留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱激发泡沫混凝土干燥收缩影响因素及其抑制方法研究进展

孙浩洋 张秀芝 陶文宏 闫孝伟 侯杰 郑沛祺 丰曙霞 杜鹏

孙浩洋, 张秀芝, 陶文宏, 等. 碱激发泡沫混凝土干燥收缩影响因素及其抑制方法研究进展[J]. 复合材料学报, 2024, 41(2): 609-624. doi: 10.13801/j.cnki.fhclxb.20230817.001
引用本文: 孙浩洋, 张秀芝, 陶文宏, 等. 碱激发泡沫混凝土干燥收缩影响因素及其抑制方法研究进展[J]. 复合材料学报, 2024, 41(2): 609-624. doi: 10.13801/j.cnki.fhclxb.20230817.001
SUN Haoyang, ZHANG Xiuzhi, TAO Wenhong, et al. Research progress on influencing factors and control methods of drying shrinkage of alkali-activated foam concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 609-624. doi: 10.13801/j.cnki.fhclxb.20230817.001
Citation: SUN Haoyang, ZHANG Xiuzhi, TAO Wenhong, et al. Research progress on influencing factors and control methods of drying shrinkage of alkali-activated foam concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 609-624. doi: 10.13801/j.cnki.fhclxb.20230817.001

碱激发泡沫混凝土干燥收缩影响因素及其抑制方法研究进展

doi: 10.13801/j.cnki.fhclxb.20230817.001
基金项目: 国家自然科学基金(52178211);济南市新高校20条(2021GXRC087)
详细信息
    通讯作者:

    张秀芝,博士,教授,博士生导师,研究方向为主要从事水泥基建筑材料、固废绿色建材化利用 E-mail: mse_zhangxz@ujn.edu

  • 中图分类号: TU528.5;TB332

Research progress on influencing factors and control methods of drying shrinkage of alkali-activated foam concrete

Funds: National Natural Science Foundation of China (52178211); New Universitys 20' Foundation of Jinan (2021GXRC087)
  • 摘要: 碱激发泡沫混凝土是结合碱激发材料和泡沫混凝土性能优势发展的一种绿色低碳节能材料。与普通硅酸盐水泥水化产物和孔隙分布的差异使碱激发材料具有高收缩的缺点,限制了其应用和发展。本综述分析了毛细管张力理论、表面张力理论、分离压力理论和层间水迁移理论4种干燥收缩机制和影响因素,对比了碱激发泡沫混凝土与水泥基材料、碱激发材料收缩机制的异同。同时,总结了碱激发泡沫混凝土抑制收缩的最新研究进展。碱激发材料相较于水泥基材料干燥收缩更大的原因是水化产物的不同,碱激发泡沫混凝土的干燥收缩最主要与泡沫量有关,浆体越少干燥收缩值越小。最后,指出了碱激发泡沫混凝土未来发展和研究方向,为其绿色低碳化发展提供一有效途径。

     

  • 图  1  碱激发泡沫混凝土干燥收缩机制图示:(a)毛细管力;(b)表面自由能;(c)分离压力;(d)层间水运动[12]

    Figure  1.  Diagram of alkali-activated foam concrete drying mechanism: (a) Capillary force; (b) Surface free energy; (c) Separation pressure; (d) Interlayer water movement[12]

    图  2  凝胶结构模型[21]

    C-A-S-H—Hydrated calcium aluminosilicate; N-A-S-H—Sodium hydrosilicate aluminate

    Figure  2.  Gel structure model[21]

    图  3  碱激发反应过程[24]

    Figure  3.  Alkali activated reaction process[24]

    图  4  普通硅酸盐水泥(OPC)和碱激发矿渣(AAS)的干燥收缩与孔径关系(水胶比w/b=0.5)[33]

    Figure  4.  Relationship between drying shrinkage and pore size of ordinary portland cement (OPC) and alkali-activated slag (AAS) (Water-binder ratio w/b= 0.5)[33]

