  1  聚乙烯醇(PVA)纤维随机投放流程图

    Figure  1.  Flow chart of randomly distributed polyvinyl alcohol(PVA) fibers

    ITZ—Interfacial transition zone

    图  2  PVA纤维随机分布的应变硬化水泥基复合材料(SHCC)模型

    Figure  2.  Strain hardening cement-based composite (SHCC) model with the random distribution of PVA fibers

    图  3  SHCC细观数值仿真模型

    Figure  3.  Mesoscopic numerical simulation model of SHCC

    图  4  不同干湿循环比下SHCC自由氯离子含量分布

    Figure  4.  Free chloride content distribution of SHCC under different cyclic drying-wetting ratios

    图  5  不同渗透深度处SHCC自由氯离子含量

    Figure  5.  Free chloride content of SHCC at different penetration depths

    图  6  SHCC自由氯离子含量计算值与试验值对比

    Figure  6.  Comparison between calculated value and tested data of free chloride content in SHCC

    图  7  SHCC自由氯离子含量分布云图

    Figure  7.  Free chloride content distribution in SHCC

    图  8  SHCC中自由氯离子含量计算值与文献[26]中试验值对比

    Figure  8.  Comparison between calculated value of free chloride content in SHCC and tested data in literature [26]

    表  1  干湿过程吸-脱附曲线的参数取值

    Table  1.   Parameters values of adsorption-desorption curves in dry and wet conditions

    Durationα/10−3mn
    Drying process1.0210.3241.480
    Wetting process5.1591.8741.874
    Notes: α, m, n—Empirical parameters of adsorption-desorption model.
    下载: 导出CSV

    表  2  PVA纤维的基本性质

    Table  2.   Properties of PVA fibers

    TypeDiameter/
    μm
    Length/
    mm
    Elasticity
    modulus/GPa
    Volume
    fraction/vol%
    PVA fiber4012412
    下载: 导出CSV

    表  3  胶凝材料化学成分组成

    Table  3.   Chemical composition of cementitious materials

    Chemical compositionCement/wt%Fly ash/wt%
    SiO2 17.04 52.00
    Al2O3 6.08 28.68
    Fe2O3 4.08 4.50
    CaO 53.57 8.07
    SO3 2.95 1.14
    MnO 0.38
    TiO2 0.52
    K2O 0.80 1.54
    P2O5 0.14
    MgO 1.18
    下载: 导出CSV

    表  4  SHCC试件配合比

    Table  4.   Mix proportion of SHCC specimens

    CompositionContent
    Cement550 kg·m−3
    Fine aggregate550 kg·m−3
    Water395 kg·m−3
    Fly ash650 kg·m−3
    PVA2vol%
    下载: 导出CSV

    表  5  氯盐侵蚀的干湿循环制度

    Table  5.   Cyclic drying-wetting regimes of chloride ingress

    αtOne drying-wetting cycleNumber of drying-wetting cycle
    ttdtw30 d90 d180 d
    3.0∶11 d18 h6 h3090180
    85.4∶13 d4270 min50 min1030 60
    11.0∶16 d132 h12 h 515 30
    Notes: αt—Time ratio of drying-wetting cycle; t—Total exposure time; td—Time of drying period; tw—Time of wetting period.
    下载: 导出CSV

    表  6  SHCC表面氯离子含量Cs和表观氯离子扩散系数Dapp

    Table  6.   Surface chloride content Cs and apparent chloride diffusion coefficient Dapp of SHCC

    Exposure time/d3∶111∶185.4∶1
    Cs/wt%Dapp/(mm2·s−1)Cs/wt%Dapp/(mm2·s−1)Cs/wt%Dapp/(mm2·s−1)
    301.403.341.454.381.454.33
    902.102.702.213.192.203.13
    1802.171.572.682.342.662.23
    下载: 导出CSV

    表  7  文献[26]中PVA纤维混凝土的氯离子传输模型计算参数值

    Table  7.   Calculated parameter values of chloride transport model for PVA fiber reinforced concrete in literature [26]

    GroupαtOne cyclic
    period/d
    Cs/wt%Dapp/
    (10−12 m2·s−1)
    P-281∶1140.242.47
    P-560.282.09
    P-840.391.32
    P-1120.620.80
    Notes: P stands for PVA fiber; 28, 56, 84 and 112 represent exposure time of 28 d, 56 d, 84 d and 112 d, respectively.
    下载: 导出CSV
  • [1] GUO Y Y, LUO L, LIU T T, et al. A review of low-carbon technologies and projects for the global cement industry[J]. Journal of Environmental Sciences,2024,136:682-697.
    [2] 童良玉, 刘清风. 纤维增强混凝土氯离子扩散系数的多尺度预测模型[J]. 复合材料学报, 2022, 39(11):5181-5191.

