留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双碳结构增强硅橡胶智能复合材料的力电响应

万帮伟 杨洋 赵艳芳

万帮伟, 杨洋, 赵艳芳. 双碳结构增强硅橡胶智能复合材料的力电响应[J]. 复合材料学报, 2024, 41(4): 1852-1861. doi: 10.13801/j.cnki.fhclxb.20230817.002
引用本文: 万帮伟, 杨洋, 赵艳芳. 双碳结构增强硅橡胶智能复合材料的力电响应[J]. 复合材料学报, 2024, 41(4): 1852-1861. doi: 10.13801/j.cnki.fhclxb.20230817.002
WAN Bangwei, YANG Yang, ZHAO Yanfang. Mechanical and electrical response of silicon rubber intelligent composite materials reinforced by dual carbon structure[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1852-1861. doi: 10.13801/j.cnki.fhclxb.20230817.002
Citation: WAN Bangwei, YANG Yang, ZHAO Yanfang. Mechanical and electrical response of silicon rubber intelligent composite materials reinforced by dual carbon structure[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1852-1861. doi: 10.13801/j.cnki.fhclxb.20230817.002

双碳结构增强硅橡胶智能复合材料的力电响应

doi: 10.13801/j.cnki.fhclxb.20230817.002
基金项目: 国家自然科学基金(11962009)
详细信息
    通讯作者:

    杨洋,博士,教授,博士生导师,研究方向为微纳米力学、新型土木工程材料等领域 E-mail: yangyang0416@kust.edu.cn

  • 中图分类号: TB332

Mechanical and electrical response of silicon rubber intelligent composite materials reinforced by dual carbon structure

Funds: National Natural Science Foundation of China (11962009)
  • 摘要: 可拉伸应变传感器在减隔震领域具有广阔的应用前景,然而,研发低成本和高稳定性可拉伸应变传感器仍然是一个巨大挑战。本文采用开炼法制备出多壁碳纳米管(MWCNT)-导电炭黑(CB)/甲基乙烯基硅橡胶(VMQ)导电纳米复合材料。研究MWCNT与CB之间的协同效应对复合材料分散性能、导电性能、力学性能及电阻-应变响应性能影响。结果表明:添加CB后复合材料力学性能提升,具有较低的渗流阈值(1.24wt%),5000次循环加载-卸载过程中表现出优异的电阻-应变响应稳定性。此外,MWCNT-CB/VMQ复合材料相比于MWCNT/VMQ、CB/VMQ复合材料在电阻-应变响应性能中没有出现肩峰现象,同时解释了肩峰现象机制。通过SEM发现复合材料中MWCNT和CB均匀分布及形成的协同效应是低阈值和稳定电阻-应变响应性能的重要原因。通过隧道效应理论模型解释了电阻-应变响应机制。该复合材料对减隔震结构应变监测具有巨大潜力。

     

  • 图  1  (a) 导电硅橡胶复合材料制备流程;(b) 复合材料在原始、拉伸、弯曲、扭转下的图像;(c) 测试装置

    Figure  1.  (a) Preparation process of conductive silicone rubber composite; (b) Photos of composite material under original, stretching, bending and torsion; (c) Test diagram

    MWCNT—Multi-walled carbon nanotubes; CB—Carbon black; VMQ—Methyl vinyl silicone rubber; HPMS—Hydroxyl silicone oil; DBPMH—2, 5-dimethyl-2, 5-bis(tert-butyl peroxy)hexane; LMBG—Two-stage vulcanization

    图  2  (a) 多壁碳纳米管(MWCNT)-导电炭黑(CB)/甲基乙烯基硅橡胶(VMQ)复合材料在不同MWCNT含量下的应力-应变曲线;((b)~(d)) MWCNT2wt%-CB/VMQ、MWCNT/VMQ、CB/VMQ复合材料的拉伸强度、断裂伸长率、杨氏模量;(e) 3种复合材料在应变为200%下的循环应力-应变曲线