    图  5  水泥-砂基体10%~50%泡沫掺量的干燥收缩[42]

    FV—Foam volume

    Figure  5.  Drying shrinkage of cement-sand matrix with 10%-50% foam content[42]

    图  6  碱激发矿渣砂浆:(a) 孔径分布;(b) 水玻璃模数;(c) 碱当量对干燥收缩的影响[61]

    PC—Portland cement; MS—Sodium silicate modules

    Figure  6.  Alkali-activated slag mortar: (a) Pore size distribution;(b) Influence of sodium silicate modulus; (c) Alkali equivalent on drying shrinkage[61]

    图  7  不同活性的氧化镁掺量对碱激发矿渣干燥收缩的影响[72]

    MgOH—Highly active nano MgO; MgOM—Moderately active nano MgO

    Figure  7.  Effect of MgO content with different activity on drying shrinkage of alkali activated slag[72]

    表  1  纤维种类及掺量对泡沫混凝土干燥收缩的影响

    Table  1.   Effect of fiber type and content on drying shrinkage of alkali-activated foam concrete

    Type of
    fibers
    Fibre
    density/
    (g·cm–3)
    Fibre
    length/
    mm
    Fibre
    diameter/
    μm
    Foamed
    concrete dry
    density/(g·cm–3)
    Cementitious
    materials
    Type of
    shrinkage
    Fiber
    content
    Effect of
    shrinkage-
    reducing/%
    PP[86]6Foam/cementitious materials=0.2-0.8Slag, fly ashDrying
    1.4vol%
    90 d reduced 40
    PVA[87]1.31240350SlagDrying0.6 kg/m328 d reduced 16.3
    PVA[88]1.31215700-800P·O 42.5,
    fly ash
    Total0.15vol%28 dreduced 32
    PP[89]618540-580SlagDrying0.6wt%56 d reduced 12.29
    Notes: PVA—Polyvinyl alcohol; PP—Polypropylene.
    下载: 导出CSV
  • [1] 王静文, 刘旭照, 尹泽飞, 等. 泡沫混凝土生产应用现状与前景分析[J]. 中国建材科技, 2018, 27(6):44-47.

    WANG Jingwen, LIU Xuzhao, YIN Zefei, et al. Present situation and prospect analysis of foam concrete production and application[J]. China Building Materials Science & Technology,2018,27(6):44-47(in Chinese).
    [2] EMAD B, GHOLAMREZA Z, EZZATOLLAH S, et al. Global strategies and potentials to curb CO2 emissions in cement industry[J]. Journal of Cleaner Production,2013,51(1):142-161.
    [3] 张耀君, 杨梦阳, 康乐, 等. 一类新型碱激发胶凝材料催化剂的研究进展[J]. 无机材料学报, 2016, 31(3):225-233. doi: 10.15541/jim20150412

    ZHANG Yaojun, YANG Mengyang, KANG Le, et al. Research progresses of new type alkali-activated cementitious material catalyst[J]. Journal of Inorganic Materials,2016,31(3):225-233(in Chinese). doi: 10.15541/jim20150412
    [4] LEE W, DEVENTER J. The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements[J]. Cement and Concrete Research, 2002, 32(4): 577-584.
    [5] JIANG M H, CHEN X J, FARSHAD R, et al. Comparative life cycle assessment of conventional, glass powder, and alkali-activated slag concrete and mortar[J]. Journal of Infrastructure Systems,2014,20(4):04014020. doi: 10.1061/(ASCE)IS.1943-555X.0000211
    [6] MASTALI M, KINNUNEN P, ISOMOISIO H, et al. Mechanical and acoustic properties of fiber-reinforced alkali-activated slag foam concretes containing lightweight structural aggregates[J]. Construction and Building Materials,2018,187(10):371-381.
    [7] 陈龙龙. 路基填充用泡沫混凝土的性能改善试验研究[D]. 天津: 天津大学, 2019.

