Synergistically toughening epoxy resins with reactive acrylate-based block copolymers and nano-SiO2
-
摘要: 利用引发剂可连续再生催化剂原子转移自由基聚合(ICAR-ATRP)合成了两种反应性丙烯酸酯三嵌段共聚物:聚(甲基丙烯酸甲酯-co-甲基丙烯酸缩水甘油酯)-b-聚丙烯酸丁酯-b-聚(甲基丙烯酸甲酯-co-甲基丙烯酸缩水甘油酯) (PMGBMG)和聚甲基丙烯酸甲酯-b-聚(丙烯酸丁酯-co-甲基丙烯酸缩水甘油酯)-b-聚甲基丙烯酸甲酯(PMBGM)。并将硅烷偶联剂KH-550改性的纳米SiO2接枝于嵌段共聚物,用于对环氧树脂E-51进行增韧。研究结果表明:仅加入5%PMGBMG-SiO2,相对纯E-51体系其断裂韧性参数临界应力强度因子(KIC)提高了145%,拉伸强度和模量分别提高了8%和31%,明显优于不接枝的嵌段共聚物和PMBGM-SiO2,实现了韧性和刚性的同时提高,并且材料的耐热性保持较好。Abstract: Two reactive acrylate triblock copolymers including poly(methyl methacrylate-co-glycidyl methacrylate)-b-poly(butyl acrylate)-b-poly(methyl methacrylate-co-glycidyl methacrylate) (PMGBMG) and poly(methyl methacrylate)-b-poly(butyl acrylate-co-glycidyl methacrylate)-b-poly(methyl methacrylate) (PMBGM) were synthesized via initiator for continuous activator regeneration atom transfer radical polymerization (ICAR-ATRP). Nano-SiO2 modified by 3-ainopropyltriethoxysilane (KH-550) was grafted on block copolymer to prepare PMGBMG-SiO2 and PMBGM-SiO2 as tougheners for epoxy resin. Results show that addition of 5%PMGBMG-SiO2 in E-51 epoxy resin can increase the critical stress intensity factor (KIC) by 145% compared with pure epoxy matrix. Meanwhile, the tensile strength and modulus are increased by 8% and 31% respectively, which are superior to the resins modified by pure copolymer and PMBGM-SiO2. The toughness and rigidity are improved simultaneously, while heat resistance is also well maintained.
-
Key words:
- ICAR-ATRP /
- block copolymer /
- nano-SiO2 /
- synergistic toughening /
- epoxy resin /
- mechanical properties
-
图 6 5wt%添加量的嵌段共聚物增韧E-51体系的断面形貌:((a), (b)) E-51;((c), (d)) 5%PMBM-40/E-51;((e), (f)) 5%PMBGM/E-51;((g), (h)) 5%PMGBMG/E-51
Figure 6. Section morphologies of 5wt% addition block copolymers toughened E-51 system: ((a), (b)) E-51; ((c), (d)) 5%PMBM-40/E-51; ((e), (f)) 5%PMBGM/E-51; ((g), (h)) 5%PMGBMG/E-51
表 1 嵌段共聚物的分子量及其分布
Table 1. Molecular weight and distribution of block copolymer
Sample Mn(GPC) PDI ωMMA/wt% PMBM-40 12 K-41 K-12 K 1.51 37.3 PMBGM 14 K-37 K-14 K 1.31 43.1 PMGBMG 15 K-40 K-15 K 1.28 42.9 Notes: PMBM-40—PMMA-b-PBA-b-PMMA; Mn(GPC)—41 K in a-12 K-41 K-12 K corresponds to the relative molecular weight of the middle soft segment of the triblock copolymer, and 12 K corresponds to the relative molecular weight of the hard segment at both ends, the same below; PDI—Polydisperse index; ωMMA—Mass fraction of MMA relative to the total molecular chain, which is obtained by nuclear magnetic resonance hydrogen spectroscopy. 表 2 嵌段共聚物-SiO2增韧环氧树脂的拉伸性能和断裂韧性
Table 2. Tensile properties and fracture toughness of block copolymer-SiO2 toughened epoxy resin
Sample Tensile strength/MPa Elastic modulus/GPa KIC/
(MPa·m1/2)E-51 77±5 2.42±0.14 1.56±0.14 5%PMBM-40/
E-5176±4.5 2.31±0.12 3.14±0.21 5%PMBGM/
E-5156±6 2.08±0.16 1.96±0.13 5%PMBGM-SiO2/E-51 65±4 2.60±0.11 2.11±0.12 5%PMGBMG/
E-5175±5 2.37±0.15 3.09±0.14 5%PMGBMG-SiO2/E-51 83±4 3.17±0.12 3.82±0.10 -