    Figure  2.  (a) Stress-strain curves of multi-walled carbon nanotubes (MWCNT)-conductive carbon black (CB)/methyl vinyl silicone rubber (VMQ) composites with different MWCNT contents; ((b)-(d)) Tensile strength, elongation at break, and Young's modulus of MWCNT2wt%-CB/VMQ、MWCNT/VMQ and CB/VMQ composites; (e) Cycle stress-strain curves of three composites under 200% strain

    S1, S2, S3—Area of hysteretic curves

    图  3  (a) 3种复合材料的体积电导率σ;(b) 3种复合材料渗流阈值拟合曲线;(c) 3种复合材料在应变为150%下的电阻-应变响应曲线和变形灵敏度(GF)值;(d) MWCNT2wt%-CB/VMQ复合材料和其他先前报道的应变传感器在最大应变下的最高GF的比较

    Figure  3.  (a) Volume conductivity σ of three composites; (b) Fitting curves of seepage threshold of three composites; (c) Resistance-strain response curves and GF values of the three composites at 150% strain; (d) Comparison of the maximum GF at maximum strain of MWCNT2wt%-CB/VMQ composites with other previously reported strain sensors

    w—Conductive filler content; φ—Percolation threshold; GF—Sensitivity; ΔR/R0—Resistance; ε—Strain

    图  4  复合材料在应变为30%下的电阻-应变响应

    Figure  4.  Resistance-strain response of composites at 30% strain

    图  5  CB9wt%/VMQ (a)、MWCNT4wt%/VMQ (b)、MWCNT2wt%-CB/VMQ (c)复合材料在应变为30%下电阻-应变响应第7次循环加载-卸载

    Figure  5.  CB9wt%/VMQ (a), MWCNT4wt%/VMQ (b), MWCNT2wt%-CB/VMQ (c) composites respond to the 7th cyclic loading-unloading under the strain of 30%

    IH1, IH2, IH3—Shoulder peak phenomenon area of CB9wt%/VMQ, MWCNT4wt%/VMQ, and MWCNT2wt%-CB/VMQ, respectively

    图  6  (a) MWCNT2wt%-CB/VMQ复合材料在不同应变下的电阻响应;(b) MWCNT2wt%-CB/VMQ复合材料在应变为5%、速率1000 mm/min−1下的响应时间;(c) MWCNT2wt%-CB/VMQ复合材料在不同速率下的电阻响应;((d)~(g)) MWCNT2wt%-CB/VMQ复合材料在应变为10%、20%、30%、40%下500次电阻响应;(h) MWCNT2wt%-CB/VMQ复合材料在应变为50%下的5000次电阻响应

    Figure  6.  (a) Resistance responses of MWCNT2wt%-CB/VMQ composites under different strains; (b) Response time of MWCNT2wt%-CB/VMQ composites at a strain of 5% and a rate of 1000 mm/min−1; (c) Resistance responses of MWCNT2wt%-CB/VMQ composites at different rates; ((d)-(g)) MWCNT2wt%-CB/VMQ composites have 500 times resistance responses at strain of 10%, 20%, 30% and 40%; (h) 5000 times resistance responses of MWCNT2wt%-CB/VMQ composites at 50% strain

    图  7  CB9wt%/VMQ复合材料((a), (b))、MWCNT4wt%/VMQ复合材料((c), (d))和MWCNT2wt%-CB/VMQ复合材料((e), (f)) 的SEM图像

    Figure  7.  SEM images of CB9wt%/VMQ composite ((a), (b)), MWCNT4wt%/VMQ composite ((c), (d)) and MWCNT2wt%-CB/VMQ composite ((e), (f))