    CHEN Longlong. Experimental study on performance improvement of foamed concrete for roadbed filling[D]. Tianjin: Tianjin University School of Civil Engineering, 2019(in Chinese).
    [8] 杨保先. 碱矿渣泡沫混凝土的配合比、工程性能和孔结构研究[D]. 青岛: 青岛理工大学, 2018.

    YANG Baoxian. Study on mixproportion, engineering properties and pore structure of alkali-activated slag foamed concrete[D]. Qingdao: Qingdao University of Technology, 2018(in Chinese).
    [9] RAMAMURTHY K, NAARAYANAN N. Influence of composition and curing on drying shrinkage of aerated concrete[J]. Materials and Structures, 2000, 33(228): 243-250.
    [10] JONATHAN S, YAMAN B, VIVEK B. Mechanical, thermal and acoustic properties of cellular alkali activated fly ash concrete[J]. Cement and Concrete Composites,2018,94:24-32. doi: 10.1016/j.cemconcomp.2018.08.004
    [11] YOUNG J F. Physical mechanisms and their mathematical descriptions[M]. Wiley: Chichester, 1988: 63-98.
    [12] WITTMANN F H. Creep and shrinkage mechanisms[M]. Wiley: Chichester, 1982: 129-161.
    [13] SHI C. Strength, pore structure and permeability of alkali-activated slag mortars[J]. Cement and Concrete Research, 1996, 26(12): 1789.
    [14] COLLINS F, SANJAYAN J G. Effect of pore size distribution on drying shrinking of alkali-activated slag concrete[J]. Cement & Concrete Research,2000,30(9):1401.
    [15] PALACIOS M, PUERTAS F. Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes[J]. Cement and Concrete Research,2007,37(5):691. doi: 10.1016/j.cemconres.2006.11.021
    [16] ANDRES E I. Coupled analysis of degradation processes in concrete specimens at the meso-level[D]. Barcelona: Universitat Politècnica de Catalunya, 2009.
    [17] CHEN W W, LI B, WANG J, et al. Effects of alkali dosage and silicate modulus on autogenous shrinkage of alkali-activated slag cement paste[J]. Cement and Concrete Research,2021,141:106322. doi: 10.1016/j.cemconres.2020.106322
    [18] 韩宇栋, 张君, 岳清瑞, 等. 现代混凝土收缩研究评述[J]. 混凝土, 2019(2):1-12, 16.

    HAN Yudong, ZHANG Jun, YUE Qingrui, et al. Review on shrinkage of modern concrete[J]. Concrete,2019(2):1-12, 16(in Chinese).
    [19] 田倩. 低水胶比大掺量矿物掺合料水泥基材料的收缩及机制研究[D]. 南京: 东南大学, 2006.

    TIAN Qian. Shrinkage and the mechanism of the cement-based material at low water to binder ratio incorporating high volume mineral admixtures[D]. Nanjing: Southeast University, 2006(in Chinese).
    [20] FERRARIS C F, WITTMANN F H. Shrinkage mechanisms of hardened cement paste[J]. Cement and Concrete Research,1987,17(3):453-464. doi: 10.1016/0008-8846(87)90009-3
    [21] 王晴, 康升荣, 吴丽梅, 等. 地聚合物凝胶体系中N-A-S-H和C-A-S-H结构的分子模拟[J]. 建筑材料学报, 2020, 23(1):184-191.

    WANG Qing, KANG Shengrong, WU Limei, et al. Molecular simulation of N-A-S-H and C-A-S-H in geopolymer cementitious system[J]. Journal of Building Materials,2020,23(1):184-191(in Chinese).
    [22] 关蕾蕾, 陈永贵, 叶为民, 等. 泡沫混凝土收缩及其抑制方法研究进展[J]. 土木工程学报, 2023, 56(3):32-43.

