留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫酸环境下电流强度对碳纤维表面电化学活化的影响

马崇攀 张洋 张恒 高爱君 王宇

马崇攀, 张洋, 张恒, 等. 硫酸环境下电流强度对碳纤维表面电化学活化的影响[J]. 复合材料学报, 2024, 41(4): 1788-1797. doi: 10.13801/j.cnki.fhclxb.20230822.002
引用本文: 马崇攀, 张洋, 张恒, 等. 硫酸环境下电流强度对碳纤维表面电化学活化的影响[J]. 复合材料学报, 2024, 41(4): 1788-1797. doi: 10.13801/j.cnki.fhclxb.20230822.002
MA Chongpan, ZHANG Yang, ZHANG Heng, et al. Effect of current intensity on electrochemical activation of carbon fibers surface in sulfuric acid environment[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1788-1797. doi: 10.13801/j.cnki.fhclxb.20230822.002
Citation: MA Chongpan, ZHANG Yang, ZHANG Heng, et al. Effect of current intensity on electrochemical activation of carbon fibers surface in sulfuric acid environment[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1788-1797. doi: 10.13801/j.cnki.fhclxb.20230822.002

硫酸环境下电流强度对碳纤维表面电化学活化的影响

doi: 10.13801/j.cnki.fhclxb.20230822.002
详细信息
    通讯作者:

    王宇,博士,副教授,硕士生导师,研究方向为聚丙烯腈基碳纤维及其复合材料 E-mail: wangy@mail.buct.edu.cn

  • 中图分类号: TB332

Effect of current intensity on electrochemical activation of carbon fibers surface in sulfuric acid environment

  • 摘要: 碳纤维的碳含量在90%以上,表面惰性强,表面活化处理是其制备过程中的重要工艺。研究采用XPS、Raman、动态接触角、单丝拉伸和界面剪切强度等测试方法,借助非接触式阳极氧化装置,明确了稀H2SO4作为电解液时电流强度对电化学活化碳纤维表面结构和性能的影响。结果表明:活性氧[O]进攻碳纤维表面使其含氧活性官能团含量增加,在本研究范围内电流越大活化效果越显著;处于阳极附近的碳纤维,受静电与扩散作用影响,SO4 2−和S2O8 2−进入碳结构内部间隙,碳纤维表面S/C升高,直径增大。在SO4 2−刻蚀作用下,碳纤维表面无序碳结构脱落而缺陷减少,石墨化程度降低;SO4 2−和S2O8 2−插层进入碳结构内部,通过静电作用形成缔合结构,在刻蚀和插层的共同作用下,碳纤维的单丝拉伸强度提升,最高提高了16.77%。0.5 A电流处理后,碳纤维表面粗糙度提升,表面可与环氧树脂基体反应的羟基、羧基官能团含量最高,碳纤维表面极性最强,与去离子水的动态接触角由未处理时的89.9°降低到50.6°,相应的复合材料界面剪切强度提高了47.70%。

     

  • 图  1  非接触式电化学氧化处理装置示意图

    Figure  1.  Schematic diagram of a non-contact electrochemical treatment unit

    CF—Carbon fiber

    图  2  (a) 复合材料界面评价装置;碳纤维表面树脂微滴的脱粘过程:(b) 脱粘前;(c) 脱粘后

    Figure  2.  (a) Composite interface evaluation device; Debonding process of epoxy microdroplet on carbon fiber surface: (b) Before debonding;(c) After debonding

    图  3  不同电流处理后碳纤维的XPS全谱图

    Figure  3.  XPS full spectra of carbon fiber after different current treatment

    图  4  不同电流强度处理后碳纤维表面O/C比

    Figure  4.  Oxygen-carbon element ratio of carbon fiber treated with different current intensities

    图  5  不同电流处理后碳纤维的XPS的C1s分峰拟合

    Figure  5.  C1s curves fitting for XPS of carbon fiber after different current treatment

    图  6  不同电流强度处理后的碳纤维的S/C比

    Figure  6.  Sulfur-carbon elemental ratio of carbon fiber treated with different current intensities

    图  7  碳纤维直径随电流强度变化

    Figure  7.  Variation of carbon fiber diameter with current intensity

    图  8  硫酸溶液电化学处理碳纤维直径胀大机制示意图

    Figure  8.  Schematic diagram of the expansion mechanism of carbon fiber diameter expansion treated by sulfuric acid solution electrochemically

    d, d'—Carbon fiber diameter before and after intercalation; GIC—Graphite intercalation on compounds; e—Electron

