Mesoscale numerical analysis of chloride ingress behavior of strain hardening cement-based composites
-
摘要: 应变硬化水泥基复合材料(SHCC)因其具有高延性、裂缝宽度可控等优点已被广泛应用于海洋腐蚀严重区域的混凝土结构加固与修复工程中。基于此,提出了海洋干湿循环作用下SHCC中氯离子传输的对流-扩散模型,并利用COMSOL仿真软件建立考虑纤维乱向分布的二维细观模型;通过开展人工室内模拟海洋浪溅区SHCC氯离子传输试验,分析了不同干湿循环比(3.0∶1、11.0∶1和85.4∶1)和不同暴露时间(30天、90天和180天)下的氯离子含量时空分布规律,对比验证了模拟氯盐传输行为的细观数值模型的有效性。结果表明:随着暴露时间的延长,SHCC氯离子峰值浓度增大,且随着干湿循环比的增加峰值浓度升高;随着渗透深度增大,氯离子浓度迅速下降并最终趋于稳定,使氯离子浓度整体表现出峰值浓度较高而传输深度较小的规律;基于Fick第二定律解析解并考虑对流区的影响,SHCC的表面氯离子浓度(Cs)和表观氯离子扩散系数(Dapp)均呈现明显的时变性,干湿循环比一定时,随着暴露时间的延长而分别增大和减小;当干湿循环比为85.4∶1,暴露时间为90天和180天时Cs相较于30天分别提高了51.72%和83.45%,Dapp分别降低了27.71%和48.50%;暴露时间一定时,随着干湿循环比的增加,Cs和Dapp均呈现先增大后减小的趋势;最后将氯离子含量分布实测值与计算值进行对比,验证了所建立的干湿循环作用下氯盐传输的扩散-对流模型的适用性。
-
关键词:
- 应变硬化水泥基复合材料 /
- 干湿循环 /
- 氯离子传输 /
- 细观数值模拟
Abstract: Strain hardening cement-based composite (SHCC) owning to its advantages of high ductility and controllable crack width has been widely used in the strengthening and repairing of concrete structures exposed to severe marine corrosion zones. Based on this, a convection-diffusion model of chloride transport in SHCC subjected to marine drying-wetting cycles was proposed, and a two-dimensional mesoscopic model considering the chaotic distribution of fibers was established by COMSOL simulation software. The spatial and temporal distribution of chloride content under different drying-wetting ratios (3.0∶1, 11.0∶1 and 85.4∶1) and exposure durations (30 days, 90 days and 180 days) was analyzed by conducting a simulated indoor test of chloride ingress into SHCC. The effectiveness of the mesoscopic numerical model to simulate chloride ingress behavior was contrastively verified. The results show that the peak chloride concentration inside SHCC increases with the extension of exposure time, and similarly increases with the increase of drying-wetting ratio. However, with the increase of penetration depth, the chloride concentration rapidly decreases and tends to be stable eventually, which make the chloride content as a whole show a higher peak concentration and a smaller penetration depth. According to the analytical solution to Fick's second law and considering the effect of convection zone, both the surface chloride concentration (Cs) and apparent chloride diffusion coefficient (Dapp) of SHCC show obvious time-varying characteristics. At a given drying-wetting cycle ratio, the Cs and Dapp increase and decrease as the exposure time increases, respectively. When the drying-wetting cycle ratio is 85.4∶1, compared to 30 days, the Cs of SHCC for exposure to 90 days and 180 days increase by 51.72% and 83.45%, and the Dapp decreases by 27.71% and 48.50%, respectively. At the same exposure time, as the drying-wetting cycle ratio increases, both the Cs and Dapp first increase and then decrease. Finally, the comparison between the measured data and calculated results of the chloride content distribution indicates the feasibility of the proposed convection-diffusion model under the cyclic drying-wetting action to depict the chloride transport behavior in SHCC.-
