留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石榴皮炭负载CaTiO3复合材料去除溶液中U(VI)的性能与机制

龚逸 李小燕 张益硕 李琨 李明哲 曹小岗 杜艳军 刘波

龚逸, 李小燕, 张益硕, 等. 石榴皮炭负载CaTiO3复合材料去除溶液中U(VI)的性能与机制[J]. 复合材料学报, 2024, 41(3): 1327-1337. doi: 10.13801/j.cnki.fhclxb.20230817.004
引用本文: 龚逸, 李小燕, 张益硕, 等. 石榴皮炭负载CaTiO3复合材料去除溶液中U(VI)的性能与机制[J]. 复合材料学报, 2024, 41(3): 1327-1337. doi: 10.13801/j.cnki.fhclxb.20230817.004
GONG Yi, LI Xiaoyan, ZHANG Yishuo, et al. Performance and mechanism of U(VI) removal from solution by pomegranate peel carbon supported CaTiO3 composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1327-1337. doi: 10.13801/j.cnki.fhclxb.20230817.004
Citation: GONG Yi, LI Xiaoyan, ZHANG Yishuo, et al. Performance and mechanism of U(VI) removal from solution by pomegranate peel carbon supported CaTiO3 composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1327-1337. doi: 10.13801/j.cnki.fhclxb.20230817.004

石榴皮炭负载CaTiO3复合材料去除溶液中U(VI)的性能与机制

doi: 10.13801/j.cnki.fhclxb.20230817.004
基金项目: 国家自然科学基金(41761090;12105044);江西省东华理工大学研究生创新基金(YC2022-s614)
详细信息
    通讯作者:

    李小燕,博士,教授,硕士生/博士生导师,研究方向为废水中放射性核素吸附分离、光催化材料制备及对催化还原污染物性能E-mail: 372040739@qq.com

  • 中图分类号: X591;TB332

Performance and mechanism of U(VI) removal from solution by pomegranate peel carbon supported CaTiO3 composites

Funds: National Natural Science Foundation of China (41761090; 12105044); Graduate Innovation Foundation of East China University of Technology of Jiangxi Province (YC2022-s614)
  • 摘要: 当今社会能源短缺,核能发展迅速,为了实现绿色高效的能源利用目标,如何处理核能发展过程产生的含铀废物已成为日益突出的环境问题。本文首先采用溶剂热法制备CaTiO3材料,然后通过与石榴皮炭材料混合研磨合成炭材料负载CaTiO3 (C@CaTiO3),采用现代表征技术分析C@CaTiO3与U(VI)反应前后形貌及物质组成变化。通过静态实验法研究了材料去除溶液中铀的性能。研究结果表明:在pH=3.5、U(VI)初始浓度为25 mg·L−1、反应时间40 min、温度为25℃的条件下,材料对U(VI)的去除率为96.26%,去除量为119.21 mg·g−1。通过吸附动力学模型、等温吸附模型和热力学模型,探究了C@CaTiO3与U(VI)的反应机制。结果表明:C@CaTiO3对U(VI)的吸附过程是自发进行的吸热反应,C@CaTiO3对溶液中U(VI)的去除存在吸附和还原两种方式,吸附为物理吸附和化学吸附并存、以表面单层化学吸附为主。还原以光催化还原作用为主。

     

  • 图  1  CaTiO3 (a)、C (b)、C@CaTiO3 (c)、C@CaTiO3与U(VI)反应后(d)的SEM图像与EDS图像

    Figure  1.  SEM images and EDS images of CaTiO3 (a), C (b), C@CaTiO3 (c), C@CaTiO3 after the reaction with U(VI) (d)

    图  2  C@CaTiO3与U(IV)反应前后的XPS图谱:(a) 全谱图;(b) Ca2p;(c) Ti2p;(d) C1s;(e) U4f

    Figure  2.  XPS spectra of C@CaTiO3 before and after reaction with U(IV): (a) Survey spectrum; (b) Ca2p; (c) Ti2p; (d) C1s; (e) U4f