    图  8  ((a)~(d)) MWCNT-CB/VMQ复合材料的导电网络在拉伸过程的演化机制;MWCNT2wt%-CB/VMQ (e)、CB9wt%/VMQ (f)、MWCNT4wt%/VMQ (g)复合材料在拉伸过程实验结果与理论结果的电阻

    Figure  8.  ((a)-(d)) Evolution mechanism of the conductive network of the MWCNT-CB/VMQ composites during the tensile process; Experimental and theoretical resistance of MWCNT2wt%-CB/VMQ (e), CB9wt%/VMQ (f), MWCNT4wt%/VMQ (g) composites

    表  1  不同导电填料含量的ΔR/R0-应变曲线拟合后的参数

    Table  1.   Parameters of resistance ΔR/R0-strain curves fitting for different conductive filler contents

    Filler content$ {m} $$ {{ \varepsilon }}_{\text{c}} $$ {{n}}_{\text{s}} $
    MWCNT4wt%
    MWCNT2wt%-CB
    CB9wt%
    2.55
    14.56
    7.08
    3.92
    6.55
    4.96
    −1.81
    −3.62
    −3.48
    Notes: m—Aconstant related to the fractal structure of the network; εc—Constant which can be interpreted as the yield strain; ns—Scaling exponent.
    下载: 导出CSV
  • [1] ARIA M, AKBARI R. Inspection, condition evaluation and replacement of elastomeric bearings in road bridges[J]. Structure and Infrastructure Engineering,2013,9(9):918-934. doi: 10.1080/15732479.2011.638171
    [2] SUN L, SHANG Z, XIA Y, et al. Review of bridge structural health monitoring aided by big data and artificial intelligence: From condition assessment to damage detection[J]. Journal of Structural Engineering,2020,146(5):04020073. doi: 10.1061/(ASCE)ST.1943-541X.0002535
    [3] SIRINGORINGO D M, FUJINO Y, SUZUKI M. Long-term continuous seismic monitoring of multi-span highway bridge and evaluation of bearing condition by wireless sensor network[J]. Engineering Structures,2023,276:115372. doi: 10.1016/j.engstruct.2022.115372
    [4] MENG X, NGUYEN D T, XIE Y, et al. Design and implementation of a new system for large bridge monitoring—GeoSHM[J]. Sensors,2018,18(3):775. doi: 10.3390/s18030775
    [5] YANG H, YAO X, ZHENG Z, et al. Highly sensitive and stretchable graphene-silicone rubber composites for strain sensing[J]. Composites Science and Technology,2018,167:371-378. doi: 10.1016/j.compscitech.2018.08.022
    [6] XU Y, XIE X, HUANG H, et al. Encapsulated core-sheath carbon nanotube-graphene/polyurethane composite fiber for highly stable, stretchable, and sensitive strain sensor[J]. Journal of Materials Science,2020,56(3):2296-2310.
    [7] LIU X, REN Z, LIU F, et al. Multifunctional self-healing dual network hydrogels constructed via host-guest interaction and dynamic covalent bond as wearable strain sensors for monitoring human and organ motions[J]. ACS Applied Materials & Interfaces,2021,13(12):14612-14622.
    [8] LIU L, GAO Y, LIU Y, et al. Biomimetic metal-organic framework-derived porous carbon welded carbon nanotube networks for strain sensors with high sensitivity and wide sensing range[J]. Applied Surface Science,2022,593:153417. doi: 10.1016/j.apsusc.2022.153417
    [9] OH S, KIM J, CHANG S T. Highly sensitive metal-grid strain sensors via water-based solution processing[J]. RSC Advances,2018,8(73):42153-42159. doi: 10.1039/C8RA08721K
    [10] CHRIST J F, ALIHEIDARI N, AMELI A, et al. 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites[J]. Materials & Design,2017,131:394-401.
    [11] YAN J, MALAKOOTI M H, LU Z, et al. Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization[J]. Nature Nanotechnology,2019,14(7):684-690. doi: 10.1038/s41565-019-0454-6