Key words:
- SHCC /
- drying-wetting cycles /
- chloride transport /
- mesoscale numerical simulation
-
表 1 干湿过程吸-脱附曲线的参数取值
Table 1. Parameters values of adsorption-desorption curves in dry and wet conditions
Duration α/10−3 m n Drying process 1.021 0.324 1.480 Wetting process 5.159 1.874 1.874 Notes: α, m, n—Empirical parameters of adsorption-desorption model. 表 2 PVA纤维的基本性质
Table 2. Properties of PVA fibers
Type Diameter/
μmLength/
mmElasticity
modulus/GPaVolume
fraction/vol%PVA fiber 40 12 41 2 表 3 胶凝材料化学成分组成
Table 3. Chemical composition of cementitious materials
Chemical composition Cement/wt% Fly ash/wt% SiO2 17.04 52.00 Al2O3 6.08 28.68 Fe2O3 4.08 4.50 CaO 53.57 8.07 SO3 2.95 1.14 MnO 0.38 — TiO2 0.52 — K2O 0.80 1.54 P2O5 0.14 — MgO — 1.18 表 4 SHCC试件配合比
Table 4. Mix proportion of SHCC specimens
Composition Content Cement 550 kg·m−3 Fine aggregate 550 kg·m−3 Water 395 kg·m−3 Fly ash 650 kg·m−3 PVA 2vol% 表 5 氯盐侵蚀的干湿循环制度
Table 5. Cyclic drying-wetting regimes of chloride ingress
αt One drying-wetting cycle Number of drying-wetting cycle t td tw 30 d 90 d 180 d 3.0∶1 1 d 18 h 6 h 30 90 180 85.4∶1 3 d 4270 min 50 min 10 30 60 11.0∶1 6 d 132 h 12 h 5 15 30 Notes: αt—Time ratio of drying-wetting cycle; t—Total exposure time; td—Time of drying period; tw—Time of wetting period. 表 6 SHCC表面氯离子含量Cs和表观氯离子扩散系数Dapp
Table 6. Surface chloride content Cs and apparent chloride diffusion coefficient Dapp of SHCC
Exposure time/d 3∶1 11∶1 85.4∶1 Cs/wt% Dapp/(mm2·s−1) Cs/wt% Dapp/(mm2·s−1) Cs/wt% Dapp/(mm2·s−1) 30 1.40 3.34 1.45 4.38 1.45 4.33 90 2.10 2.70 2.21 3.19 2.20 3.13 180 2.17 1.57 2.68 2.34 2.66 2.23 表 7 文献[26]中PVA纤维混凝土的氯离子传输模型计算参数值
Table 7. Calculated parameter values of chloride transport model for PVA fiber reinforced concrete in literature [26]
Group αt One cyclic
period/dCs/wt% Dapp/
(10−12 m2·s−1)P-28 1∶1 14 0.24 2.47 P-56 0.28 2.09 P-84 0.39 1.32 P-112 0.62 0.80 Notes: P stands for PVA fiber; 28, 56, 84 and 112 represent exposure time of 28 d, 56 d, 84 d and 112 d, respectively. -
[1] GUO Y Y, LUO L, LIU T T, et al. A review of low-carbon technologies and projects for the global cement industry[J]. Journal of Environmental Sciences,2024,136:682-697. [2] 童良玉, 刘清风. 纤维增强混凝土氯离子扩散系数的多尺度预测模型[J]. 复合材料学报, 2022, 39(11):5181-5191.TONG Liangyu, LIU Qingfeng. Multi-scale prediction model of chloride diffusivity of fiber reinforced concrete[J]. Acta Materiae Compositae Sinica,2022,39(11):5181-5191(in Chinese). [3] 郭伟娜, 鲍玖文, 张鹏, 等. 基于数字图像方法的混掺纤维应变硬化水泥基复合材料力学性能及变形特征[J]. 硅酸盐学报, 2022, 50(5):1401-1409.GUO Weina, BAO Jiuwen, ZHANG Peng, et al. Mechanical properties and deformation characteristics of hybrid fiber strain hardening cementitious composites based on digital image method[J]. Journal of the Chinese Ceramic Society,2022,50(5):1401-1409(in Chinese). [4] 庄智杰. 实海暴露和人工模拟潮汐区水泥基材料氯离子侵蚀机理研究[D]. 