    Sat.—Satellite peak

    图  3  炭材料负载量对C@CaTiO3去除U(VI)的影响

    Figure  3.  Effect of carbon material contents on the removal of U(VI) by C@CaTiO3

    pH=4.0, the initial concentration of U(VI) C0=25 mg·L−1, C@CaTiO3 concentration m/V=0.2 g·L−1, time t=40 min, temperature T=25℃

    图  4  不同pH值对C@CaTiO3去除U(VI)的影响

    Figure  4.  Effect of different pH on the removal of U(VI) by C@CaTiO3

    C0=25 mg·L−1, m/V =0.2 g·L−1, t=40 min, T=25℃

    图  5  铀形态分布图

    Figure  5.  Uranium form distribution map

    图  6  不同温度和不同时间对C@CaTiO3去除U(VI)的影响(a)、准一级(b)和准二级(c)动力学模拟曲线

    Qt—Adsorption capacity at an time point; Qe—Equilibrium adsorption capacity (pH=3.5, C0=25 mg·L−1, m/V=0.2 g·L−1, t=5, 10, 20, 30, 40, 50, 60, 80, 100、120 min, T=293, 298, 303, 308 K)

    Figure  6.  Effect of different temperatures and different time on the removal efficiency of U(VI) by C@CaTiO3 (a), quasi-first-order (b) and quasi-second-order (c) kinetic simulation curves

    图  7  C@CaTiO3去除U(VI)的lnK2与1/T之间的关系

    Figure  7.  Relationship between lnK2 and 1/T on the removal of U(VI) by C@CaTiO3

    K2—Quasi-second-order kinetic constant

    图  8  C@CaTiO3去除U(VI)的吸附等温线(a)、Langmuir (b)和Freundlich (c)等温吸附模型拟合

    Figure  8.  Adsorption isotherm (a), Langmuir (b) and Freundlich (c) isothermal adsorption model fitting on the removal of U(VI) by C@CaTiO3

    pH=3.5, C0=10, 20, 30, 40, 50, 60, 70, 80, 90, 100 mg·L−1, m/V=0.2 g·L−1, t=40 min, T=20, 25, 30, 35℃

    图  9  C@CaTiO3对铀的去除机制

    Figure  9.  Mechanism of uranium removal by C@CaTiO3

    ZP—Zeta potential

    表  1  C@CaTiO3去除U(VI)的吸附动力学参数

    Table  1.   Adsorption kinetic parameters on the removal of U(VI) by C@CaTiO3

    T/KPseudo-first-order kineticPseudo-second-order kinetic
    Qe/(mg·g−1)K1/(min−1)R2Qe/(mg·g−1)K2/(g·mg−1·min−1)R2
    29314.3510.04820.8861119.620.01260.9998
    29817.1790.03410.6232119.760.01600.9998
    30313.9350.03240.8047120.190.01570.9999
    30815.8020.03360.6945120.340.01920.9997
    Notes: K1 and K2—Quasi-first-order and quasi-second-order kinetic adsorption rate constant; R—Linearly dependent coefficient.
    下载: 导出CSV

    表  2  C@CaTiO3去除U(VI)的Langmuir和Freundlich等温模型相关参数

    Table  2.   Isotherms paramters for Langmuir and Freundlich models on the removal of U(VI) by C@CaTiO3

    T/KLangmuirFreundlich
    Qm/(mg·g−1)KL/(L·mg−1)R2KF/(L·g−1)1/nR2
    293222.722.58050.9958113.410.20910.6008
    298263.161.87190.9991130.040.23150.6409
    303271.001.59740.9987129.500.24590.5398
    308289.021.21400.9985136.710.24670.5021
    Notes: Qm—Maximum adsorption; KL and KF—Langmuir constant and Freundlich adsorption coefficient; 1/n—Freundlich constant.
    下载: 导出CSV

