留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FRP筋在不同腐蚀环境下的层间剪切性能劣化试验

王自柯 段建新 赵军 杨永明

王自柯, 段建新, 赵军, 等. FRP筋在不同腐蚀环境下的层间剪切性能劣化试验[J]. 复合材料学报, 2024, 41(4): 2031-2042. doi: 10.13801/j.cnki.fhclxb.20230822.001
引用本文: 王自柯, 段建新, 赵军, 等. FRP筋在不同腐蚀环境下的层间剪切性能劣化试验[J]. 复合材料学报, 2024, 41(4): 2031-2042. doi: 10.13801/j.cnki.fhclxb.20230822.001
WANG Zike, DUAN Jianxin, ZHAO Jun, et al. Experimental study on the degradation of interlaminar shear performance of FRP bars in different corrosive environments[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2031-2042. doi: 10.13801/j.cnki.fhclxb.20230822.001
Citation: WANG Zike, DUAN Jianxin, ZHAO Jun, et al. Experimental study on the degradation of interlaminar shear performance of FRP bars in different corrosive environments[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2031-2042. doi: 10.13801/j.cnki.fhclxb.20230822.001

FRP筋在不同腐蚀环境下的层间剪切性能劣化试验

doi: 10.13801/j.cnki.fhclxb.20230822.001
基金项目: 国家自然科学基金(52278282);教育部创新团队发展计划(IRT_16R67);河南省高等学校重点科研项目计划(21A560012);河南省重点研发与推广专项(科技攻关)项目(222102320081)
详细信息
    通讯作者:

    赵军,博士,教授,博士生导师,研究方向为纤维聚合物(FRP)筋混凝土结构 E-mail: zhaoj@zzu.edu.cn

  • 中图分类号: TU528;TB332

Experimental study on the degradation of interlaminar shear performance of FRP bars in different corrosive environments

Funds: National Natural Science Foundation of China (52278282); Program for Innovative Research Team in University of Minister of Education of China (IRT_16R67); Key Scientific Research Project of College and University in Henan Province (21A560012); Key R&D and Promotion Special Project in Henan Province (Tackling Key Scientific and Technological Problems) (222102320081)
  • 摘要: 本文研究了玄武岩纤维、玻璃纤维及碳纤维增强聚合物(BFRP、GFRP和CFRP)筋在水、强碱溶液(pH=12.8)、弱碱溶液(pH=11)、模拟海水及酸溶液(pH=1.5)这5种腐蚀溶液环境下的性能劣化情况。通过层间剪切强度测试、水吸收试验、DMA、FTIR和SEM探究了不同老化温度(20、40和55℃)与腐蚀时间(1、2、3、6和9月)下FRP筋的纤维-树脂界面粘结性能、微观结构及化学成分等的劣化规律。试验结果表明:FRP筋的层间剪切强度受腐蚀环境的影响显著,在强碱溶液中的劣化速率远高于其他溶液,其原因是高浓度的OH离子加速了FRP筋的水解和刻蚀反应,导致大量纤维与树脂发生脱粘,最终导致层间剪切强度降低;与BFRP筋和GFRP筋相比,CFRP筋的耐久性相对优异,在相同老化条件下具有更高的层间剪切强度保留率。

     

  • 图  1  短梁剪切试验装置与剪切破坏试样

    Figure  1.  Interlaminar shear test set-up and specimens after interlaminar shear failure

    BFRP, GFRP, CFRP—Basalt-, glass- and carbon-fiber reinforced polymer

    图  2  纤维增强聚合物(FRP)筋老化9个月后的表面形貌

    Figure  2.  Surface morphologies of fiber reinforced polymer (FRP) bars aged for 9 months

    图  3  老化后FRP筋的层间剪切强度保留率

    Figure  3.  Interlaminar shear strength retention of FRP bars after aging

    图  4  FRP筋在不同温度的溶液环境下的吸水率

    Figure  4.  Water absorption results of FRP bars in different kinds of corrosion solution environments at different temperatures

