Performance and mechanism of U(VI) removal from solution by pomegranate peel carbon supported CaTiO3 composites
-
摘要: 当今社会能源短缺,核能发展迅速,为了实现绿色高效的能源利用目标,如何处理核能发展过程产生的含铀废物已成为日益突出的环境问题。本文首先采用溶剂热法制备CaTiO3材料,然后通过与石榴皮炭材料混合研磨合成炭材料负载CaTiO3 (C@CaTiO3),采用现代表征技术分析C@CaTiO3与U(VI)反应前后形貌及物质组成变化。通过静态实验法研究了材料去除溶液中铀的性能。研究结果表明:在pH=3.5、U(VI)初始浓度为25 mg·L−1、反应时间40 min、温度为25℃的条件下,材料对U(VI)的去除率为96.26%,去除量为119.21 mg·g−1。通过吸附动力学模型、等温吸附模型和热力学模型,探究了C@CaTiO3与U(VI)的反应机制。结果表明:C@CaTiO3对U(VI)的吸附过程是自发进行的吸热反应,C@CaTiO3对溶液中U(VI)的去除存在吸附和还原两种方式,吸附为物理吸附和化学吸附并存、以表面单层化学吸附为主。还原以光催化还原作用为主。Abstract: In order to achieve the goal of green and efficient energy utilization, how to deal with uranium-containing waste generated during the development of nuclear energy has become an increasingly prominent environmental problem. The CaTiO3 materials were initially prepared using the solvent-thermal method. Subsequently, the carbon material was synthesized by grinding a mixture of CaTiO3 and pomegranate peel carbon material, resulting in the formation of carbon-loaded CaTiO3 (C@CaTiO3). Modern characterization techniques were employed to analyze the morphological and compositional changes of C@CaTiO3 before and after its reaction with U(VI). The performance of the material in removing uranium from the solution was evaluated using a static experimental method. The research findings revealed that, under the conditions of pH=3.5, an initial concentration of U(VI) of 25 mg·L−1, reaction time of 40 min, and temperature of 25℃, the material exhibited a U(VI) removal rate of 96.26% with a corresponding removal capacity of 119.21 mg·g−1. The reaction mechanism between C@CaTiO3 and U(VI) was investigated using adsorption kinetics models, isothermal adsorption models, and thermodynamic models. The results demonstrate that the adsorption process of U(VI) by C@CaTiO3 is a spontaneous endothermic reaction. The removal of U(VI) from the solution using C@CaTiO3 involved both adsorption and reduction, with physical and chemical adsorption coexisting and surface monolayer chemical adsorption being the predominant mechanism. Photocatalytic reduction played a major role in the reduction process.
-
Key words:
- carbon material /
- CaTiO3 /
- composites /
- uranium /
- removal /
- adsorption
-
图 6 不同温度和不同时间对C@CaTiO3去除U(VI)的影响(a)、准一级(b)和准二级(c)动力学模拟曲线
Qt—Adsorption capacity at an time point; Qe—Equilibrium adsorption capacity (pH=3.5, C0=25 mg·L−1, m/V=0.2 g·L−1, t=5, 10, 20, 30, 40, 50, 60, 80, 100、120 min, T=293, 298, 303, 308 K)
Figure 6. Effect of different temperatures and different time on the removal efficiency of U(VI) by C@CaTiO3 (a), quasi-first-order (b) and quasi-second-order (c) kinetic simulation curves
图 8 C@CaTiO3去除U(VI)的吸附等温线(a)、Langmuir (b)和Freundlich (c)等温吸附模型拟合
Figure 8. Adsorption isotherm (a), Langmuir (b) and Freundlich (c) isothermal adsorption model fitting on the removal of U(VI) by C@CaTiO3
pH=3.5, C0=10, 20, 30, 40, 50, 60, 70, 80, 90, 100 mg·L−1, m/V=0.2 g·L−1, t=40 min, T=20, 25, 30, 35℃
表 1 C@CaTiO3去除U(VI)的吸附动力学参数