    表  3  C@CaTiO3去除U(VI)的热力学参数

    Table  3.   Thermodynamic parameters on the removal of U(VI) by C@CaTiO3

    C0/
    (mg·L−1)
    ΔH0/
    (kJ·mol−1)
    ΔS0/
    (J·mol−1·K−1)
    ΔG0/(kJ·mol−1)
    293 K298 K303 K308 K
    10 56.22 219.62 −11.01 −11.75 −12.14 −14.09
    20 79.17 376.11 −10.95 −11.49 −12.35 −13.81
    30 31.66 126.31 −10.72 −11.44 −12.08 −12.76
    40 21.10 97.66 −11.03 −11.27 −11.89 −12.56
    50 17.64 89.27 −9.54 −10.18 −11.35 −11.41
    60 51.88 197.54 −7.96 −8.13 −8.54 −9.98
    70 29.27 154.69 −6.25 −7.52 −8.32 −8.59
    80 20.73 85.92 −5.42 −7.37 −7.24 −7.96
    90 31.86 121.48 −4.96 −5.49 −5.84 −6.23
    100 17.24 81.64 −4.79 −4.97 −5.17 −5.68
    Notes: ΔH0—Enthalpy change; ΔS0—Entropy change; ΔG0—Gibbs free energy.
    下载: 导出CSV
  • [1] YI L, GAO B, LIU H, et al. Characteristics and assessment of toxic metal contamination in surface water and sediments near a uranium mining area[J]. International Journal of Environmental Research and Public Health,2020,17(2):548. doi: 10.3390/ijerph17020548
    [2] LU Z, LIU Z. Pollution characteristics and risk assessment of uranium and heavy metals of agricultural soil around the uranium tailing reservoir in Southern China[J]. Journal of Radioanalytical and Nuclear Chemistry,2018,318(2):923-933. doi: 10.1007/s10967-018-6081-0
    [3] ZHOU Y, XIAO J, HU R, et al. Engineered phosphorous-functionalized biochar with enhanced porosity using phytic acid-assisted ball milling for efficient and selective uptake of aquatic uranium[J]. Journal of Molecular Liquids,2020,303:112659. doi: 10.1016/j.molliq.2020.112659
    [4] OUYANG Y, ZHAO L, DENG M, et al. Preparation of diethylenetriamine-functionalized thiosulfate intercalated ZnNiAl-LDHs and its removal behavior and mechanism of U(VI)[J]. Chemical Engineering Journal,2023,452:139486. doi: 10.1016/j.cej.2022.139486
    [5] CUI X, YANG Z, ZHANG X, et al. Fabrication of novel heterojunction of (1D) Nb2O5 nanorod/(0D) CdS nanoparticles for efficient removal of U(VI) from water[J]. Applied Surface Science,2022,599:154027. doi: 10.1016/j.apsusc.2022.154027
    [6] 李楠. 高效铀吸附材料的设计制备及性能研究[D]. 济南: 山东大学, 2021.

    LI Nan. Study on preparation and properties of efficient uranium adsorbents[D]. Jinan: Shandong University, 2021(in Chinese).
    [7] 郭梅. 含铀废水处理方法进展[J]. 科技创新与应用, 2020(34):119-120.

    GUO Mei. Progress in treatment of uranium containing wastewater[J]. Technology Innovation and Application,2020(34):119-120(in Chinese).
    [8] LI P, WANG J J, PENG T, et al. Heterostructure of anatase-rutile aggregates boosting the photoreduction of U(VI)[J]. Applied Surface Science,2019,483:670-676. doi: 10.1016/j.apsusc.2019.03.330
    [9] GUO Y D, LI L, LI Y R, et al. Adsorption and photocatalytic reduction activity of uranium (VI) on zinc oxide/rectorite composite enhanced with methanol as sacrificial organics[J]. Journal of Radioanalytical and Nuclear Chemistry,2016,310(2):883-890. doi: 10.1007/s10967-016-4820-7
    [10] 李小燕, 付晓辉, 李冠超, 等. 岩棉负载纳米零价铁去除溶液中U(VI)的性能和机制[J]. 材料导报, 2022, 36(20):70-76.

