留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缓蚀型聚邻甲苯胺-氧化石墨烯基防腐材料的制备与性能

王海花 叶梦玉 费贵强 李焱宇 王丹丹

王海花, 叶梦玉, 费贵强, 等. 缓蚀型聚邻甲苯胺-氧化石墨烯基防腐材料的制备与性能[J]. 复合材料学报, 2024, 41(4): 1900-1913. doi: 10.13801/j.cnki.fhclxb.20230817.006
引用本文: 王海花, 叶梦玉, 费贵强, 等. 缓蚀型聚邻甲苯胺-氧化石墨烯基防腐材料的制备与性能[J]. 复合材料学报, 2024, 41(4): 1900-1913. doi: 10.13801/j.cnki.fhclxb.20230817.006
WANG Haihua, YE Mengyu, FEI Guiqiang, et al. Preparation and properties of corrosion inhibited poly(o-toluidine)-graphene oxide-based anticorrosive materials[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1900-1913. doi: 10.13801/j.cnki.fhclxb.20230817.006
Citation: WANG Haihua, YE Mengyu, FEI Guiqiang, et al. Preparation and properties of corrosion inhibited poly(o-toluidine)-graphene oxide-based anticorrosive materials[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1900-1913. doi: 10.13801/j.cnki.fhclxb.20230817.006

缓蚀型聚邻甲苯胺-氧化石墨烯基防腐材料的制备与性能

doi: 10.13801/j.cnki.fhclxb.20230817.006
基金项目: 国家自然科学基金面上项目(21978164;22078189)
详细信息
    通讯作者:

    王海花,博士,教授,博士生导师,研究方向为高性能及功能复合材料等 E-mail: 13679286323@163.com

  • 中图分类号: TQ630;TB332

Preparation and properties of corrosion inhibited poly(o-toluidine)-graphene oxide-based anticorrosive materials

Funds: National Natural Science Foundation of China (21978164; 22078189)
  • 摘要: 为开发缓蚀剂高效利用的新途径,选取氧化石墨烯为基材、聚邻甲苯胺微胶囊为壁材、缓蚀剂2-巯基苯并噻唑为芯材,制备了缓蚀型聚邻甲苯胺-氧化石墨烯基防腐材料,并将其作为填料用于水性环氧树脂涂层(WEP)的改性。通过FTIR、XRD、XPS和SEM等对材料进行了结构和形貌的表征,采用紫外可见光谱对缓蚀剂的释放行为进行分析,采用万能试验机、电化学测试和盐雾实验对涂层的拉伸性能和防腐性能进行了评价。结果表明:缓蚀剂成功包覆于聚邻甲苯胺微胶囊内部,并通过共价键方式将微胶囊连接在改性氧化石墨烯表面,使缓蚀剂得到了充分利用,提高了涂层的拉伸性能、自修复性能及对腐蚀介质的屏蔽性能。紫外可见光谱测试结果表明,微胶囊在人工破损96 h后,内部缓蚀剂的释放量达78%;拉伸性能测试结果表明,与纯WEP相比,当填料加入量为0.3wt%时,涂层应力从14.281 MPa增加到24.25 MPa;SEM结果表明,被划伤的涂层在常温下放置10 h后自修复;电化学测试和盐雾实验结果表明,涂层腐蚀电位从−0.6216 V提高到−0.1554 V,腐蚀电流密度从4.271×10−7 A·cm−2减小到1.016×10−11 A·cm−2,阻抗模量可达到1.5757×109 Ω·cm2,在盐雾500 h后仍表现出较好的防腐性能。

     

  • 图  1  缓蚀型聚邻甲苯胺-氧化石墨烯基(MBT@GAP)复合材料的制备过程

    Figure  1.  Preparation process of corrosion inhibited poly(o-toluidine)-graphene oxide-based (MBT@GAP) composite materials

    C—Graphite; GO—Graphene oxide; ASA—3-aminobenzenesulfonic acid; APS—Ammonium persulphate; POT—Poly(o-toluidine); MBT—2-mercaptobenzothiazole; GAP—POT-GO

    图  2  GO和GAP的红外图谱

    Figure  2.  Fourier infrared spectra of GO and GAP

    图  3  (a) GO的XPS全谱图;(b) GAP的XPS全谱图;(c) GAP的C1s谱图;(d) GAP的N1s谱图

    Figure  3.  (a) XPS spectrum of GO; (b) XPS spectrum of GAP; (c) C1s spectrum of GAP; (d) N1s spectrum of GAP

