Effect of current intensity on electrochemical activation of carbon fibers surface in sulfuric acid environment
-
摘要: 碳纤维的碳含量在90%以上,表面惰性强,表面活化处理是其制备过程中的重要工艺。研究采用XPS、Raman、动态接触角、单丝拉伸和界面剪切强度等测试方法,借助非接触式阳极氧化装置,明确了稀H2SO4作为电解液时电流强度对电化学活化碳纤维表面结构和性能的影响。结果表明:活性氧[O]进攻碳纤维表面使其含氧活性官能团含量增加,在本研究范围内电流越大活化效果越显著;处于阳极附近的碳纤维,受静电与扩散作用影响,SO4 2−和S2O8 2−进入碳结构内部间隙,碳纤维表面S/C升高,直径增大。在SO4 2−刻蚀作用下,碳纤维表面无序碳结构脱落而缺陷减少,石墨化程度降低;SO4 2−和S2O8 2−插层进入碳结构内部,通过静电作用形成缔合结构,在刻蚀和插层的共同作用下,碳纤维的单丝拉伸强度提升,最高提高了16.77%。0.5 A电流处理后,碳纤维表面粗糙度提升,表面可与环氧树脂基体反应的羟基、羧基官能团含量最高,碳纤维表面极性最强,与去离子水的动态接触角由未处理时的89.9°降低到50.6°,相应的复合材料界面剪切强度提高了47.70%。Abstract: Carbon fibers with a carbon content of over 90% have the characteristic of strong surface inertness, so surface activation treatment is an essential process in their preparation. The effect of current intensity on the physicochemical structure and properties of electrochemically activated carbon fiber surface under dilute H2SO4 electrolyte were explored by XPS, Raman, dynamic contact angle, monofilament tensile strength and interfacial shear strength, and non-contact anodizing device was used. The results show that the content of oxygen-containing functional groups increases by the attack of reactive oxygen [O] on the surface of carbon fibers, and the activation effect is significant with increasing current within the scope of this study. Carbon fibers near the anode are affected by static electricity and diffusion. SO4 2− and S2O8 2− enter the internal gap of carbon structure, so the surface S/C and diameter of carbon fibers increase. Under the action of SO4 2− etching, the disordered carbon structure on the surface of carbon fiber fell off, the degree of graphitization decreases. SO4 2− and S2O8 2− are intercalated into the carbon structures, forming an associated structure through electrostatic interaction. Under the combined effect of etching and intercalation, the monofilament tensile strength of carbon fibers has been improved, with a maximum increase of 16.77%. After 0.5 A current treatment, the surface roughness of carbon fiber is improved, the content of hydroxyl and carboxyl functional groups on the carbon fiber surface that can react with the epoxy resin matrix is the highest, the surface polarity of carbon fiber is the strongest, the dynamic contact angle with deionized water is reduced from 89.9° of untreated to 50.6°, and the corresponding interfacial shear strength of the composite is increased by 47.70%.
-
表 1 碳纤维表面官能团含量
Table 1. Surface functional group contents of carbon fibers
Current intensity
/AContent of functional group/% C=C C—C C—OH C=O COOH Untreated 0.0 A 70.33 9.07 6.95 3.72 9.93 H2SO4 0.1 A 68.26 11.80 7.75 5.19 7.01 H2SO4 0.3 A 60.03 14.53 11.21 4.70 9.52 H2SO4 0.5 A 56.31 10.41 16.83 5.72 10.74 表 2 氧化前后碳纤维的表面粗糙度
Table 2. Surface roughness of carbon fibers before and after oxidation
Surface roughness Different current intensities of electrochemical oxidation Untreated 0 A H2SO4 0.1 A H2SO4 0.5 A Ra/nm 36.4 39.7 41.3 RMS/nm 42.1 46.7 47.7 Notes: Ra—Arithmetic mean of the absolute value of the roughness curve relative to the center line; RMS—Root-mean-square deviation of the roughness curve profile. -
[1] PEREPELKIN K E. Oxidized (cyclized) polyacrylonitrile fibers—Oxypan. A review[J]. Fibre Chemistry,2003,35:409-416. doi: 10.1023/B:FICH.0000020769.42823.31 [2] PARK S J, JANG Y S, SHIM J W, et al. Studies on pore structures and surface functional groups of pitch-based activated carbon fibers[J]. Journal of Colloid and Interface Science,2003,260(2):259-264. doi: 10.1016/S0021-9797(02)00081-4 [3] WU Q, PAN D. A new cellulose based carbon fiber from a lyocell precursor[J]. Textile Research Journal,2002,72(5):405-410. doi: 10.1177/004051750207200506 [4] LI W, LONG D H, MIYAWAKI J, et al. Structural features of polyacrylonitrile-based carbon fibers[J]. Journal of Mateials Science,2012,47:919-928. doi: 10.1007/s10853-011-5872-2 [5] MA Y Y, WANG J T, LU K, et al. The evolution of carbon fiber elements and their effects on fiber mechanical properties from molecular dynamics[J]. Computational Materials Science,2023,220(5):112029. [6] 代少伟, 周玉敬, 李伟东, 等. 