    图  5  FRP筋在55℃老化9个月后的储能模量曲线

    Figure  5.  Storage modulus curves of FRP bars after aged at 55℃ for 9 months

    图  6  FRP筋在55℃下老化9个月后的损耗因子tanδ曲线

    Figure  6.  Loss factor tanδ curves of FRP bars aged at 55℃ for 9 months

    图  7  FRP筋在55℃不同溶液中tanδ峰值随老化时间的变化曲线

    Figure  7.  Variation curves of peak value of tanδ of FRP bars in different solutions at 55℃ with aging time

    图  8  FRP筋在55℃不同溶液中玻璃化转变温度Tg随老化时间的变化曲线

    Figure  8.  Variation curves of glass transition temperature Tg of FRP bars in different solutions at 55℃ with aging time

    图  9  FRP筋在55℃不同溶液中老化9个月的FTIR图谱

    Figure  9.  FTIR spectra of FRP bars aged for 9 months in different solutions at 55℃

    图  10  短梁剪切试验后BFRP筋试样的SEM图像

    Figure  10.  SEM images of BFRP bars specimens after short beam shear test

    图  12  短梁剪切试验后CFRP筋试样的SEM图像

    Figure  12.  SEM images of CFRP bars specimens after short beam shear test

    图  11  短梁剪切试验后GFRP筋试样的SEM图像

    Figure  11.  SEM images of GFRP bars specimens after short beam shear test

    表  1  4种溶液的化学成分组成

    Table  1.   Chemical composition of four kinds of solutions

    CompositionSolution 2
    concentration/(g·L−1)
    Solution 3
    concentration/(g·L−1)
    Solution 4
    concentration/(g·L−1)
    Solution 5
    concentration/(g·L−1)
    NaOH 0.9 0.012
    KOH 4.2 0.028
    Ca(OH)2 118.5 0.00074
    H2SO4 1.58
    NaCl 24.53
    MgCl2 5.20
    Na2SO4 4.09
    CaCl2 1.16
    KCl 0.695
    NaHCO3 0.201
    KBr 0.101
    H3BO3 0.027
    SrCl2 0.025
    NaF 0.003
    Note: "—" represents "not available".
    下载: 导出CSV

    表  2  老化后BFRP筋的层间剪切强度

    Table  2.   Interlaminar shear strength of BFRP bars after aging

    Temperature/℃Time/
    month
    Solution 1Solution 2Solution 3Solution 4Solution 5
    Mean/MPaCOV/%Mean/MPaCOV/%Mean/MPaCOV/%Mean/MPaCOV/%Mean/MPaCOV/%
    20 1 45.30 3.35 45.84 4.26 45.39 3.29 43.73 4.35 43.78 5.02
    2 42.02 3.02 43.21 5.99 43.74 1.72 43.01 3.93 42.68 1.70
    3 42.41 2.72 42.46 2.68 42.74 1.20 42.84 2.66 42.94 4.68
    6 41.72 1.59 42.54 0.27 42.19 2.37 42.39 1.53 41.84 1.15
    9 41.59 0.11 42.28 3.62 41.52 0.42 42.41 3.04 41.16 6.11
    40 1 46.38 3.02 45.64 3.62 45.17 1.20 46.45 3.52 47.58 1.15
    2 41.88 2.34 40.80 4.65 41.54 3.46 42.12 4.14 42.08 3.96
    3 42.01 3.47 40.10 2.94 42.23 4.02 40.39 4.22 40.00 2.59
    6 40.04 8.13 37.65 4.95 41.90 6.65 41.02 4.54 38.97 1.47
    9 40.55 1.49 34.57 6.43 40.51 4.16 40.08 2.55 40.03 1.64
    55 1 44.14 2.16 44.33 2.87 45.67 0.95 43.41 1.59 46.55 3.86
    2 39.10 4.05 37.63 4.80 40.63 4.84 39.49 1.72 39.16 1.23
    3 38.56 1.00 34.20 4.91 38.46 2.67 39.93 2.68 39.65 3.57
    6 38.43 2.60 20.59 1.32 39.29 7.61 40.19 0.12 36.85 4.64
    9 38.56 7.21 4.87 5.02 39.00 1.12 38.93 4.99 35.11 3.80
    Note: COV—Coefficient of variation.
    下载: 导出CSV