    图  4  GAP (a)和放大倍率下单个聚邻甲苯胺(POT)微胶囊及人工破损后(b)的SEM图像

    Figure  4.  SEM images of GAP (a) and a single poly o-toluidine (POT) microcapsule at magnification and after artificial damage (b)

    图  5  GAP和MBT@GAP的TEM图像

    Figure  5.  TEM images of GAP and MBT@GAP

    图  6  (a) 微球破损后MBT浓度的紫外光谱图;(b) MBT吸光度随浓度变化的标准曲线图;(c) 胶囊的释放量随时间的变化图

    Figure  6.  (a) Ultraviolet-visible spectra of MBT concentration in damaged microspheres; (b) Standard plot of MBT absorbance as a function of concentration; (c) Plot of capsule release over time

    图  7  不同MBT@GAP添加量时胶膜的应力-应变曲线

    WEP—Waterborne epoxy resin coating

    Figure  7.  Stress-strain curves of film with different contents of MBT@GAP

    图  8  不同MBT@GAP添加量时胶膜断面SEM图像:(a) 0wt%;(b) 0.1wt%;(c) 0.2wt%;(d) 0.3%, (e) 0.4wt%;(f) 0.5wt%

    Figure  8.  Cross-sectional SEM images of film with different contents of MBT@GAP: (a) 0wt%; (b) 0.1wt%; (c) 0.2wt%; (d) 0.3wt%; (e) 0.4wt%; (f) 0.5wt%

    图  9  不同MBT@GAP添加量时复合涂层盐雾前后的附着力变化

    Figure  9.  Adhesion changes of composite coating before and after salt spray at different adding amounts of MBT@GAP

    图  10  不同MBT@GAP添加量时复合涂层的极化曲线(a)、阻抗模量曲线 (b)、相位角曲线 (c)、Nyquist图 (d)

    Figure  10.  Polarization curves (a), impedance modulus curves (b), phase angle curves (c), Nyquist diagram (d) of composite coatingwith different contents of MBT@GAP

    图  11  MBT@GAP/WEP-0.3wt%涂层不同盐雾时间下的阻抗模量曲线(a)、相位角曲线(b)、Nyquist图(c)、等效电路模型(d)

    Figure  11.  Impedance modulus curves (a), phase angle curves (b), Nyquist diagram (c), electrical equivalent circuit models (d) of MBT@GAP/WEP-0.3wt% coating under different salt spray time

    Rcoat—Coating resistance; CPEcoat—Coating non-ideal capacitance; CPEdl—Double layer non-ideal capacitor; RCT—Charge transfer resistance; Rs—Solution resistance

    图  12  (a) 裸马口铁、WEP及MBT@GAP/WEP-0.3wt%涂层盐雾500 h前后的照片;WEP (b)和MBT@GAP/WEP-0.3wt%涂层(c)的耐腐蚀机制图

    Figure  12.  (a) Photos of bare tinplate, WEP and MBT@GAP/WEP-0.3wt% coating salt spray before and after 500 h; Corrosion resistance mechanism diagram of WEP (b) and MBT@GAP/WEP-0.3wt% coatings (c)

    图  13  WEP涂层划伤后0 h (a1)、5 h (a2)、10 h (a3)和MBT@GAP/WEP-0.3wt%涂层划伤后0 h (b1)、5 h (b2)、10 h (b3)的SEM图像;(c) MBT@GAP/WEP-0.3wt%复合涂层划痕自修复后的EDS谱图

    Figure  13.  SEM images of 0 h (a1), 5 h (a2), 10 h (a3) after scratch of WEP coating and 0 h (b1), 5 h (b2), 10 h (b3) after scratch of MBT@GAP/WEP-0.3wt% coating; (c) EDS spectrum of MBT@GAP/WEP-0.3wt% composite coating scratches after self-healing

    表  1  不同MBT@GAP添加量时复合涂层极化曲线参数

    Table  1.   Polarization curve parameters of composite coating with different contents of MBT@GAP

    Ecorr/VIcorr/(A·cm−2)βa/(V·dec−1)βc/(V·dec−1)Rp/(Ω·cm2)
    WEP−0.62164.271×10−70.17810.21129.823×104
    MBT@GAP/WEP-0.1wt%−0.43803.150×10−100.19620.18771.322×108
    MBT@GAP/WEP-0.2wt%−0.28281.937×10−100.13970.2002 1.845×108
    MBT@GAP/WEP-0.3wt%−0.15541.016×10−110.12120.06441.797×109
    MBT@GAP/WEP-0.4wt%−0.32042.262×10−100.14530.22121.683×108
    MBT@GAP/WEP-0.5wt%−0.54816.507×10−100.19570.15795.832×107
    Notes: Ecorr—Corrosion potential; Icorr—Corrosion current density; βa—Anode slope; βc—Cathode slope; Rp—Polarization resistance.
    下载: 导出CSV