    图  9  不同电流强度处理后碳纤维表面拉曼光谱与石墨化程度R

    Figure  9.  Raman spectra and the degree of graphitization R values of carbon fibers treated with different current intensities

    图  10  接触角测试(a)和不同电流强度处理后的碳纤维表面与去离子水的动态接触角(b)

    Figure  10.  Contact angle test process (a) and dynamic contact angle between carbon fiber surface treated with different current intensities and deionized water (b)

    图  11  不同电流强度处理后碳纤维的拉伸强度

    Figure  11.  Tensile strength of carbon fiber treated with different current intensities

    图  12  不同电流处理后碳纤维的界面剪切强度(IFSS)

    Figure  12.  Interfacial shear strength (IFSS) of carbon fiber treated with different current intensities

    图  13  碳纤维表面活性官能团与环氧树脂结合机制

    Figure  13.  Bonding mechanism of active functional groups of carbon fiber surface and epoxy resin

    图  14  用硫酸电解质电化学处理前后碳纤维表面的原子力显微镜图像

    Figure  14.  Atomic force microscopy images of carbon fiber surfaces before and after electrochemical treatment with sulfuric acid electrolyte

    表  1  碳纤维表面官能团含量

    Table  1.   Surface functional group contents of carbon fibers

    Current intensity
    /A
    Content of functional group/%
    C=CC—CC—OHC=OCOOH
    Untreated 0.0 A 70.33 9.07 6.95 3.72 9.93
    H2SO4 0.1 A 68.26 11.80 7.75 5.19 7.01
    H2SO4 0.3 A 60.03 14.53 11.21 4.70 9.52
    H2SO4 0.5 A 56.31 10.41 16.83 5.72 10.74
    下载: 导出CSV

    表  2  氧化前后碳纤维的表面粗糙度

    Table  2.   Surface roughness of carbon fibers before and after oxidation

    Surface roughnessDifferent current intensities of electrochemical oxidation
    Untreated 0 AH2SO4 0.1 AH2SO4 0.5 A
    Ra/nm36.439.741.3
    RMS/nm42.146.747.7
    Notes: Ra—Arithmetic mean of the absolute value of the roughness curve relative to the center line; RMS—Root-mean-square deviation of the roughness curve profile.
    下载: 导出CSV
  • [1] PEREPELKIN K E. Oxidized (cyclized) polyacrylonitrile fibers—Oxypan. A review[J]. Fibre Chemistry,2003,35:409-416. doi: 10.1023/B:FICH.0000020769.42823.31
    [2] PARK S J, JANG Y S, SHIM J W, et al. Studies on pore structures and surface functional groups of pitch-based activated carbon fibers[J]. Journal of Colloid and Interface Science,2003,260(2):259-264. doi: 10.1016/S0021-9797(02)00081-4
    [3] WU Q, PAN D. A new cellulose based carbon fiber from a lyocell precursor[J]. Textile Research Journal,2002,72(5):405-410. doi: 10.1177/004051750207200506
    [4] LI W, LONG D H, MIYAWAKI J, et al. Structural features of polyacrylonitrile-based carbon fibers[J]. Journal of Mateials Science,2012,47:919-928. doi: 10.1007/s10853-011-5872-2
    [5] MA Y Y, WANG J T, LU K, et al. The evolution of carbon fiber elements and their effects on fiber mechanical properties from molecular dynamics[J]. Computational Materials Science,2023,220(5):112029.
    [6] 代少伟, 周玉敬, 李伟东, 等. 氧化石墨烯-碳纳米管复合膜层间增韧碳纤维/环氧树脂复合材料[J]. 复合材料学报, 2023, 40(7):3861-3872. doi: 10.13801/j.cnki.fhclxb.20221027.003

    DAI Shaowei, ZHOU Yujing, LI Weidong, et al. Interlaminar toughening of carbon fiber/epoxy composites with graphene oxide-carbon nanotube composite film[J]. Acta Materiae Compositae Sinica,2023,40(7):3861-3872(in Chinese). doi: 10.13801/j.cnki.fhclxb.20221027.003
    [7] RUAN R Y, YE L W, FENG H, et al. High temperature evolution of the microstructure in the radial direction of PAN-based carbon fibers and its relationship to mechanical properties[J]. New Carbon Materials,2020,35(3):295-306. doi: 10.1016/S1872-5805(20)60491-7
    [8] 符平坡, 丁华, 曾祥瑞, 等. 碳纤维复合材料-铝合金自冲铆接头成形规律及力学性能[J]. 复合材料学报, 2023, 40(8):4522-4535. doi: 10.13801/j.cnki.fhclxb.20221110.003