[1] PANG V, THOMPSON Z J, JOLY G D, et al. Adhesion of silica and block copolymer toughened epoxy composites[J]. ACS Applied Polymer Materials,2022,4(8):6169-6178. doi: 10.1021/acsapm.2c00948 [2] 王海花, 冯佳, 赵敏. 氮化硼纳米片的制备及其增强环氧树脂复合材料导热性能的研究进展[J]. 复合材料学报, 2022, 39(3):956-968.WANG Haihua, FENG Jia, ZHAO Min. Research progress on the preparation of boron nitride nanosheets and its reinforcement on the thermal conductivity of epoxy resin composites[J]. Acta Materiae Compositae Sinica,2022,39(3):956-968(in Chinese). [3] 张文卿, 李肇晨, 吴天宇, 等. 环氧树脂及其复合材料交联结构和宏观性能的分子模拟研究与进展[J]. 复合材料学报, 2019, 36(2):269-276.ZHANG Wenqing, LI Zhaochen, WU Tianyu, et al. Molecular simulation research and development of cross-linked structure and macroscopic properties of epoxy resin and its composites[J]. Acta Materiae Compositae Sinica,2019,36(2):269-276(in Chinese). [4] 李洪峰, 刘仲良, 白雪峰, 等. 多壁碳纳米管-丙烯酸酯嵌段共聚物共改性环氧树脂三元复合材料性能[J]. 复合材料学报, 2020, 37(4):741-748.LI Hongfeng, LIU Zhongliang, BAI Xuefeng, et al. Properties of multi-walled carbon nanotubes-acrylate block copolymers/epoxy resin ternary composites[J]. Acta Materiae Compositae Sinica,2020,37(4):741-748(in Chinese). [5] MATHIS E, MICHON M L, BILLAUD C, et al. Controlling the morphology in epoxy/thermoplastic systems[J]. ACS Applied Polymer Materials,2022,4(3):2091-2104. doi: 10.1021/acsapm.1c01917 [6] ZHOU W Y, LI X, CAO D, et al. Simultaneously enhanced impact strength and dielectric properties of an epoxy resin modified with EHTPB liquid rubber[J]. Polymer Engineering & Science,2020,60(8):1984-1997. [7] JANUSZEWSKI R, DUTKIEWICZ M, NOWICKI M, et al. Synthesis and properties of epoxy resin modified with novel reactive liquid rubber-based systems[J]. Industrial & Engineering Chemistry Research,2021,60(5):2178-2186. doi: 10.1021/acs.iecr.0c05781 [8] 曹军生, 伍思豫, 向豪, 等. 橡胶增韧环氧树脂的研究进展[J]. 特种橡胶制品, 2023, 44(1):58-62.CAO Junsheng, WU Siyu, XIANG Hao, et al. Research progress of rubber toughened epoxy resin[J]. Special Purpose Rubber Products,2023,44(1):58-62(in Chinese). [9] WANG J L, LEE M, YAO K J, et al. Polybutylacrylate/poly (methylmethacrylate) core-shell elastic particles as epoxy resin toughener: Part II toughness on DGEBA/DDM system[J]. Journal of Materials Science & Technology,2004,20(6):787-790. [10] 彭军, 郄晶晶, 朱家俊, 等. 环氧树脂增韧改性研究进展[J]. 化工新型材料, 2022, 50(11):221-224.PENG Jun, QIE Jingjing, ZHU Jiajun, et al. Research progress on toughening modification of epoxy resin[J]. New Chemical Materials,2022,50(11):221-224(in Chinese). [11] 刘任. 纳米二氧化硅和聚醚砜改性环氧树脂性能研究[D]. 合肥: 合肥工业大学, 2021.LIU Ren. Study on the properties of epoxy resin modified by nano-silica and polyethersulfone[D]. Hefei: Hefei University of Technology, 2021(in Chinese). [12] QUAN D, IVANKOVIC A. Effect of core-shell rubber (CSR) nano-particles on mechanical properties and fracture toughness of an epoxy polymer[J]. Polymer,2015,66:16-28. doi: 10.1016/j.polymer.2015.04.002 [13] 刘琦, 周权, 宋宁, 等. 两亲性嵌段共聚物聚己内酯-聚二甲基硅氧烷-聚己内酯增韧氰酸树脂性能研究[J]. 玻璃钢/复合材料, 2018, 298(11):99-103, 63.LIU Qi, ZHOU Quan, SONG Ning, et al. The properties of amphiphilic block copolymer poly-caprolactone-polydimethylsiloxane-polycaprolactone toughened cyanate resin[J]. Fiber Reinforced Plastics/Composites,2018,298(11):99-103, 63(in Chinese). [14] TAO X X, DUAN H J, DONG W J, et al. Synthesis of an acrylate constructed by phosphaphenanthrene and triazinetrione and its application in intrinsic flame retardant vinyl ester resin[J]. Polymer Degradation and Stability,2018,154:285-294. doi: 10.1016/j.polymdegradstab.2018.06.015 [15] 刘仲良, 李洪峰, 顾继友, 等. 丙烯酸酯三嵌段共聚物改性环氧树脂及其性能[J]. 