    表  2  不同MBT@GAP添加量时复合涂层交流阻抗谱图拟合参数

    Table  2.   Fitting parameters of alternating current impedance spectra of composite coating with different contents of MBT@GAP

    SampleRcoat/(Ω·cm2)CPEcoatγ/(Ω−1·cm−2·sn)n
    WEP4.967×1069.129×10−100.8288
    MBT@GAP/WEP-0.1wt%8.643×1072.816×10−100.8915
    MBT@GAP/WEP-0.2wt%2.781×1081.107×10−100.9185
    MBT@GAP/WEP-0.3wt%2.837×1099.922×10−110.9388
    MBT@GAP/WEP-0.4wt%1.234×1082.015×10−100.9101
    MBT@GAP/WEP-0.5wt%2.132×1073.313×10−100.8667
    Notes: n—Empirical index of CPEcoat; γ—Proportional factor.
    下载: 导出CSV

    表  3  MBT@GAP/WEP-0.3wt%复合涂层随盐雾时间变化的电化学阻抗拟合参数

    Table  3.   Electrochemical impedance fitting parameters for MBT@GAP/WEP-0.3wt% composite coatings with salt spray time

    Salt spray time/hRcoat/(Ω·cm2)CPEcoatγ/(Ω−1·cm−2·sn)nRCT/(Ω·cm2)CPEdlγ/(Ω−1·cm−2·sn')n'
    02.837×1099.922×10−110.9388
    1007.760×1083.725×10−100.9225
    2002.454×1084.339×10−100.9981
    3001.243×1081.024×10−100.9662
    4004.885×1075.424×10−100.8778
    5008.169×1065.606×10−100.84013.111×1068.138×10−80.4673
    Note: n'—Empirical index of CPEdl.
    下载: 导出CSV
  • [1] WILDS N. Corrosion under insulation[M]//EL-SHERIK A M. Trends in Oil and Gas Corrosion Research and Technologies. Cambridge: Woodhead Publishing, 2017: 409-429.
    [2] XAVIER J R. Effect of surface modified WO3 nanoparticle on the epoxy coatings for the adhesive and anticorrosion properties of mild steel[J]. Journal of Applied Polymer Science,2020,137(5):48323. doi: 10.1002/app.48323
    [3] SARI M G, RAMEZANZADEH B. Epoxy composite coating corrosion protection properties reinforcement through the addition of hydroxyl-terminated hyperbranched polyamide non-covalently assembled graphene oxide platforms[J]. Construction and Building Materials,2020,234:117421. doi: 10.1016/j.conbuildmat.2019.117421
    [4] OU B L, WANG Y W, LU Y. A review on fundamentals and strategy of epoxy-resin-based anticorrosive coating materials[J]. Polymer-Plastics Technology and Materials,2021,60(6):601-625. doi: 10.1080/25740881.2020.1819317
    [5] CAI G Y, XIAO S, DENG C M, et al. CeO2 grafted carbon nanotube via polydopamine wrapping to enhance corrosion barrier of polyurethane coating[J]. Corrosion Science,2021,178:109014. doi: 10.1016/j.corsci.2020.109014
    [6] DAGDAG O, HSISSOU R, BERISHA A, et al. Polymeric-based epoxy cured with a polyaminoamide as an anticorrosive coating for aluminum 2024-T3 surface: Experimental studies supported by computational modeling[J]. Journal of Bio- and Tribo-Corrosion,2019,5(3):58. doi: 10.1007/s40735-019-0251-7
    [7] ATTA A M, MOHAMED N H, ROSTOM M, et al. New hydrophobic silica nanoparticles capped with petroleum paraffin wax embedded in epoxy networks as multifunctional steel epoxy coatings[J]. Progress in Organic Coatings,2019,128:99-111. doi: 10.1016/j.porgcoat.2018.12.018
    [8] LU F S, LIU C Q, CHEN Z H, et al. Polypyrrole-functionalized boron nitride nanosheets for high-performance anti-corrosion composite coating[J]. Surface Coatings Technology,2021,420:127273. doi: 10.1016/j.surfcoat.2021.127273
    [9] YEGANEH M, ASADI N, OMIDI M, et al. An investigation on the corrosion behavior of the epoxy coating embedded with mesoporous silica nanocontainer loaded by sulfamethazine inhibitor[J]. Progress in Organic Coatings,2019,128:75-81. doi: 10.1016/j.porgcoat.2018.12.022
    [10] YAN H, LI W, LI H, et al. Ti3C2 MXene nanosheets toward high-performance corrosion inhibitor for epoxy coating[J]. Progress in Organic Coatings,2019,135:156-167. doi: 10.1016/j.porgcoat.2019.06.013
    [11] CAO X K, PAN J L, CAI G Y, et al. A chemically robust and self-healing superhydrophobic polybenzoxazine coating without fluorocarbon resin modification: Fabrication and failure mechanism[J]. Progress in Organic Coatings,2022,163:106630. doi: 10.1016/j.porgcoat.2021.106630
    [12] SAMIEE R, RAMEZANZADEH B, MAHDAVIAN M, et al. Designing a non-hazardous nano-carrier based on graphene oxide@polyaniline-praseodymium (III) for fabrication of the active/passive anti-corrosion coating[J]. Journal of Hazardous Materials,2020,398:123136. doi: 10.1016/j.jhazmat.2020.123136
    [13] KEYVANI A, YEGANEH M, REZAEYAN H. Application of mesoporous silica nanocontainers as an intelligent host of molybdate corrosion inhibitor embedded in the epoxy coated steel[J]. Progress in Natural Science: Materials International,2017,27(2):261-267. doi: 10.1016/j.pnsc.2017.02.005
    [14] KASAEIAN M, GHASEMI E, RAMEZANZADEH B, et al. Construction of a highly effective self-repair corrosion-resistant epoxy composite through impregnation of 1H-benzimidazole corrosion inhibitor modified graphene oxide nanosheets (GO-BIM)[J]. Corrosion Science,2018,145:119-134. doi: 10.1016/j.corsci.2018.09.023
    [15] JIANG D, XIA X C, HOU J, et al. A novel coating system with self-reparable slippery surface and active corrosion inhibition for reliable protection of Mg alloy[J]. Chemical Engineering Journal,2019,373:285-297. doi: 10.1016/j.cej.2019.05.046
    [16] LU H, ZHANG S T, LI W H, et al. Synthesis of graphene oxide-based sulfonated oligoanilines coatings for synergistically enhanced corrosion protection in 3.5% NaCl solution[J]. ACS Applied Materials & Interfaces,2017,9(4):4034-4043.
    [17] HAO Y S, SUN W, JIANG L L, et al. Self-healing effect of epoxy coating containing mesoporous polyaniline hollow spheres loaded with benzotriazole[J]. Progress in Organic Coatings,2021,159:106445. doi: 10.1016/j.porgcoat.2021.106445
    [18] MOHAMMADZADEH A, GHAFOURI TALEGHANI H, LASHKENARI M S. Preparation and comparative study of anticorrosion nanocomposites of polyaniline/graphene oxide/clay coating[J]. Journal of Materials Research and Technology,2021,13:2325-2335. doi: 10.1016/j.jmrt.2021.05.098
    [19] 张青青, 陈亚鑫, 刘仁, 等. 基于聚苯胺微胶囊的双重自修复防腐涂层[J]. 高分子学报, 2023, 54(5):720-730.