    TONG Liangyu, LIU Qingfeng. Multi-scale prediction model of chloride diffusivity of fiber reinforced concrete[J]. Acta Materiae Compositae Sinica,2022,39(11):5181-5191(in Chinese).
    [3] 郭伟娜, 鲍玖文, 张鹏, 等. 基于数字图像方法的混掺纤维应变硬化水泥基复合材料力学性能及变形特征[J]. 硅酸盐学报, 2022, 50(5):1401-1409.

    GUO Weina, BAO Jiuwen, ZHANG Peng, et al. Mechanical properties and deformation characteristics of hybrid fiber strain hardening cementitious composites based on digital image method[J]. Journal of the Chinese Ceramic Society,2022,50(5):1401-1409(in Chinese).
    [4] 庄智杰. 实海暴露和人工模拟潮汐区水泥基材料氯离子侵蚀机理研究[D]. 青岛: 青岛理工大学, 2021.

    ZHUANG Zhijie. Study on mechanism of chloride ion erosion on cement-based materials in real sea exposure and artificial Tidal zone[D]. Qingdao: Qingdao University of Technology, 2021(in Chinese).
    [5] PAULS C, BABAFEMIA J. A review of the mechanical and durability properties of strain hardening cement-based composite (SHCC)[J]. Journal of Sustainable Cement-based Materials,2018,7(1):57-78. doi: 10.1080/21650373.2017.1394236
    [6] 高淑玲, 王文昌. 应变硬化水泥基复合材料性能与应用研究进展[J]. 材料导报, 2019, 33(21):3620-3629.

    GAO Shuling, WANG Wenchang. A review on performance and application of strain hardening cementitious composites[J]. Materials Reports,2019,33(21):3620-3629(in Chinese).
    [7] ZHANG Y, DI LUZIO G, ALNAGGAR M. Coupled multi-physics simulation of chloride diffusion in saturated and unsaturated concrete[J]. Construction and Building Materials,2021,292:123394. doi: 10.1016/j.conbuildmat.2021.123394
    [8] HUANG D G, NIU D T, SU L, et al. Chloride diffusion behavior of coral aggregate concrete under drying-wetting cycles[J]. Construction and Building Materials,2021,270:121485. doi: 10.1016/j.conbuildmat.2020.121485
    [9] 姜文镪, 刘清风. 冻融循环下混凝土中氯离子传输研究进展[J]. 硅酸盐学报, 2020, 48(2):258-272.

    JIANG Wenqiang, LIU Qingfeng. Chloride transport in concrete subjected to freeze-thaw cycles—A short review[J]. Journal of the Chinese Ceramic Society,2020,48(2):258-272(in Chinese).
    [10] 张鹏, 庄智杰, 鲍玖文, 等. 人工模拟海洋潮汐区应变硬化水泥基复合材料抗氯盐侵蚀性能[J]. 建筑材料学报, 2021, 24(1):1-6, 21. doi: 10.3969/j.issn.1007-9629.2021.01.001

    ZHANG Peng, ZHUANG Zhijie, BAO Jiuwen, et al. Chloride resistance of strain hardening cementitious composites under the artificially simulated marine tidal zone[J]. Journal of Building Materials,2021,24(1):1-6, 21(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.01.001
    [11] WANG J, DONG H. PVA fiber-reinforced ultrafine fly ash concrete: Engineering properties, resistance to chloride ion penetration, and microstructure[J]. Journal of Building Engineering,2023,66:105858. doi: 10.1016/j.jobe.2023.105858
    [12] PAUL S C, VAN ZIJL G P A G, BABAFEMI A J, et al. Chloride ingress in cracked and uncracked SHCC under cyclic wetting-drying exposure[J]. Construction and Building Materials,2016,114:232-240. doi: 10.1016/j.conbuildmat.2016.03.206
    [13] KOBAYASHI K, SUZUKI M, DUNG L A, et al. The effects of PE and PVA fiber and water cement ratio on chloride penetration and rebar corrosion protection performance of cracked SHCC[J]. Construction and Building Materials,2018,178:372-383. doi: 10.1016/j.conbuildmat.2018.05.163
    [14] 鲍玖文, 魏佳楠, 张鹏, 等. 海洋环境下混凝土抗氯离子侵蚀的相似性研究进展[J]. 硅酸盐学报, 2020, 48(5):689-704. doi: 10.14062/j.issn.0454-5648.2020.05.20190756

    BAO Jiuwen, WEI Jianan, ZHANG Peng, et al. Research progress of similarity of resistance to chloride ingress into concrete exposed to marine environment[J]. Journal of the Chinese Ceramic Society,2020,48(5):689-704(in Chinese). doi: 10.14062/j.issn.0454-5648.2020.05.20190756
    [15] 刘清风. 基于多离子传输的混凝土细微观尺度多相数值模拟[J]. 硅酸盐学报, 2018, 46(8):1074-1080.