    表  3  老化后GFRP筋的层间剪切强度

    Table  3.   Interlaminar shear strength of GFRP bars after aging

    Temperature/℃Time/
    month
    Solution 1Solution 2Solution 3Solution 4Solution 5
    Mean/MPaCOV/%Mean/MPaCOV/%Mean/MPaCOV/%Mean/MPaCOV/%Mean/MPaCOV/%
    20 1 43.25 4.54 41.87 5.49 41.36 4.32 44.61 4.22 43.18 2.21
    2 42.32 4.60 42.84 1.58 42.96 4.75 41.71 3.97 40.39 4.62
    3 39.92 3.72 40.80 6.17 40.92 3.45 41.29 4.58 40.09 1.46
    6 40.75 5.77 40.77 4.56 40.43 2.35 42.00 8.20 40.49 3.33
    9 43.04 1.03 41.72 0.67 41.96 7.10 41.08 2.88 40.06 7.35
    40 1 45.38 3.80 40.70 4.16 43.07 1.97 42.68 3.36 44.53 3.87
    2 40.80 1.23 41.87 3.80 40.55 2.82 41.20 3.48 40.17 2.72
    3 40.57 3.72 40.54 5.28 40.60 4.50 40.90 2.76 40.03 3.20
    6 40.12 4.15 36.53 6.12 40.57 0.80 42.47 8.06 41.79 1.46
    9 42.79 1.31 21.86 3.48 40.63 2.93 41.51 1.79 40.38 2.49
    55 1 42.11 4.54 44.02 1.75 42.61 6.67 42.86 1.57 43.67 0.94
    2 40.92 6.34 37.67 9.62 39.93 2.88 41.16 3.18 39.72 4.51
    3 38.99 5.55 31.68 13.99 40.19 1.77 40.75 1.47 40.13 1.91
    6 38.49 4.84 19.90 12.58 39.87 6.02 40.41 4.57 40.45 4.17
    9 37.33 1.54 10.09 14.82 38.81 7.07 39.37 1.07 38.98 1.54
    下载: 导出CSV

    表  4  老化后CFRP筋的层间剪切强度

    Table  4.   Interlaminar shear strength of CFRP bars after aging

    Temperature/℃Time/
    month
    Solution 1Solution 2Solution 3Solution 4Solution 5
    Mean/MPaCOV/%Mean/MPaCOV/%Mean/MPaCOV/%Mean/MPaCOV/%Mean/MPaCOV/%
    20 1 49.31 1.89 47.88 3.89 47.40 1.41 49.41 3.49 47.71 3.33
    2 46.93 3.57 46.72 2.66 47.33 1.37 47.75 0.85 46.27 5.53
    3 43.48 1.72 45.64 4.22 46.37 5.96 46.30 1.76 45.73 4.14
    6 45.34 2.55 41.06 10.04 46.97 2.80 47.04 3.69 44.77 0.54
    9 44.04 1.16 41.28 9.22 46.60 2.33 45.17 3.07 44.34 3.30
    40 1 50.22 2.01 46.24 1.81 47.50 3.70 49.01 1.29 47.45 2.55
    2 44.72 4.53 45.90 8.89 46.17 3.26 47.65 3.63 47.27 3.27
    3 44.52 2.41 39.74 5.03 45.43 7.31 44.47 5.01 46.57 2.17
    6 45.85 3.51 40.66 1.55 45.60 1.76 43.67 5.35 44.80 2.37
    9 45.56 1.35 35.70 8.23 45.50 2.50 43.05 5.02 43.68 1.37
    55 1 48.85 4.70 45.87 1.46 47.48 4.70 48.94 5.85 47.37 2.39
    2 45.46 1.89 37.14 8.67 45.24 1.90 46.56 3.17 45.24 2.49
    3 44.71 5.04 30.91 5.62 43.77 3.65 44.48 3.45 45.19 6.92
    6 45.17 2.11 27.72 8.64 45.41 4.67 43.64 3.38 44.61 2.49
    9 42.32 4.08 20.32 15.87 42.78 1.71 42.71 3.38 42.36 3.11
    下载: 导出CSV
  • [1] JAFARZADEH H, NEMATZADEH M. Evaluation of post-heating flexural behavior of steel fiber-reinforced high-strength concrete beams reinforced with FRP bars: Experimental and analytical results[J]. Engineering Structures,2020,225:111292.
    [2] WANG Y L, WANG Y S, WAN B L, et al. Properties and mechanisms of self-sensing carbon nanofibers/epoxy composites for structural health monitoring[J]. Composite Structures,2018,200:669-678. doi: 10.1016/j.compstruct.2018.05.151
    [3] 滕锦光. 新材料组合结构[J]. 土木工程学报, 2018, 51(12):1-11.