Table 1. Adsorption kinetic parameters on the removal of U(VI) by C@CaTiO3
T/K Pseudo-first-order kinetic Pseudo-second-order kinetic Qe/(mg·g−1) K1/(min−1) R2 Qe/(mg·g−1) K2/(g·mg−1·min−1) R2 293 14.351 0.0482 0.8861 119.62 0.0126 0.9998 298 17.179 0.0341 0.6232 119.76 0.0160 0.9998 303 13.935 0.0324 0.8047 120.19 0.0157 0.9999 308 15.802 0.0336 0.6945 120.34 0.0192 0.9997 Notes: K1 and K2—Quasi-first-order and quasi-second-order kinetic adsorption rate constant; R—Linearly dependent coefficient. 表 2 C@CaTiO3去除U(VI)的Langmuir和Freundlich等温模型相关参数
Table 2. Isotherms paramters for Langmuir and Freundlich models on the removal of U(VI) by C@CaTiO3
T/K Langmuir Freundlich Qm/(mg·g−1) KL/(L·mg−1) R2 KF/(L·g−1) 1/n R2 293 222.72 2.5805 0.9958 113.41 0.2091 0.6008 298 263.16 1.8719 0.9991 130.04 0.2315 0.6409 303 271.00 1.5974 0.9987 129.50 0.2459 0.5398 308 289.02 1.2140 0.9985 136.71 0.2467 0.5021 Notes: Qm—Maximum adsorption; KL and KF—Langmuir constant and Freundlich adsorption coefficient; 1/n—Freundlich constant. 表 3 C@CaTiO3去除U(VI)的热力学参数
Table 3. Thermodynamic parameters on the removal of U(VI) by C@CaTiO3
C0/
(mg·L−1)ΔH0/
(kJ·mol−1)ΔS0/
(J·mol−1·K−1)ΔG0/(kJ·mol−1) 293 K 298 K 303 K 308 K 10 56.22 219.62 −11.01 −11.75 −12.14 −14.09 20 79.17 376.11 −10.95 −11.49 −12.35 −13.81 30 31.66 126.31 −10.72 −11.44 −12.08 −12.76 40 21.10 97.66 −11.03 −11.27 −11.89 −12.56 50 17.64 89.27 −9.54 −10.18 −11.35 −11.41 60 51.88 197.54 −7.96 −8.13 −8.54 −9.98 70 29.27 154.69 −6.25 −7.52 −8.32 −8.59 80 20.73 85.92 −5.42 −7.37 −7.24 −7.96 90 31.86 121.48 −4.96 −5.49 −5.84 −6.23 100 17.24 81.64 −4.79 −4.97 −5.17 −5.68 Notes: ΔH0—Enthalpy change; ΔS0—Entropy change; ΔG0—Gibbs free energy. -
[1] YI L, GAO B, LIU H, et al. Characteristics and assessment of toxic metal contamination in surface water and sediments near a uranium mining area[J]. International Journal of Environmental Research and Public Health,2020,17(2):548. doi: 10.3390/ijerph17020548 [2] LU Z, LIU Z. Pollution characteristics and risk assessment of uranium and heavy metals of agricultural soil around the uranium tailing reservoir in Southern China[J]. Journal of Radioanalytical and Nuclear Chemistry,2018,318(2):923-933. doi: 10.1007/s10967-018-6081-0 [3] ZHOU Y, XIAO J, HU R, et al. Engineered phosphorous-functionalized biochar with enhanced porosity using phytic acid-assisted ball milling for efficient and selective uptake of aquatic uranium[J]. Journal of Molecular Liquids,2020,303:112659. doi: 10.1016/j.molliq.2020.112659 [4] OUYANG Y, ZHAO L, DENG M, et al. Preparation of diethylenetriamine-functionalized thiosulfate intercalated ZnNiAl-LDHs and its removal behavior and mechanism of U(VI)[J]. Chemical Engineering Journal,2023,452:139486. doi: 10.1016/j.cej.2022.139486 [5] CUI X, YANG Z, ZHANG X, et al. Fabrication of novel heterojunction of (1D) Nb2O5 nanorod/(0D) CdS nanoparticles for efficient removal of U(VI) from water[J]. Applied Surface Science,2022,599:154027. doi: 10.1016/j.apsusc.2022.154027 [6] 李楠. 高效铀吸附材料的设计制备及性能研究[D]. 