    ZHANG Qingqing, CHEN Yaxin, LIU Ren, et al. Dual-action self-healing anticorrosive coating based on polyaniline microcapsules[J]. Acta Polymerica Sinica,2023,54(5):720-730(in Chinese).
    [20] DONG J H, PAN W H, LUO J, et al. Synthesis of inhibitor-loaded polyaniline microcapsules with dual anti-corrosion functions for protection of carbon steel[J]. Electrochimica Acta, 2020, 364: 137299.
    [21] ZHANG Y J, LI M Y, WEN J, et al. Preparation of polyaniline encapsulated acrylic resin microcapsules and its active corrosion protection of coating for magnesium alloy[J]. Arabian Journal of Chemistry,2023,16(10):105129. doi: 10.1016/j.arabjc.2023.105129
    [22] CAO Y, YUAN X W, WANG X, et al. Synthesis and controlled release kinetics of pH-sensitive hollow polyaniline microspheres encapsuled with the corrosion inhibitor[J]. Journal of Molecular Liquids, 2021, 342: 117497.
    [23] LIANG X, LI X J, TANG Y, et al. Hyperbranched epoxy resin-grafted graphene oxide for efficient and all-purpose epoxy resin modification[J]. Journal of Colloid and Interface Science,2021,611:105-117.
    [24] TAHERI N N, RAMEZANZADEH B, MAHDAVIAN M, et al. In-situ synthesis of Zn doped polyaniline on graphene oxide for anti-corrosive reinforcement of epoxy coating[J]. Journal of Industrial and Engineering Chemistry,2018,63:322-339. doi: 10.1016/j.jiec.2018.02.033
    [25] AN H R, LIU K B, WANG S Q, et al. Enhanced corrosion resistance of waterborne epoxy coatings by polyaniline nanorods and nitrogen and fluorine dual-doped graphene oxide composites[J]. ACS Applied Nano Materials,2023,6(14):13250-13259. doi: 10.1021/acsanm.3c01964
    [26] LIU S Y, LIU L, GUO H X, et al. Electrochemical polymerization of polyaniline-reduced graphene oxide composite coating on 5083Al alloy: Role of reduced graphene oxide[J]. Electrochemistry Communications,2019,98:110-114. doi: 10.1016/j.elecom.2018.12.004
    [27] ZHU K, LI X R, WANG H H, et al. Electrochemical and anti-corrosion behaviors of water dispersible graphene/acrylic modified alkyd resin latex composites coated carbon steel[J]. Journal of Applied Polymer Science,2017,134(11):44445.
    [28] 中国国家标准化管理委员会. 漆膜一般制备法: GB/T 1727—2021[S]. 北京: 中国标准出版社, 2021.