    TENG Jinguang. New-material hybrid structures[J]. China Civil Engineering Journal,2018,51(12):1-11(in Chinese).
    [4] 郝庆多, 王勃, 欧进萍. 纤维增强塑料筋在土木工程中的应用[J]. 混凝土, 2006(9):38-40.

    HAO Qingduo, WANG Bo, OU Jinping. Fiber reinforced polymer rebar's application to civil engineering[J]. Concrete,2006(9):38-40(in Chinese).
    [5] 董志强, 吴刚. FRP筋增强混凝土结构耐久性能研究进展[J]. 土木工程学报, 2019, 52(10):1-19, 29.

    DONG Zhiqiang, WU Gang. Research progress on durability of FRP bars reinforced concrete structures[J]. China Civil Engineering Journal,2019,52(10):1-19, 29(in Chinese).
    [6] 尹世平, 华云涛, 徐世烺. FRP配筋混凝土结构研究进展及其应用[J]. 建筑结构学报, 2021, 42(1):134-150.

    YIN Shiping, HUA Yuntao, XU Shilang. A review on research progress and application of concrete structures internally reinforced with FRP bars[J]. Journal of Building Structures,2021,42(1):134-150(in Chinese).
    [7] CHEN Y, DAVALOS J F, RAY I, et al. Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures[J]. Composite Structures,2007,78(1):101-111. doi: 10.1016/j.compstruct.2005.08.015
    [8] LU Z Y, SU L Z, TAN S R, et al. Long-term shear performance of bare and cement mortar-coated BFRP bars in corrosive environments[J]. Construction and Building Materials,2020,237:117658. doi: 10.1016/j.conbuildmat.2019.117658
    [9] LU C H, NI M Z, CHU T S, et al. Comparative investigation on tensile performance of FRP bars after exposure to water seawater, and alkaline solutions[J]. Journal of Materials in Civil Engineering,2020,32(7):4020170. doi: 10.1061/(ASCE)MT.1943-5533.0003243
    [10] WU G, DONG Z Q, WANG X, et al. Prediction of long-term performance and durability of BFRP bars under the combined effect of sustained load and corrosive solutions[J]. Journal of Composites for Construction,2015,19(3):4014058. doi: 10.1061/(ASCE)CC.1943-5614.0000517
    [11] 邓宗才, 高伟男, 沈锋. 碱、盐环境下不同应力水平FRP筋抗压强度试验与理论研究[J]. 复合材料学报, 2017, 34(10):2220-2231.

    DENG Zongcai, GAO Weinan, SHEN Feng. Experimental and theoretical study on compressive strength of FRP rebars under different stress levels in alkali and salt solution[J]. Acta Materiae Compositae Sinica,2017,34(10):2220-2231(in Chinese).
    [12] 张新越, 欧进萍. FRP筋酸碱盐介质腐蚀与冻融耐久性试验研究[J]. 武汉理工大学学报, 2007, 29(1):33-36, 54.