济南: 山东大学, 2021.LI Nan. Study on preparation and properties of efficient uranium adsorbents[D]. Jinan: Shandong University, 2021(in Chinese). [7] 郭梅. 含铀废水处理方法进展[J]. 科技创新与应用, 2020(34):119-120.GUO Mei. Progress in treatment of uranium containing wastewater[J]. Technology Innovation and Application,2020(34):119-120(in Chinese). [8] LI P, WANG J J, PENG T, et al. Heterostructure of anatase-rutile aggregates boosting the photoreduction of U(VI)[J]. Applied Surface Science,2019,483:670-676. doi: 10.1016/j.apsusc.2019.03.330 [9] GUO Y D, LI L, LI Y R, et al. Adsorption and photocatalytic reduction activity of uranium (VI) on zinc oxide/rectorite composite enhanced with methanol as sacrificial organics[J]. Journal of Radioanalytical and Nuclear Chemistry,2016,310(2):883-890. doi: 10.1007/s10967-016-4820-7 [10] 李小燕, 付晓辉, 李冠超, 等. 岩棉负载纳米零价铁去除溶液中U(VI)的性能和机制[J]. 材料导报, 2022, 36(20):70-76.LI Xiaoyan, FU Xiaohui, LI Guanchao, et al. Performance and mechanism on removal of U(VI) from aqueous solution by nano zero-valent iron loaded on rock wool[J]. Materials Reports,2022,36(20):70-76(in Chinese). [11] 何登武, 李冠超, 李小燕, 等. CuInS2光催化材料制备及光催化还原溶液中U(VI)的性能[J]. 有色金属工程, 2021, 11(7):18-24.HE Dengwu, LI Guanchao, LI Xiaoyan, et al. Preparation of CuInS2 photocatalytic material and performance of U(VI) in photocatalytic reduction solution[J]. Nonferrous Metals,2021,11(7):18-24(in Chinese). [12] 李小燕, 王杨, 何登武, 等. Cu掺杂Bi2WO6的光催化还原U(VI)特性[J]. 硅酸盐学报, 2021, 49(5):1025-1032. doi: 10.14062/j.issn.0454-5648.20200462LI Xiaoyan, WANG Yang, HE Dengwu, et al. Photocatalytic reduction of U(VI) with Cu-doped Bi2WO6[J]. Journal of the Chinese Ceramic Society,2021,49(5):1025-1032(in Chinese). doi: 10.14062/j.issn.0454-5648.20200462 [13] 文志刚, 陈文芹, 唐丹, 等. 镨掺杂钛酸钙荧光粉的制备及其发光性能[J]. 广东化工, 2019, 46(5):43-44.WEN Zhigang, CHEN Wenqin, TANG Dan, et al. Synthesis of CaTiO3:Pr3+ phosphors and its luminescent property[J]. Guangdong Chemical Industry,2019,46(5):43-44(in Chinese). [14] CESCONETO F R, BORLAF M, NIETO M I, et al. Synthesis of CaTiO3 and CaTiO3/TiO2 nanoparticulate compounds through Ca2+/TiO2 colloidal sols: Structural and photocatalytic characterization[J]. Ceramics International,2018,44(1):301-309. doi: 10.1016/j.ceramint.2017.09.173 [15] TEH Y W, CHEE M K T, KONG X Y, et al. An insight into perovskite-based photocatalysts for artificial photosynthesis[J]. Sustainable Energy & Fuels,2020,4(3):973-984. [16] CAVALCANTE L S, MARQUES V S, SCZANCOSKI J C, et al. Synthesis, structural refinement and optical behavior of CaTiO3 powders: A comparative study of processing in different furnaces[J]. Chemical Engineering Journal,2008,143(1-3):299-307. doi: 10.1016/j.cej.2008.05.017 [17] 王昱莹, 付晓辉, 王杨, 等. CaTiO3去除溶液中U(VI)的性能研究[J]. 有色金属(冶炼部分), 2021(8):134-138.WANG Yuying, FU Xiaohui, WANG Yang, et al. Performance study on removal of U(VI) from aqueous solution by nanoscale CaTiO3[J]. Nonferrous Metals (Extractive Metallurgy),2021(8):134-138(in Chinese). [18] 成荣敏, 徐虹, 单瑞平, 等. La掺杂钛酸钙光催化剂在可见光下分解水制氢的影响因素[J]. 