    Standardization Administration of the People's Republic of China. General methods for preparation of coating films: GB/T 1727—2021[S]. Beijing: Standards Press of China, 2021(in Chinese).
    [29] 邹明明, 李小瑞, 沈一丁, 等. 改性氧化石墨烯/聚苯胺防腐材料的制备及性能[J]. 精细化工, 2018, 35(5):891-900. doi: 10.13550/j.jxhg.20170370

    ZOU Mingming, LI Xiaorui, SHEN Yiding, et al. Preparation and properties of modified graphene oxide/polyaniline anticorrosive materials[J]. Fine Chemicals,2018,35(5):891-900(in Chinese). doi: 10.13550/j.jxhg.20170370
    [30] WANG J J, SU W H, ZHANG J M, et al. Improving the volumetric specific capacitance of flexible polyaniline electrode: Solution casting method and effect of reduced graphene oxide sheets[J]. Science China Materials,2021,64(3):571-580. doi: 10.1007/s40843-020-1472-3
    [31] ZHOU C, HONG M, YANG Y, et al. Engineering sulfonated polyaniline molecules on reduced graphene oxide nanosheets for high-performance corrosion protective coatings[J]. Applied Surface Science,2019,484(1):663-675.
    [32] PARANGUSAN H, BHADRA J, AHMAD Z, et al. Investigation of the structural, optical and gas sensing properties of PANI coated Cu-ZnS microsphere composite[J]. RSC Advances,2020,10(45):26604-26612. doi: 10.1039/D0RA04991C
    [33] PIRHADY TAVANDASHTI N, GHORBANI M, SHOJAEI A, et al. Inhibitor-loaded conducting polymer capsules for active corrosion protection of coating defects[J]. Corrosion Science,2016,112:138-149. doi: 10.1016/j.corsci.2016.07.003
    [34] VETHANATHAN S J K, ABOORVAKANI R, MADHU K U. Yttrium doped ZnO nanofillers reinforced epoxy coating for anticorrosion application[J]. Inorganic Chemistry Communications,2022,144:109929. doi: 10.1016/j.inoche.2022.109929
    [35] MENG Y B, GAO Y F, LI J Y, et al. Preparation and characterization of cross-linked waterborne acrylic/PTFE composite coating with good hydrophobicity and anticorrosion properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2022,653:129872. doi: 10.1016/j.colsurfa.2022.129872
    [36] DUAN H L, JI J W, CAO C C, et al. Enhanced anti-corrosion performance of carbon steels via CeO2@BNNSs/epoxy resin composite coatings[J]. Macromolecular Chemistry and Physics, 2023, 224(11): 2300006.
    [37] DONG H Y, ZHAN Y Q, CHEN Y W, et al. Fabrication of hydrophobic and enhanced anticorrosion performance of epoxy coating through the synergy of functionalized graphene oxide and nano-silica binary fillers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2023,664:131086. doi: 10.1016/j.colsurfa.2023.131086
    [38] LI J Y, ZHU K, FU Z L. A waterborne uniform graphene oxide-epoxy complex with enhanced anticorrosive properties enabled by intercalation polymerization[J]. Journal of Polymer Engineering,2023,43(5):443-453. doi: 10.1515/polyeng-2022-0295
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  457
  • HTML全文浏览量:  291
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-09
  • 修回日期:  2023-07-30
  • 录用日期:  2023-08-03
  • 网络出版日期:  2023-08-18
  • 刊出日期:  2024-04-01

目录

    /

    返回文章
    返回