    LI Xiaoyan, FU Xiaohui, LI Guanchao, et al. Performance and mechanism on removal of U(VI) from aqueous solution by nano zero-valent iron loaded on rock wool[J]. Materials Reports,2022,36(20):70-76(in Chinese).
    [11] 何登武, 李冠超, 李小燕, 等. CuInS2光催化材料制备及光催化还原溶液中U(VI)的性能[J]. 有色金属工程, 2021, 11(7):18-24.

    HE Dengwu, LI Guanchao, LI Xiaoyan, et al. Preparation of CuInS2 photocatalytic material and performance of U(VI) in photocatalytic reduction solution[J]. Nonferrous Metals,2021,11(7):18-24(in Chinese).
    [12] 李小燕, 王杨, 何登武, 等. Cu掺杂Bi2WO6的光催化还原U(VI)特性[J]. 硅酸盐学报, 2021, 49(5):1025-1032. doi: 10.14062/j.issn.0454-5648.20200462

    LI Xiaoyan, WANG Yang, HE Dengwu, et al. Photocatalytic reduction of U(VI) with Cu-doped Bi2WO6[J]. Journal of the Chinese Ceramic Society,2021,49(5):1025-1032(in Chinese). doi: 10.14062/j.issn.0454-5648.20200462
    [13] 文志刚, 陈文芹, 唐丹, 等. 镨掺杂钛酸钙荧光粉的制备及其发光性能[J]. 广东化工, 2019, 46(5):43-44.

    WEN Zhigang, CHEN Wenqin, TANG Dan, et al. Synthesis of CaTiO3:Pr3+ phosphors and its luminescent property[J]. Guangdong Chemical Industry,2019,46(5):43-44(in Chinese).
    [14] CESCONETO F R, BORLAF M, NIETO M I, et al. Synthesis of CaTiO3 and CaTiO3/TiO2 nanoparticulate compounds through Ca2+/TiO2 colloidal sols: Structural and photocatalytic characterization[J]. Ceramics International,2018,44(1):301-309. doi: 10.1016/j.ceramint.2017.09.173
    [15] TEH Y W, CHEE M K T, KONG X Y, et al. An insight into perovskite-based photocatalysts for artificial photosynthesis[J]. Sustainable Energy & Fuels,2020,4(3):973-984.
    [16] CAVALCANTE L S, MARQUES V S, SCZANCOSKI J C, et al. Synthesis, structural refinement and optical behavior of CaTiO3 powders: A comparative study of processing in different furnaces[J]. Chemical Engineering Journal,2008,143(1-3):299-307. doi: 10.1016/j.cej.2008.05.017
    [17] 王昱莹, 付晓辉, 王杨, 等. CaTiO3去除溶液中U(VI)的性能研究[J]. 有色金属(冶炼部分), 2021(8):134-138.

    WANG Yuying, FU Xiaohui, WANG Yang, et al. Performance study on removal of U(VI) from aqueous solution by nanoscale CaTiO3[J]. Nonferrous Metals (Extractive Metallurgy),2021(8):134-138(in Chinese).
    [18] 成荣敏, 徐虹, 单瑞平, 等. La掺杂钛酸钙光催化剂在可见光下分解水制氢的影响因素[J]. 高等学校化学学报, 2020, 41(6):1345-1351.

    CHENG Rongmin, XU Hong, SHAN Ruiping, et al. Influence factors of La-doped calcium titanate for photocatalytic H2 evolution under visible light[J]. Chemical Journal of Chinese Universities,2020,41(6):1345-1351(in Chinese).
    [19] 孙德武, 宋沐遥, 李佳昕, 等. 钛酸钙纳米材料的改性及在光催化领域的研究进展[J]. 现代化工, 2022, 42(9):51-54.