    ZHANG Xinyue, OU Jinping. Durability experimental research on resistance of acidic, alkali, salt solutions and freeze-thaw properties of FRP bar[J]. Journal of Wuhan University of Technology,2007,29(1):33-36, 54(in Chinese).
    [13] WANG Z K, ZHAO X L, XIAN G J, et al. Durability study on interlaminar shear behaviour of basalt-, glass- and carbon-fibre reinforced polymer (B/G/CFRP) bars in seawater sea sand concrete environment[J]. Construction and Building Materials,2017,156:985-1004. doi: 10.1016/j.conbuildmat.2017.09.045
    [14] BENMOKRANE B, ELGABBAS F, AHMED E A, et al. Characterization and comparative durability study of glass/vinylester, basalt/vinylester, and basalt/epoxy FRP bars[J]. Journal of Composites for Construction,2015,19(6):4015008. doi: 10.1061/(ASCE)CC.1943-5614.0000564
    [15] AHMED A, GUO S C, ZHANG Z H, et al. A review on durability of fiber reinforced polymer (FRP) bars reinforced seawater sea sand concrete[J]. Construction and Building Materials,2020,256:119484. doi: 10.1016/j.conbuildmat.2020.119484
    [16] ACI. Guide test methods for fiber reinforced polymers (FRPs) for reinforcing or strengthening concrete structures: ACI 440.3R—2012[S]. Michigan: American Concrete Institute, 2012.
    [17] ASTM. Standard practice for the preparation of substitute ocean water: ASTM D1141—98(2013)[S]. West Conshohocken: ASTM, 2013.
    [18] ASTM. Standard test method for apparent horizontal shear strength of pultruded reinforced plastic rods by the short-beam method: ASTM D4475—02(2016)[S]. West Conshohocken: ASTM, 2016.
    [19] ASTM. Standard test method for moisture absorption properties and equilibrium conditioning of polymer matrix composite materials: ASTM D5229/D5229M—20[S]. West Conshohocken: ASTM, 2020.
    [20] 霍文静, 张佐光, 王明超, 等. 复合材料用玄武岩纤维耐酸碱性实验研究[J]. 复合材料学报, 2007, 24(6):77-82.

    HUO Wenjing, ZHANG Zuoguang, WANG Mingchao, et al. Experimental study on acid and alkali resistance of basalt fiber used for composites[J]. Acta Materiae Compositae Sinica,2007,24(6):77-82(in Chinese).
    [21] YI Y, GUO S C, LI S, et al. Effect of alkalinity on the shear performance degradation of basalt fiber-reinforced polymer bars in simulated seawater sea sand concrete environment[J]. Construction and Building Materials,2021,299:123957. doi: 10.1016/j.conbuildmat.2021.123957
    [22] XIAN G J, KARBHARI V M. Segmental relaxation of water-aged ambient cured epoxy[J]. Polymer Degradation and Stability,2007,92(9):1650-1659. doi: 10.1016/j.polymdegradstab.2007.06.015
    [23] XIE J H, LI Y C, LU Z Y, et al. Effects of immersion in water, alkaline solution, and seawater on the shear performance of basalt FRP bars in seawater-sea sand concrete[J]. Journal of Composites for Construction,2022,26(2):4021071. doi: 10.1061/(ASCE)CC.1943-5614.0001184
    [24] NGONO Y, MARÉCHAL Y, MERMILLIOD N. Epoxy-amine reticulates observed by infrared spectrometry. I: Hydration process and interaction configurations of embedded H2O molecules[J]. The Journal of Physical Chemistry B,1999,103(24):4979-4985. doi: 10.1021/jp984809y
    [25] 王自柯. FRP筋在模拟海水-海砂混凝土孔溶液浸泡下的耐久性研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    WANG Zike. Study on the durability performances of fiber reinforced polymer (FRP) bars exposed to simulated seawater and sea sand concerte pore solution[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
    [26] ZHAO Q, ZHANG D X, ZHAO X L, et al. Modelling damage evolution of carbon fiber-reinforced epoxy polymer composites in seawater sea sand concrete environment[J]. Composites Science and Technology,2021,215:108961. doi: 10.1016/j.compscitech.2021.108961
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  578
  • HTML全文浏览量:  219
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-21
  • 修回日期:  2023-08-01
  • 录用日期:  2023-08-12
  • 网络出版日期:  2023-08-22
  • 刊出日期:  2024-04-01

目录

    /

    返回文章
    返回