    LIU Qingfeng. Multi-phase modelling of concrete at meso-micro scale based on multi-species transport[J]. Journal of the Chinese Ceramic Society,2018,46(8):1074-1080(in Chinese).
    [16] 张鹏. 应变硬化纤维增强水泥基复合材料的有限元模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    ZHANG Peng. Finite elements simulation of strain hardening fiber reinforced cementitious composites[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese).
    [17] LI J X, WENG J, YANG E H. Stochastic model of tensile behavior of strain-hardening cementitious composites (SHCCs)[J]. Cement and Concrete Research,2019,124:105856. doi: 10.1016/j.cemconres.2019.105856
    [18] LU C, PANG Z M, CHU H, et al. Experimental and numerical investigation on the long-term performance of engineered cementitious composites (ECC) with high-volume fly ash and domestic polyvinyl alcohol (PVA) fibers[J]. Journal of Building Engineering,2023,70:106324. doi: 10.1016/j.jobe.2023.106324
    [19] 熊阳. PVA纤维混凝土的力学性能研究及有限元分析[D]. 武汉: 湖北工业大学, 2016.

    XIONG Yang. Mechanical properties research and finite element analysis for PVA fiber reinforced concrete[D]. Wuhan: Hubei University of Technology, 2016(in Chinese).
    [20] CHEN D S, YANG K K, HU D L, et al. A meso-stochastic research on the chloride transport in unsaturated concrete[J]. Construction and Building Materials,2021,273:121986. doi: 10.1016/j.conbuildmat.2020.121986
    [21] 薛兵. 基于细观尺度的钢纤维混凝土损伤破坏数值模拟研究[D]. 徐州: 中国矿业大学, 2017.

    XUE Bing. The numerical simulation study on the damage and fracture of steel fiber reinforced concrete based on mesoscopic scale[D]. Xuzhou: China University of Mining and Technology, 2017(in Chinese).
    [22] 中华人民共和国交通运输部. 水运工程混凝土试验检测技术规范: JTS/T 236—2019[S]. 北京: 人民交通出版社, 2019.

    Ministry of Transport of the People's Republic of China. Technical specification for concrete testing of port and waterway engineering: JTS/T 236—2019[S]. Beijing: China Communication Press, 2019(in Chinese).
    [23] 陈伟. 模拟潮差环境下水泥基材料氯离子渗透时变相似性及微观机理[D]. 杭州: 浙江工业大学, 2016.

    CHEN Wei. Time-varying similarity and micro mechanism of chloride ion penetration in cement-based materials in simulation tidal environment[D]. Hangzhou: Zhejiang University of Technology, 2016(in Chinese).
    [24] 魏佳楠. 浪溅区混凝土氯离子侵蚀的室内模拟和实海暴露相似性研究[D]. 青岛: 青岛理工大学, 2021.

    WEI Jianan. Study on similarity between indoor simulation and marine exposure on chloride penetration into concrete in splash zone[D]. Qingdao: Qingdao University of Technology, 2021(in Chinese).
    [25] 郭伟娜, 张鹏, 鲍玖文, 等. 粉煤灰掺量对应变硬化水泥基复合材料力学性能及损伤特征的影响[J]. 建筑材料学报, 2022, 25(6):551-557. doi: 10.3969/j.issn.1007-9629.2022.06.001

    GUO Weina, ZHANG Peng, BAO Jiuwen, et al. Effect of fly ash content on mechanical properties and damage characteristics of strain-hardening cementitious composites[J]. Journal of Building Materials,2022,25(6):551-557(in Chinese). doi: 10.3969/j.issn.1007-9629.2022.06.001
    [26] 陈伟. PVA纤维混凝土力学性能及抗氯离子渗透性能试验研究[D]. 包头: 内蒙古科技大学, 2019.

    CHEN Wei. Experimental study on mechanical properties and resistance chloride penetration of PVA fiber concrete[D]. Baotou: Inner Mongolia University of Science & Technology, 2019(in Chinese).
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  387
  • HTML全文浏览量:  187
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 修回日期:  2023-07-03
  • 录用日期:  2023-08-12
  • 网络出版日期:  2023-08-25
  • 刊出日期:  2024-04-01

目录

    /

    返回文章
    返回