高等学校化学学报, 2020, 41(6):1345-1351.CHENG Rongmin, XU Hong, SHAN Ruiping, et al. Influence factors of La-doped calcium titanate for photocatalytic H2 evolution under visible light[J]. Chemical Journal of Chinese Universities,2020,41(6):1345-1351(in Chinese). [19] 孙德武, 宋沐遥, 李佳昕, 等. 钛酸钙纳米材料的改性及在光催化领域的研究进展[J]. 现代化工, 2022, 42(9):51-54.SUN Dewu, SONG Muyao, LI Jiaxin, et al. Modification of CaTiO3 nanomaterials and research progress on their application in photocatalytic field[J]. Modern Chemical Industry,2022,42(9):51-54(in Chinese). [20] HANG Y, SI Y, ZHOU Q, et al. Morphology-controlled synthesis of calcium titanate particles and adsorption kinetics, isotherms, and thermodynamics of Cd(II), Pb(II), and Cu(II) cations[J]. Journal of Hazardous Materials,2019,380:120789. doi: 10.1016/j.jhazmat.2019.120789 [21] 易兴权. CaTiO3光催化剂的制备及其掺杂改性研究[D]. 兰州: 兰州大学, 2017.YI Xingquan. Synthesis of CaTiO3 photocatalyst and its doping modification[D]. Lanzhou: Lanzhou University, 2017(in Chinese). [22] ZHAO J, YANG X, LIANG G, et al. Effective removal of two fluoroquinolone antibiotics by PEG-4000 stabilized nanoscale zero-valent iron supported onto zeolite (PZ-NZVI)[J]. Science of the Total Environment,2020,710:136289. doi: 10.1016/j.scitotenv.2019.136289 [23] 王虹茹, 刘惠平. TiO2/生物炭复合催化剂在染料废水处理中的应用[J]. 工业用水与废水, 2022, 53(6):11-15.WANG Ruhong, LIU Huiping. Application of TiO2/biochar composite catalyst for dyestuff wastewater treatment[J]. Industrial Water & Wastewater,2022,53(6):11-15(in Chinese). [24] 刘蕊, 李松, 罗璇, 等. 功能化生物炭吸附水中无机污染物的研究进展[J]. 科学技术与工程, 2021, 21(27):11455-11462.LIU Rui, LI Song, LUO Xuan, et al. Adsorption of inorganic contamination in aqueous solution with multifunctionalized biochar: A review[J]. Science Technology and Engineering,2021,21(27):11455-11462(in Chinese). [25] FITO J, KEFENI K K, NKAMBULE T T I. The potential of biochar-photocatalytic nanocomposites for removal of organic micropollutants from wastewater[J]. Science of the Total Environment, 2022, 829: 154648. [26] 金月正. 氧化锌/生物炭复合光催化材料制备及其降解抗生素废水研究[D]. 厦门: 厦门理工学院, 2022.JIN Yuezheng. Preparation of ZnO/biochar composite photocatalytic materials and study on degradation of antibiotic wastewater[D]. Xiamen: Xiamen University of Technology, 2022(in Chinese). [27] 李法云, 吝美霞, 李晓桐, 等. 生物炭基复合材料制备及其在有机污染环境修复中的应用[J]. 应用技术学报, 2021, 21(4):306-316.LI Fayun, LIN Meixia, LI Xiaotong, et al. Preparation of biochar-based composites and its application in remediation of organic polluted environment[J]. Journal of Technology,2021,21(4):306-316(in Chinese). [28] KAMAL A, SALEEM M H, ALSHAYA H, et al. Ball-milled synthesis of maize biochar-ZnO nanocomposite (MB-ZnO) and estimation of its photocatalytic ability against different organic and inorganic pollutants[J]. Journal of Saudi Chemical Society,2022,26(3):101445. doi: 10.1016/j.jscs.2022.101445 [29] 李琦, 余敏, 姜珊, 等. 炭基钛酸钙的制备及其降解甲基橙的试验研究[J]. 工业用水与废水, 2021, 52(4):50-54.LI Qi, YU Min, JIANG Shan, et al. Experimental research on preparation of carbo-based calcium titanate and its performance on methyl orange degration[J]. Industrial Water & Wastewater,2021,52(4):50-54(in Chinese). [30] 李思琦, 刘丽晓, 赖昌鹏, 等. BiOCl/桔子皮生物炭复合催化剂光催化降解环丙沙星[J]. 