    SUN Dewu, SONG Muyao, LI Jiaxin, et al. Modification of CaTiO3 nanomaterials and research progress on their application in photocatalytic field[J]. Modern Chemical Industry,2022,42(9):51-54(in Chinese).
    [20] HANG Y, SI Y, ZHOU Q, et al. Morphology-controlled synthesis of calcium titanate particles and adsorption kinetics, isotherms, and thermodynamics of Cd(II), Pb(II), and Cu(II) cations[J]. Journal of Hazardous Materials,2019,380:120789. doi: 10.1016/j.jhazmat.2019.120789
    [21] 易兴权. CaTiO3光催化剂的制备及其掺杂改性研究[D]. 兰州: 兰州大学, 2017.

    YI Xingquan. Synthesis of CaTiO3 photocatalyst and its doping modification[D]. Lanzhou: Lanzhou University, 2017(in Chinese).
    [22] ZHAO J, YANG X, LIANG G, et al. Effective removal of two fluoroquinolone antibiotics by PEG-4000 stabilized nanoscale zero-valent iron supported onto zeolite (PZ-NZVI)[J]. Science of the Total Environment,2020,710:136289. doi: 10.1016/j.scitotenv.2019.136289
    [23] 王虹茹, 刘惠平. TiO2/生物炭复合催化剂在染料废水处理中的应用[J]. 工业用水与废水, 2022, 53(6):11-15.

    WANG Ruhong, LIU Huiping. Application of TiO2/biochar composite catalyst for dyestuff wastewater treatment[J]. Industrial Water & Wastewater,2022,53(6):11-15(in Chinese).
    [24] 刘蕊, 李松, 罗璇, 等. 功能化生物炭吸附水中无机污染物的研究进展[J]. 科学技术与工程, 2021, 21(27):11455-11462.

    LIU Rui, LI Song, LUO Xuan, et al. Adsorption of inorganic contamination in aqueous solution with multifunctionalized biochar: A review[J]. Science Technology and Engineering,2021,21(27):11455-11462(in Chinese).
    [25] FITO J, KEFENI K K, NKAMBULE T T I. The potential of biochar-photocatalytic nanocomposites for removal of organic micropollutants from wastewater[J]. Science of the Total Environment, 2022, 829: 154648.
    [26] 金月正. 氧化锌/生物炭复合光催化材料制备及其降解抗生素废水研究[D]. 厦门: 厦门理工学院, 2022.

    JIN Yuezheng. Preparation of ZnO/biochar composite photocatalytic materials and study on degradation of antibiotic wastewater[D]. Xiamen: Xiamen University of Technology, 2022(in Chinese).
    [27] 李法云, 吝美霞, 李晓桐, 等. 生物炭基复合材料制备及其在有机污染环境修复中的应用[J]. 应用技术学报, 2021, 21(4):306-316.

    LI Fayun, LIN Meixia, LI Xiaotong, et al. Preparation of biochar-based composites and its application in remediation of organic polluted environment[J]. Journal of Technology,2021,21(4):306-316(in Chinese).
    [28] KAMAL A, SALEEM M H, ALSHAYA H, et al. Ball-milled synthesis of maize biochar-ZnO nanocomposite (MB-ZnO) and estimation of its photocatalytic ability against different organic and inorganic pollutants[J]. Journal of Saudi Chemical Society,2022,26(3):101445. doi: 10.1016/j.jscs.2022.101445
    [29] 李琦, 余敏, 姜珊, 等. 炭基钛酸钙的制备及其降解甲基橙的试验研究[J]. 工业用水与废水, 2021, 52(4):50-54.

    LI Qi, YU Min, JIANG Shan, et al. Experimental research on preparation of carbo-based calcium titanate and its performance on methyl orange degration[J]. Industrial Water & Wastewater,2021,52(4):50-54(in Chinese).
    [30] 李思琦, 刘丽晓, 赖昌鹏, 等. BiOCl/桔子皮生物炭复合催化剂光催化降解环丙沙星[J]. 化工技术与开发, 2022, 51(11):54-57.