氧化石墨烯-碳纳米管复合膜层间增韧碳纤维/环氧树脂复合材料[J]. 复合材料学报, 2023, 40(7):3861-3872. doi: 10.13801/j.cnki.fhclxb.20221027.003DAI Shaowei, ZHOU Yujing, LI Weidong, et al. Interlaminar toughening of carbon fiber/epoxy composites with graphene oxide-carbon nanotube composite film[J]. Acta Materiae Compositae Sinica,2023,40(7):3861-3872(in Chinese). doi: 10.13801/j.cnki.fhclxb.20221027.003 [7] RUAN R Y, YE L W, FENG H, et al. High temperature evolution of the microstructure in the radial direction of PAN-based carbon fibers and its relationship to mechanical properties[J]. New Carbon Materials,2020,35(3):295-306. doi: 10.1016/S1872-5805(20)60491-7 [8] 符平坡, 丁华, 曾祥瑞, 等. 碳纤维复合材料-铝合金自冲铆接头成形规律及力学性能[J]. 复合材料学报, 2023, 40(8):4522-4535. doi: 10.13801/j.cnki.fhclxb.20221110.003FU Pingpo, DING Hua, ZENG Xiangrui, et al. Forming law and mechanical property of carbon fibre reinforced plastics and aluminum alloy self-piercing riveted joint[J]. Acta Materiae Compositae Sinica,2023,40(8):4522-4535(in Chinese). doi: 10.13801/j.cnki.fhclxb.20221110.003 [9] SUN T, ZHANG X Q, QIU B W, et al. Controllable construction of gradient modulus intermediate layer on high strength and high modulus carbon fibers to enhance interfacial properties of epoxy composites by efficient electrochemical grafting[J]. Composites Part B: Engineering,2022,247(12):110279. [10] 杨红娟, 杨正岩, 杨雷, 等. 碳纤维复合材料损伤的超声检测与成像方法研究进展[J]. 复合材料学报, 2023, 40(8):4297-4319.YANG Hongjuan, YANG Zhengyan, YANG Lei, et al. Progress in ultrasonic testing and imaging method for damage of carbon fiber composites[J]. Acta Materiae Compositae Sinica,2023,40(8):4297-4319(in Chinese). [11] 王云峰, 王一苇, 徐樑华, 等. PAN预氧结构径向调控及其对炭纤维性能的影响[J]. 新型炭材料, 2021, 36(4):827-834. doi: 10.1016/S1872-5805(20)60516-9WANG Yunfeng, WANG Yiwei, XU Lianghua, et al. Radial adjustment of PAN preoxygenated structure and its effect on the properties of carbon fibers[J]. New Carbon Materials,2021,36(4):827-834(in Chinese). doi: 10.1016/S1872-5805(20)60516-9 [12] HOU Y P, SUN T Q. Wettability modification of polyacrylonitrile (PAN)-based high modulus carbon fibers with epoxy resin by low temperature plasma[J]. The Journal of Adhesion,2013,89(1-3):192-204. [13] XIE J F, XIN D W, CAO H Y, et al. Improving carbon fiber adhesion to polyimide with atmospheric pressure plasma treatment[J]. Surface & Coatings Technology,2011,206(2/3):191-201. [14] LEE E S, LEE C H, CHUN Y S, et al. Effect of hydrogen plasma-mediated surface modification of carbon fibers on the mechanical properties of carbon-fiber-reinforced polyetherimide composites[J]. Composites Part B: Engineering,2017,116(5):451-458. [15] ZHAO Y, ZHANG C Y, SHAO X, et al. Effect of atmospheric plasma treatment on carbon fiber/epoxy interfacial adhesion[J]. Journal of Adhesion Science and Technology,2011,25(20):2897-2908. doi: 10.1163/016942411X576572 [16] WANG X Y, QIAN X, ZHANG Y G, et al. Surface oxidation of PAN-based ultrahigh modulus carbon fibers (UHMCFs) and its effect on the properties of UHMCF/EP composites[J]. Carbon Letters,2021,31(3):449-461. doi: 10.1007/s42823-020-00173-7 [17] SHIM J W, PARK S J, RYU S K. Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers[J]. Carbon: An International Journal Sponsored by the American Carbon Society,2001,39(11):1635-1642. [18] BAUER M, BERATZ S, RUHLAND K, et al. Anodic oxidation of carbon fibres in alkaline and acidic electrolyte: Quantification of surface functional groups by gas-phase derivatization[J]. Applied Surface Science,2020,506(3):144947. [19] KING T R, ADAMS D F, DANILE A B. Anodic oxidation of pitch-precursor carbon fibers in ammonium sulfate solutions: Batch screening treatment results[J]. Composites Science and Technology,1992,44(4):351-359. doi: 10.1016/0266-3538(92)90071-A [20] FITZER E, JAGER H. Anodic oxidation of high modulus carbon fibres in sulphuric acid[J]. Journal of Applied Electrochemistry,1988,18(2):178-182. doi: 10.1007/BF01009259 [21] CHEN S S, CAO Y W, FENG J C. Polydopamine as an efficient and robust platform to functionalize carbon fiber for high-performance polymer composites[J]. ACS Applied Materials & Interfaces,2014,6(1):349-356. [22] YAN F, LIU L, LI M, et al. One-step electrodeposition of Cu/CNT/CF multiscale reinforcement with substantially improved thermal/electrical conductivity and interfacial properties of epoxy composites[J]. Composites Part A: Applied Science and Manufacturing,2019,125:105530. doi: 10.1016/j.compositesa.2019.105530 [23] LI Y B, PENG Q Y, HE X D. Synthesis and characterization of a new hierarchical reinforcement by chemically grafting graphene oxide onto carbon fibers[J]. Journal of Materials Chemistry,2012,22(36):18748-18752. doi: 10.1039/c2jm32596a [24] YUMITORI S, NAKANISHI Y. Effect of anodic oxidation of coal tar pitch-based carbon fibre on adhesion in epoxy matrix: Part 1. Comparison between H2SO4 and NaOH solutions[J]. Composites Part A: Applied Science and Manufacturing,1996,27(1):1051-1058. [25] LINDSAY B, ABEL M, WATTS J F. A study of electrochemically treated PAN based carbon fibres by IGC and XPS[J]. Carbon,2007,45(12):2433-2444. doi: 10.1016/j.carbon.2007.04.017 [26] LIU J, TIAN Y L, CHEN Y J, et al. Interfacial and mechanical properties of carbon fibers modified by electrochemical oxidation in (NH4HCO3)/(NH4)2C2O4·H2O aqueous compound solution[J]. Applied Surface Science,2010,256(21):6199-6204. doi: 10.1016/j.apsusc.2010.03.141 [27] KOZLOWSKI C, SHERWOOD P M A. X-ray photoelectron spectroscopic studies of carbon fibre surfaces VII-electrochemical treatment in ammonium salt electrolytes[J]. Carbon,1986,24(3):357-363. doi: 10.1016/0008-6223(86)90238-1 [28] QIAN X, WANG X F, OUYANG Q, et al. Effect of ammonium-salt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation[J]. Applied Surface Science,2012,259(10):238-244. [29] 房宽峻, 蔡玉青, 戴瑾瑾, 等. 影响电化学氧化后碳纤维表面官能团含量的因素[J]. 青岛大学学报, 1998, 13(2):14-16, 23.FANG Kuanjun, CAI Yuqing, DAI Jinjin, et al. Inverstigation on surface functional groups of carbon fibers[J]. Journal of Qingdao University,1998,13(2):14-16, 23(in Chinese). [30] KAINOURGIOS P, KARTSONAKIS I A, DRAGATOGIANNIS D A, et al. Electrochemical surface functionalization of carbon fibers for chemical affinity improvement with epoxy resins[J]. Applied Surface Science,2017,416:593-604. doi: 10.1016/j.apsusc.2017.04.214 [31] SUN Y, LU Y G, ZHANG W S, et al. Simulations of potential distribution and efficiency optimization in carbon fiber electrochemical oxidation[J]. Journal of the Electrochemical Society,2018,165(3):E115-E120. doi: 10.1149/2.0511803jes [32] 中华人民共和国国家质量监督检验检疫总局. 碳纤维 单丝拉伸性能的测定: GB/T 31290—2014[S]. 北京: 质检出版社, 2014.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Determination of tensile properties of carbon fiber monofilament: GB/T 31290—2014[S]. Beijing: Quality Inspection Press, 2014(in Chinese). [33] 中华人民共和国国家质量监督检验检疫总局. 碳纤维 纤维直径和横截面积的测定: GB/T 29762—2013[S]. 北京: 质检出版社, 2013.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Determination of fiber diameter and cross-sectional area of carbon fiber: GB/T 29762—2013[S]. Beijing: Quality Inspection Press, 2013(in Chinese). [34] KANG F Y, LENG Y, ZHANG T Y. Electrochemical synthesis and characterization of formic acid-graphite intercalation compound[J]. Carbon,1997,35(8):1089-1096. doi: 10.1016/S0008-6223(97)00065-1