化工技术与开发, 2022, 51(11):54-57.LI Siqi, LIU Lixiao, LAI Changpeng, et al. Photocatalytic degradation of ciprofloxacin with BiOCl/orange peel biochar composite catalyst[J]. Technology & Development of Chemical Industry,2022,51(11):54-57(in Chinese). [31] LIU X, DU P, PAN W, et al. Immobilization of uranium(VI) by niobate/titanate nancheterojunction through combined adsorption and solar-light-driven photocareduction[J]. Applied Catalysis B: Environmental,2018,231:11-22. doi: 10.1016/j.apcatb.2018.02.062 [32] 鲁梦洁. 钛酸钙基复合材料的合成及光催化性能研究[D]. 武汉: 武汉纺织大学, 2022.LU Mengjie. Synthesis and photocatalytic properties of calcium titanate matrix composite[D]. Wuhan: Wuhan Textile University, 2022(in Chinese). [33] 张飞飞. 多孔生物质炭及其复合物的制备与铀吸附性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.ZHANG Feifei. The preparation and uranium adsorption properties of porous bio-derived carbon and its complexes[D]. Harbin: Harbin Engineering University, 2019(in Chinese). [34] 李小燕, 何登武, 李冠超, 等. Bi2O3-Bi2WO6直接Z-scheme异质结的制备、表征及光催化还原U(VI)的性能[J]. 复合材料学报, 2021, 38(8):2646-2654.LI Xiaoyan, HE Dengwu, LI Guanchao, et al. Preparation and characterization of Bi2O3-Bi2WO6 direct Z-scheme heterojunction and photocatalytic reduction of U(VI) under visible light irradiation[J]. Acta Materiae Compositae Sinica,2021,38(8):2646-2654(in Chinese). [35] ZHONG X, LIU Y, HOU T, et al. Effect of Bi2WO6 nanoflowers on the U(VI) removal from water: Roles of adsorption and photoreduction[J]. Journal of Environmental Chemical Engineering,2022,10(2):107170. doi: 10.1016/j.jece.2022.107170 [36] ÖZCAN A S, GÖK Ö, ÖZCAN A. Adsorption of lead (II) ions onto 8-hydroxy quinoline-immobilized bentonite[J]. Journal of Hazardous materials,2009,161(1):499-509. doi: 10.1016/j.jhazmat.2008.04.002 [37] 何登武. 乳化纳米零价铁/胶体Mg(OH)2复合材料去除溶液中U(VI)的效能与机制[D]. 南昌: 东华理工大学, 2022.HE Dengwu. The U(VI) removal efficiency and mechanism in aqueous solution by emulsified nano zero-valent iron/colloidal Mg(OH)2 composite material[D]. Nanchang: East China University of Technology, 2022(in Chinese). [38] 何余生, 李忠, 奚红霞, 等. 气固吸附等温线的研究进展[J]. 离子交换与吸附, 2004, 20(4):376-384. doi: 10.3321/j.issn:1001-5493.2004.04.012HE Yusheng, LI Zhong, XI Hongxia, et al. Research progress of gas-solid adsorption isotherms[J]. Ion Exchange and Adsorption,2004,20(4):376-384(in Chinese). doi: 10.3321/j.issn:1001-5493.2004.04.012 [39] WANG F, TAN L, LIU Q, et al. Biosorption characteristics of uranium (VI) from aqueous solution by pollen pini[J]. Journal of Environmental Radioactivity,2015,150:93-98. [40] FILIUS J D, LUMSDON D G, MEEUSSEN J C L, et al. Adsorption of fulvic acid on goethite[J]. Geochimica et Cosmochimica Acta,2000,64(1):51-60. doi: 10.1016/S0016-7037(99)00176-3 [41] ZHAO D, YANG S, CHEN S, et al. Correction to: Effect of pH, ionic strength and humic substances on the adsorption of uranium (VI) onto Na-rectorite[J]. Journal of Radioanalytical and Nuclear Chemistry,2011,287:557-565. doi: 10.1007/s10967-010-0846-4