    [12] MIN S H, LEE G Y, AHN S H. Direct printing of highly sensitive, stretchable, and durable strain sensor based on silver nanoparticles/multi-walled carbon nanotubes composites[J]. Composites Part B: Engineering,2019,161:395-401. doi: 10.1016/j.compositesb.2018.12.107
    [13] BORAYEK R, FOROUGHI F, XIN X, et al. Near-zero hysteresis ionic conductive elastomers with long-term stability for sensing applications[J]. ACS Applied Materials & Interfaces,2022,14(9):11727-11738. doi: 10.1021/acsami.1c24784
    [14] LIU X, GUO R, LIN Z, et al. Resistance-strain sensitive rubber composites filled by multiwalled carbon nanotubes for structural deformation monitoring[J]. Nanomaterials and Nanotechnology,2021,11:1-13.
    [15] KURIAN A S, MOHAN V B, BHATTACHARYYA D. Embedded large strain sensors with graphene-carbon black-silicone rubber composites[J]. Sensors and Actuators A: Physical,2018,282:206-214. doi: 10.1016/j.sna.2018.09.017
    [16] XU X, YUAN Y, ZHANG T, et al. A silanized MCNT/TPU-based flexible strain sensor with high stretchability for deformation monitoring of elastomeric isolators for bridges[J]. Construction and Building Materials,2022,338:127664. doi: 10.1016/j.conbuildmat.2022.127664
    [17] REN H, LI H, WANG H, et al. Biodegradation of tetrahydrofuran by the newly isolated filamentous fungus Pseudallescheria boydii ZM01[J]. Microorganisms,2020,8(8):1190. doi: 10.3390/microorganisms8081190
    [18] WAN B, YANG Y, GUO R, et al. Effect of vulcanization on the electro-mechanical sensing characteristics of multi-walled carbon nanotube/silicone rubber composites[J]. Polymers,2023,15(6):1412. doi: 10.3390/polym15061412
    [19] ZHU S, SUN H, LU Y, et al. Inherently conductive poly(dimethylsiloxane) elastomers synergistically mediated by nanocellulose/carbon nanotube nanohybrids toward highly sensitive, stretchable, and durable strain sensors[J]. ACS Applied Materials & Interfaces,2021,13(49):59142-59153. doi: 10.1021/acsami.1c19482
    [20] YANG H, GONG L H, ZHENG Z, et al. Highly stretchable and sensitive conductive rubber composites with tunable piezoresistivity for motion detection and flexible electrodes[J]. Carbon,2020,158:893-903. doi: 10.1016/j.carbon.2019.11.079
    [21] GEORGOUSIS G, ROUMPOS K, KONTOU E, et al. Strain and damage monitoring in SBR nanocomposites under cyclic loading[J]. Composites Part B: Engineering,2017,131:50-61. doi: 10.1016/j.compositesb.2017.08.006
    [22] YANG H, YAO X, YUAN L, et al. Strain-sensitive electrical conductivity of carbon nanotube-graphene-filled rubber composites under cyclic loading[J]. Nanoscale,2019,11(2):578-586. doi: 10.1039/C8NR07737A
    [23] YANG H, YUAN L, YAO X, et al. Monotonic strain sensing behavior of self-assembled carbon nanotubes/graphene silicone rubber composites under cyclic loading[J]. Composites Science and Technology,2020,200:108474. doi: 10.1016/j.compscitech.2020.108474
    [24] SHEN L, WANG F Q, YANG H, et al. The combined effects of carbon black and carbon fiber on the electrical properties of composites based on polyethylene or polyethylene/polypropylene blend[J]. Polymer Testing,2011,30(4):442-448. doi: 10.1016/j.polymertesting.2011.03.007
    [25] CUI X, JIANG Y, XU Z, et al. Stretchable strain sensors with dentate groove structure for enhanced sensing recoverability[J]. Composites Part B: Engineering,2021,211:108641. doi: 10.1016/j.compositesb.2021.108641