青岛: 青岛理工大学, 2021.ZHUANG Zhijie. Study on mechanism of chloride ion erosion on cement-based materials in real sea exposure and artificial Tidal zone[D]. Qingdao: Qingdao University of Technology, 2021(in Chinese). [5] PAULS C, BABAFEMIA J. A review of the mechanical and durability properties of strain hardening cement-based composite (SHCC)[J]. Journal of Sustainable Cement-based Materials,2018,7(1):57-78. doi: 10.1080/21650373.2017.1394236 [6] 高淑玲, 王文昌. 应变硬化水泥基复合材料性能与应用研究进展[J]. 材料导报, 2019, 33(21):3620-3629.GAO Shuling, WANG Wenchang. A review on performance and application of strain hardening cementitious composites[J]. Materials Reports,2019,33(21):3620-3629(in Chinese). [7] ZHANG Y, DI LUZIO G, ALNAGGAR M. Coupled multi-physics simulation of chloride diffusion in saturated and unsaturated concrete[J]. Construction and Building Materials,2021,292:123394. doi: 10.1016/j.conbuildmat.2021.123394 [8] HUANG D G, NIU D T, SU L, et al. Chloride diffusion behavior of coral aggregate concrete under drying-wetting cycles[J]. Construction and Building Materials,2021,270:121485. doi: 10.1016/j.conbuildmat.2020.121485 [9] 姜文镪, 刘清风. 冻融循环下混凝土中氯离子传输研究进展[J]. 硅酸盐学报, 2020, 48(2):258-272.JIANG Wenqiang, LIU Qingfeng. Chloride transport in concrete subjected to freeze-thaw cycles—A short review[J]. Journal of the Chinese Ceramic Society,2020,48(2):258-272(in Chinese). [10] 张鹏, 庄智杰, 鲍玖文, 等. 人工模拟海洋潮汐区应变硬化水泥基复合材料抗氯盐侵蚀性能[J]. 建筑材料学报, 2021, 24(1):1-6, 21. doi: 10.3969/j.issn.1007-9629.2021.01.001ZHANG Peng, ZHUANG Zhijie, BAO Jiuwen, et al. Chloride resistance of strain hardening cementitious composites under the artificially simulated marine tidal zone[J]. Journal of Building Materials,2021,24(1):1-6, 21(in Chinese). doi: 10.3969/j.issn.1007-9629.2021.01.001 [11] WANG J, DONG H. PVA fiber-reinforced ultrafine fly ash concrete: Engineering properties, resistance to chloride ion penetration, and microstructure[J]. Journal of Building Engineering,2023,66:105858. doi: 10.1016/j.jobe.2023.105858 [12] PAUL S C, VAN ZIJL G P A G, BABAFEMI A J, et al. Chloride ingress in cracked and uncracked SHCC under cyclic wetting-drying exposure[J]. Construction and Building Materials,2016,114:232-240. doi: 10.1016/j.conbuildmat.2016.03.206 [13] KOBAYASHI K, SUZUKI M, DUNG L A, et al. The effects of PE and PVA fiber and water cement ratio on chloride penetration and rebar corrosion protection performance of cracked SHCC[J]. Construction and Building Materials,2018,178:372-383. doi: 10.1016/j.conbuildmat.2018.05.163 [14] 鲍玖文, 魏佳楠, 张鹏, 等. 海洋环境下混凝土抗氯离子侵蚀的相似性研究进展[J]. 硅酸盐学报, 2020, 48(5):689-704. doi: 10.14062/j.issn.0454-5648.2020.05.20190756BAO Jiuwen, WEI Jianan, ZHANG Peng, et al. Research progress of similarity of resistance to chloride ingress into concrete exposed to marine environment[J]. Journal of the Chinese Ceramic Society,2020,48(5):689-704(in Chinese). doi: 10.14062/j.issn.0454-5648.2020.05.20190756 [15] 刘清风. 基于多离子传输的混凝土细微观尺度多相数值模拟[J]. 硅酸盐学报, 2018, 46(8):1074-1080.LIU Qingfeng. Multi-phase modelling of concrete at meso-micro scale based on multi-species transport[J]. Journal of the Chinese Ceramic Society,2018,46(8):1074-1080(in Chinese). [16] 张鹏. 