    FU Pingpo, DING Hua, ZENG Xiangrui, et al. Forming law and mechanical property of carbon fibre reinforced plastics and aluminum alloy self-piercing riveted joint[J]. Acta Materiae Compositae Sinica,2023,40(8):4522-4535(in Chinese). doi: 10.13801/j.cnki.fhclxb.20221110.003
    [9] SUN T, ZHANG X Q, QIU B W, et al. Controllable construction of gradient modulus intermediate layer on high strength and high modulus carbon fibers to enhance interfacial properties of epoxy composites by efficient electrochemical grafting[J]. Composites Part B: Engineering,2022,247(12):110279.
    [10] 杨红娟, 杨正岩, 杨雷, 等. 碳纤维复合材料损伤的超声检测与成像方法研究进展[J]. 复合材料学报, 2023, 40(8):4297-4319.

    YANG Hongjuan, YANG Zhengyan, YANG Lei, et al. Progress in ultrasonic testing and imaging method for damage of carbon fiber composites[J]. Acta Materiae Compositae Sinica,2023,40(8):4297-4319(in Chinese).
    [11] 王云峰, 王一苇, 徐樑华, 等. PAN预氧结构径向调控及其对炭纤维性能的影响[J]. 新型炭材料, 2021, 36(4):827-834. doi: 10.1016/S1872-5805(20)60516-9

    WANG Yunfeng, WANG Yiwei, XU Lianghua, et al. Radial adjustment of PAN preoxygenated structure and its effect on the properties of carbon fibers[J]. New Carbon Materials,2021,36(4):827-834(in Chinese). doi: 10.1016/S1872-5805(20)60516-9
    [12] HOU Y P, SUN T Q. Wettability modification of polyacrylonitrile (PAN)-based high modulus carbon fibers with epoxy resin by low temperature plasma[J]. The Journal of Adhesion,2013,89(1-3):192-204.
    [13] XIE J F, XIN D W, CAO H Y, et al. Improving carbon fiber adhesion to polyimide with atmospheric pressure plasma treatment[J]. Surface & Coatings Technology,2011,206(2/3):191-201.
    [14] LEE E S, LEE C H, CHUN Y S, et al. Effect of hydrogen plasma-mediated surface modification of carbon fibers on the mechanical properties of carbon-fiber-reinforced polyetherimide composites[J]. Composites Part B: Engineering,2017,116(5):451-458.
    [15] ZHAO Y, ZHANG C Y, SHAO X, et al. Effect of atmospheric plasma treatment on carbon fiber/epoxy interfacial adhesion[J]. Journal of Adhesion Science and Technology,2011,25(20):2897-2908. doi: 10.1163/016942411X576572
    [16] WANG X Y, QIAN X, ZHANG Y G, et al. Surface oxidation of PAN-based ultrahigh modulus carbon fibers (UHMCFs) and its effect on the properties of UHMCF/EP composites[J]. Carbon Letters,2021,31(3):449-461. doi: 10.1007/s42823-020-00173-7
    [17] SHIM J W, PARK S J, RYU S K. Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers[J]. Carbon: An International Journal Sponsored by the American Carbon Society,2001,39(11):1635-1642.
    [18] BAUER M, BERATZ S, RUHLAND K, et al. Anodic oxidation of carbon fibres in alkaline and acidic electrolyte: Quantification of surface functional groups by gas-phase derivatization[J]. Applied Surface Science,2020,506(3):144947.
    [19] KING T R, ADAMS D F, DANILE A B. Anodic oxidation of pitch-precursor carbon fibers in ammonium sulfate solutions: Batch screening treatment results[J]. Composites Science and Technology,1992,44(4):351-359. doi: 10.1016/0266-3538(92)90071-A
    [20] FITZER E, JAGER H. Anodic oxidation of high modulus carbon fibres in sulphuric acid[J]. Journal of Applied Electrochemistry,1988,18(2):178-182. doi: 10.1007/BF01009259
    [21] CHEN S S, CAO Y W, FENG J C. Polydopamine as an efficient and robust platform to functionalize carbon fiber for high-performance polymer composites[J]. ACS Applied Materials & Interfaces,2014,6(1):349-356.
    [22] YAN F, LIU L, LI M, et al. One-step electrodeposition of Cu/CNT/CF multiscale reinforcement with substantially improved thermal/electrical conductivity and interfacial properties of epoxy composites[J]. Composites Part A: Applied Science and Manufacturing,2019,125:105530. doi: 10.1016/j.compositesa.2019.105530
    [23] LI Y B, PENG Q Y, HE X D. Synthesis and characterization of a new hierarchical reinforcement by chemically grafting graphene oxide onto carbon fibers[J]. Journal of Materials Chemistry,2012,22(36):18748-18752. doi: 10.1039/c2jm32596a
    [24] YUMITORI S, NAKANISHI Y. Effect of anodic oxidation of coal tar pitch-based carbon fibre on adhesion in epoxy matrix: Part 1. Comparison between H2SO4 and NaOH solutions[J]. Composites Part A: Applied Science and Manufacturing,1996,27(1):1051-1058.
    [25] LINDSAY B, ABEL M, WATTS J F. A study of electrochemically treated PAN based carbon fibres by IGC and XPS[J]. Carbon,2007,45(12):2433-2444. doi: 10.1016/j.carbon.2007.04.017
    [26] LIU J, TIAN Y L, CHEN Y J, et al. Interfacial and mechanical properties of carbon fibers modified by electrochemical oxidation in (NH4HCO3)/(NH4)2C2O4·H2O aqueous compound solution[J]. Applied Surface Science,2010,256(21):6199-6204. doi: 10.1016/j.apsusc.2010.03.141
    [27] KOZLOWSKI C, SHERWOOD P M A. X-ray photoelectron spectroscopic studies of carbon fibre surfaces VII-electrochemical treatment in ammonium salt electrolytes[J]. Carbon,1986,24(3):357-363. doi: 10.1016/0008-6223(86)90238-1
    [28] QIAN X, WANG X F, OUYANG Q, et al. Effect of ammonium-salt solutions on the surface properties of carbon fibers in electrochemical anodic oxidation[J]. Applied Surface Science,2012,259(10):238-244.
    [29] 房宽峻, 蔡玉青, 戴瑾瑾, 等. 影响电化学氧化后碳纤维表面官能团含量的因素[J]. 青岛大学学报, 1998, 13(2):14-16, 23.