    [26] LU Y, WU H, LIU J, et al. Electrical percolation of silicone rubber filled by carbon black and carbon nanotubes researched by the Monte Carlo simulation[J]. Journal of Applied Polymer Science,2019,136(46):48222. doi: 10.1002/app.48222
    [27] HUANG J C. Carbon black filled conducting polymers and polymer blends[J]. Advances in Polymer Technology,2002,21(4):299-313. doi: 10.1002/adv.10025
    [28] DENG H, LIN L, JI M, et al. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials[J]. Progress in Polymer Science,2014,39(4):627-655. doi: 10.1016/j.progpolymsci.2013.07.007
    [29] SURVE M, PRYAMITSYN V, GANESAN V. Universality in structure and elasticity of polymer-nanoparticle gels[J]. Physical Review Letters,2006,96(17):177805. doi: 10.1103/PhysRevLett.96.177805
    [30] FAN Z, GUO R, YANG Z, et al. The effect of the co-blending process on the sensing characteristics of conductive chloroprene rubber/natural rubber composites[J]. Polymers,2022,14(16):3326. doi: 10.3390/polym14163326
    [31] LI Z, QI X, XU L, et al. Self-repairing, large linear working range shape memory carbon nanotubes/ethylene vinyl acetate fiber strain sensor for human movement monitoring[J]. ACS Applied Materials & Interfaces,2020,12(37):42179-42192. doi: 10.1021/acsami.0c12425
    [32] ZHOU B, LIU Z, LI C, et al. Fabrication of ultrasensitive and flexible strain sensor based on multi-wall carbon nanotubes coated electrospun styrene-ethylene-butylene-styrene block copolymer fibrous tubes[J]. European Polymer Journal,2022,178:111501. doi: 10.1016/j.eurpolymj.2022.111501
    [33] ZHAO S, LI Y, WU F, et al. Humidity response of single carbon nanocoil and its temperature sensor independent of humidity and strain[J]. Applied Surface Science,2022,605:154745. doi: 10.1016/j.apsusc.2022.154745
    [34] WEN N, GUAN X, FAN Z, et al. A highly stretchable and breathable self-powered dual-parameter sensor for decoupled temperature and strain sensing[J]. Organic Electronics,2023,113:106723. doi: 10.1016/j.orgel.2022.106723
    [35] WANG H, HE X, HUANG X, et al. Vapor-based fabrication of PEDOT coating for wearable strain sensors with excellent sensitivity and self-cleaning capability[J]. Materials Today Chemistry,2023,28:101361. doi: 10.1016/j.mtchem.2022.101361
    [36] KIM S, YOO B, MILLER M, et al. EGaIn-silicone-based highly stretchable and flexible strain sensor for real-time two joint robotic motion monitoring[J]. Sensors and Actuators A: Physical,2022,342:113659. doi: 10.1016/j.sna.2022.113659
    [37] WANG H, YANG L, ZHANG X, et al. Effect of different prestretching index and preloading on actuation behaviors of dielectric elastomer actuator[J]. Journal of Materials Research and Technology,2021,15:4064-4073. doi: 10.1016/j.jmrt.2021.10.029
    [38] YANG H, YAO X, ZHENG Z, et al. Highly sensitive and stretchable graphene-silicone rubber composites for strain sensing[J]. Composites Science and Technology, 2018, 167: 371-378.
    [39] HEINRICH G, KLÜPPEL M. Recent advances in the theory of filler networking in elastomers[J]. Filled Elastomers Drug Delivery Systems,2002,160:1-44.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  585
  • HTML全文浏览量:  234
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-21
  • 修回日期:  2023-07-16
  • 录用日期:  2023-08-02
  • 网络出版日期:  2023-08-21
  • 刊出日期:  2024-04-01

目录

    /

    返回文章
    返回