应变硬化纤维增强水泥基复合材料的有限元模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.ZHANG Peng. Finite elements simulation of strain hardening fiber reinforced cementitious composites[D]. Harbin: Harbin Institute of Technology, 2017(in Chinese). [17] LI J X, WENG J, YANG E H. Stochastic model of tensile behavior of strain-hardening cementitious composites (SHCCs)[J]. Cement and Concrete Research,2019,124:105856. doi: 10.1016/j.cemconres.2019.105856 [18] LU C, PANG Z M, CHU H, et al. Experimental and numerical investigation on the long-term performance of engineered cementitious composites (ECC) with high-volume fly ash and domestic polyvinyl alcohol (PVA) fibers[J]. Journal of Building Engineering,2023,70:106324. doi: 10.1016/j.jobe.2023.106324 [19] 熊阳. PVA纤维混凝土的力学性能研究及有限元分析[D]. 武汉: 湖北工业大学, 2016.XIONG Yang. Mechanical properties research and finite element analysis for PVA fiber reinforced concrete[D]. Wuhan: Hubei University of Technology, 2016(in Chinese). [20] CHEN D S, YANG K K, HU D L, et al. A meso-stochastic research on the chloride transport in unsaturated concrete[J]. Construction and Building Materials,2021,273:121986. doi: 10.1016/j.conbuildmat.2020.121986 [21] 薛兵. 基于细观尺度的钢纤维混凝土损伤破坏数值模拟研究[D]. 徐州: 中国矿业大学, 2017.XUE Bing. The numerical simulation study on the damage and fracture of steel fiber reinforced concrete based on mesoscopic scale[D]. Xuzhou: China University of Mining and Technology, 2017(in Chinese). [22] 中华人民共和国交通运输部. 水运工程混凝土试验检测技术规范: JTS/T 236—2019[S]. 北京: 人民交通出版社, 2019.Ministry of Transport of the People's Republic of China. Technical specification for concrete testing of port and waterway engineering: JTS/T 236—2019[S]. Beijing: China Communication Press, 2019(in Chinese). [23] 陈伟. 模拟潮差环境下水泥基材料氯离子渗透时变相似性及微观机理[D]. 杭州: 浙江工业大学, 2016.CHEN Wei. Time-varying similarity and micro mechanism of chloride ion penetration in cement-based materials in simulation tidal environment[D]. Hangzhou: Zhejiang University of Technology, 2016(in Chinese). [24] 魏佳楠. 浪溅区混凝土氯离子侵蚀的室内模拟和实海暴露相似性研究[D]. 青岛: 青岛理工大学, 2021.WEI Jianan. Study on similarity between indoor simulation and marine exposure on chloride penetration into concrete in splash zone[D]. Qingdao: Qingdao University of Technology, 2021(in Chinese). [25] 郭伟娜, 张鹏, 鲍玖文, 等. 粉煤灰掺量对应变硬化水泥基复合材料力学性能及损伤特征的影响[J]. 建筑材料学报, 2022, 25(6):551-557. doi: 10.3969/j.issn.1007-9629.2022.06.001GUO Weina, ZHANG Peng, BAO Jiuwen, et al. Effect of fly ash content on mechanical properties and damage characteristics of strain-hardening cementitious composites[J]. Journal of Building Materials,2022,25(6):551-557(in Chinese). doi: 10.3969/j.issn.1007-9629.2022.06.001 [26] 陈伟. PVA纤维混凝土力学性能及抗氯离子渗透性能试验研究[D]. 包头: 内蒙古科技大学, 2019.CHEN Wei. Experimental study on mechanical properties and resistance chloride penetration of PVA fiber concrete[D]. Baotou: Inner Mongolia University of Science & Technology, 2019(in Chinese).