    LI Siqi, LIU Lixiao, LAI Changpeng, et al. Photocatalytic degradation of ciprofloxacin with BiOCl/orange peel biochar composite catalyst[J]. Technology & Development of Chemical Industry,2022,51(11):54-57(in Chinese).
    [31] LIU X, DU P, PAN W, et al. Immobilization of uranium(VI) by niobate/titanate nancheterojunction through combined adsorption and solar-light-driven photocareduction[J]. Applied Catalysis B: Environmental,2018,231:11-22. doi: 10.1016/j.apcatb.2018.02.062
    [32] 鲁梦洁. 钛酸钙基复合材料的合成及光催化性能研究[D]. 武汉: 武汉纺织大学, 2022.

    LU Mengjie. Synthesis and photocatalytic properties of calcium titanate matrix composite[D]. Wuhan: Wuhan Textile University, 2022(in Chinese).
    [33] 张飞飞. 多孔生物质炭及其复合物的制备与铀吸附性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.

    ZHANG Feifei. The preparation and uranium adsorption properties of porous bio-derived carbon and its complexes[D]. Harbin: Harbin Engineering University, 2019(in Chinese).
    [34] 李小燕, 何登武, 李冠超, 等. Bi2O3-Bi2WO6直接Z-scheme异质结的制备、表征及光催化还原U(VI)的性能[J]. 复合材料学报, 2021, 38(8):2646-2654.

    LI Xiaoyan, HE Dengwu, LI Guanchao, et al. Preparation and characterization of Bi2O3-Bi2WO6 direct Z-scheme heterojunction and photocatalytic reduction of U(VI) under visible light irradiation[J]. Acta Materiae Compositae Sinica,2021,38(8):2646-2654(in Chinese).
    [35] ZHONG X, LIU Y, HOU T, et al. Effect of Bi2WO6 nanoflowers on the U(VI) removal from water: Roles of adsorption and photoreduction[J]. Journal of Environmental Chemical Engineering,2022,10(2):107170. doi: 10.1016/j.jece.2022.107170
    [36] ÖZCAN A S, GÖK Ö, ÖZCAN A. Adsorption of lead (II) ions onto 8-hydroxy quinoline-immobilized bentonite[J]. Journal of Hazardous materials,2009,161(1):499-509. doi: 10.1016/j.jhazmat.2008.04.002
    [37] 何登武. 乳化纳米零价铁/胶体Mg(OH)2复合材料去除溶液中U(VI)的效能与机制[D]. 南昌: 东华理工大学, 2022.

    HE Dengwu. The U(VI) removal efficiency and mechanism in aqueous solution by emulsified nano zero-valent iron/colloidal Mg(OH)2 composite material[D]. Nanchang: East China University of Technology, 2022(in Chinese).
    [38] 何余生, 李忠, 奚红霞, 等. 气固吸附等温线的研究进展[J]. 离子交换与吸附, 2004, 20(4):376-384. doi: 10.3321/j.issn:1001-5493.2004.04.012

    HE Yusheng, LI Zhong, XI Hongxia, et al. Research progress of gas-solid adsorption isotherms[J]. Ion Exchange and Adsorption,2004,20(4):376-384(in Chinese). doi: 10.3321/j.issn:1001-5493.2004.04.012
    [39] WANG F, TAN L, LIU Q, et al. Biosorption characteristics of uranium (VI) from aqueous solution by pollen pini[J]. Journal of Environmental Radioactivity,2015,150:93-98.
    [40] FILIUS J D, LUMSDON D G, MEEUSSEN J C L, et al. Adsorption of fulvic acid on goethite[J]. Geochimica et Cosmochimica Acta,2000,64(1):51-60. doi: 10.1016/S0016-7037(99)00176-3
    [41] ZHAO D, YANG S, CHEN S, et al. Correction to: Effect of pH, ionic strength and humic substances on the adsorption of uranium (VI) onto Na-rectorite[J]. Journal of Radioanalytical and Nuclear Chemistry,2011,287:557-565. doi: 10.1007/s10967-010-0846-4
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  536
  • HTML全文浏览量:  233
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-02
  • 修回日期:  2023-07-16
  • 录用日期:  2023-08-03
  • 网络出版日期:  2023-08-18
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回