高分子材料科学与工程, 2018, 34(2):24-31, 36.LIU Zhongliang, LI Hongfeng, GU Jiyou, et al. Properties of epoxy resin modified with acrylic block copolymer[J]. Polymer Materials Science and Engineering,2018,34(2):24-31, 36(in Chinese). [16] REDLINE E M, DECLET-PEREZ C, BATES F S, et al. Effect of block copolymer concentration and core composition on toughening epoxies[J]. Polymer,2014,55(16):4172-4181. doi: 10.1016/j.polymer.2014.06.016 [17] CABA K D L, LARRAÑAGA M, ECEIZA A, et al. Kinetics and morphology of an epoxy resin modified with PEO-PPO-PEO block copolymers[J]. Macromolecular Symposia,2006,239(1):30-35. doi: 10.1002/masy.200690106 [18] GAO J N, LI J T, BENICEWICZ B C, et al. The mechanical properties of epoxy composites filled with rubbery copolymer grafted SiO2[J]. Polymers,2012,4(1):187-210. doi: 10.3390/polym4010187 [19] XIAO C F, TAN Y F, YANG X P, et al. Mechanical properties and strengthening mechanism of epoxy resin reinforced with nano-SiO2 particles and multi-walled carbon nanotubes[J]. Chemical Physics Letters,2018,695:34-43. doi: 10.1016/j.cplett.2018.01.060 [20] 马宏鹏, 秦文博, 郭斌, 等. 羧基化表面修饰纳米二氧化硅增强热塑性淀粉基生物降解塑料[J]. 复合材料学报, 2022, 39(7):3478-3484.MA Hongpeng, QIN Wenbo, GUO Bin, et al. Thermoplastic starchbased biodegradable plastics reinforced by carboxylated surface modification of nano silica[J]. Acta Materiae Compositae Sinica,2022,39(7):3478-3484(in Chinese). [21] FRIEDRICH Klaus, SREEKALA Meyyarappallil Sadasivan, LEHMANN Bjoern, 等. 纳米SiO2/聚丙烯复合材料的微观结构[J]. 复合材料学报, 2006, 23(1):44-50.FRIEDRICH Klaus, SREEKALA Meyyarappalli Sadasivan, LEHMANN Bjoern, et al. Microstructural analysis of nanosilica reinforced polypropylene composites[J]. Acta Materiae Compositae Sinica,2006,23(1):44-50(in Chinese). [22] 陈瑶, 葛攀峰, 朱新星, 等. 三嵌段聚丙烯酸酯聚合物共聚组成对环氧树脂增韧效果的影响[J]. 高分子材料科学与工程, 2020, 36(8):23-28, 35. doi: 10.16865/j.cnki.1000-7555.2020.0173CHEN Yao, GE Panfeng, ZHU Xinxing, et al. Effect of copolymerization composition of triblock polyacrylates toughening effect of epoxy resin[J]. Polymer Materials Science and Engineering,2020,36(8):23-28, 35(in Chinese). doi: 10.16865/j.cnki.1000-7555.2020.0173 [23] 葛攀峰, 任强, 卞建华, 等. 含氟嵌段丙烯酸酯聚合物/环氧树脂自分层涂料的制备与性能[J]. 涂料工业, 2018, 48(4):1-8.GE Panfeng, REN Qiang, BIAN Jianhua, et al. Preparation and properties of fluorinated block acrylate polymer/epoxy self-stratifying coatings[J]. Paint & Coatings Industry,2018,48(4):1-8(in Chinese). [24] ASTM Committee D20. Standard test method for tensile properties of plastics: ASTM D638—2014[S]. West Conshohocken: ASTM International, 2014. [25] 中国国家标准化管理委员会. 金属材料平面应变断裂韧度KIC试验方法: GB/T 4161—2007[S]. 北京: 中国标准出版社, 2007.Standardization Administration of the People's Republic of China. Metallic materials—Determination of plane-strain fracture toughness: GB/T 4161—2007[S]. Beijing: China Standards Press, 2007(in Chinese). [26] HE S J, WANG X B, GUO X Z, et al. Studies of the properties of a thermosetting epoxy modified with block copolymers[J]. Polymer International,2005,54(11):1543-1548. doi: 10.1002/pi.1880 [27] KONG J, TANG Y S, ZHANG X J, et al. Synergic effect of acrylate liquid rubber and bisphenol A on toughness of epoxy resins[J]. Polymer Bulletin,2007,60(2-3):229-236. [28] REN Q, XIANG Y L, HUANG C Y, et al. Epoxy-functionalized star-shaped polymers as novel tougheners for epoxy resin[J]. Polymer Bulletin,2015,72(11):2949-2965. doi: 10.1007/s00289-015-1446-9 [29] WHITE S R, MATHER P T, SMITH M J. Characterization of the cure-state of DGEBA-DDS epoxy using ultrasonic, dynamic mechanical and thermal probes[J]. Polymer Engineering & Science,2002,42(1):51-67.