    FANG Kuanjun, CAI Yuqing, DAI Jinjin, et al. Inverstigation on surface functional groups of carbon fibers[J]. Journal of Qingdao University,1998,13(2):14-16, 23(in Chinese).
    [30] KAINOURGIOS P, KARTSONAKIS I A, DRAGATOGIANNIS D A, et al. Electrochemical surface functionalization of carbon fibers for chemical affinity improvement with epoxy resins[J]. Applied Surface Science,2017,416:593-604. doi: 10.1016/j.apsusc.2017.04.214
    [31] SUN Y, LU Y G, ZHANG W S, et al. Simulations of potential distribution and efficiency optimization in carbon fiber electrochemical oxidation[J]. Journal of the Electrochemical Society,2018,165(3):E115-E120. doi: 10.1149/2.0511803jes
    [32] 中华人民共和国国家质量监督检验检疫总局. 碳纤维 单丝拉伸性能的测定: GB/T 31290—2014[S]. 北京: 质检出版社, 2014.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Determination of tensile properties of carbon fiber monofilament: GB/T 31290—2014[S]. Beijing: Quality Inspection Press, 2014(in Chinese).
    [33] 中华人民共和国国家质量监督检验检疫总局. 碳纤维 纤维直径和横截面积的测定: GB/T 29762—2013[S]. 北京: 质检出版社, 2013.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Determination of fiber diameter and cross-sectional area of carbon fiber: GB/T 29762—2013[S]. Beijing: Quality Inspection Press, 2013(in Chinese).
    [34] KANG F Y, LENG Y, ZHANG T Y. Electrochemical synthesis and characterization of formic acid-graphite intercalation compound[J]. Carbon,1997,35(8):1089-1096. doi: 10.1016/S0008-6223(97)00065-1
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  551
  • HTML全文浏览量:  312
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-05
  • 修回日期:  2023-07-31
  • 录用日期:  2023-08-03
  • 网络出版日期:  2023-08-22
  • 刊出日期:  2024-04-01

目录

    /

    返回文章
    返回