    GUAN Leilei, CHEN Yonggui, YE Weimin, et al. Research developments in shrinkage and shrinkage inhibition methods of foamed concrete[J]. China Civil Engineering Journal,2023,56(3):32-43(in Chinese).
    [23] PROVIS J L. Alkali-activated materials[J]. Cement and Concrete Research, 2018, 114: 40-48.
    [24] DAVIDOVITS J. Properties of geopolymer cements[C]// In: Proceedings First International Conference on Alkaline Cements and Concretes, Scientific Research Institute on Binders and Materials. Kiev: Geopolymer Institute, 1994: 131-149.
    [25] 刘振涛. 碱激发再生混凝土制备技术及性能研究[D]. 青岛: 青岛理工大学, 2021.

    LIU Zhentao. Research on preparation technology and performance of alkali-activated recycled concrete[D]. Qingdao: Qingdao University of Technology, 2021(in Chinese).
    [26] 孙家瑛, 诸培南, 吴初航. 矿渣在碱性溶液激发下的水化机制探讨[J]. 硅酸盐通报, 1988(6):20-29.

    SUN Jiaying, ZHU Peinan, WU Chuhang. Discussion on hydration mechanism of slag stimulated by alkaline solution[J]. Bulletin of the Chinese Ceramic Society,1988(6):20-29(in Chinese).
    [27] PUERTAS F, PALACIOS M, MANZANO H, et al. A model for the C-A-S-H gel formed in alkali-activated slag cements[J]. Journal of the European Ceramic Society,2011,31(12):2043. doi: 10.1016/j.jeurceramsoc.2011.04.036
    [28] SINGH B, ISHWARYA G, GUPTA M, et al. Geopolymer concrete: A review of some recent developments[J]. Construction and Building Materials,2015,85:78-90. doi: 10.1016/j.conbuildmat.2015.03.036
    [29] 王亚光. 赤泥-粉煤灰-脱硫石膏新型胶凝材料微结构演变与复合协同效应[D]. 北京: 北京科技大学, 2022.

    WANG Yaguang. Microstructure evolution and compo-site synergistic effect of new cementitious materials of red mud, fly ash and desulfurizat[D]. Beijing: University of Science and Technology Beijing, 2022(in Chinese).
    [30] YE H L, CHRISTOPHER C, FARSHAD R, et al. Understanding the drying shrinkage performance of alkali-activated slag mortars[J]. Cement & Concrete Composites,2017,76:13-24.
    [31] SAJEDI F, RAZAK H A. Effects of curing regimes and cement fineness on the compressive strength of ordinary portland cement mortars[J]. Construction and Building Materials,2011,25(4):2036-2045. doi: 10.1016/j.conbuildmat.2010.11.043
    [32] 周世华, 杨华全, 董芸, 等. 水泥细度对砂浆体积稳定性的影响[J]. 水利水电技术, 2008(10):58-60, 68.

    ZHOU Shihua, YANG Huaquan, DONG Yun, et al. Influence of cement fineness volume stability of mortar[J]. Water Resources and Hydropower Engineering,2008(10):58-60, 68(in Chinese).
    [33] ZHANG B, ZHU H, FENG P, et al. A review on shrinkage-reducing methods and mechanisms of alkali-activated/ geopolymer systems: Effects of chemical additives[J]. Journal of Building Engineering,2022,49:104056. doi: 10.1016/j.jobe.2022.104056
    [34] ANTONIO A M N, MARIA A C, WELLINGTON R. Drying and autogenous shrinkage of pastes and mortars with activated slag cement[J]. Cement & Concrete Research,2008,38(4):565-574.
    [35] ADESANYA E, ALADEJARE A, ADEDIRAN A, et al. Predicting shrinkage of alkali-activated blast furnace-fly ash mortars using artificial neural network (ANN)[J]. Cement and Concrete Composites,2021,124:104265. doi: 10.1016/j.cemconcomp.2021.104265
    [36] 张中坤. 碱激发胶凝材料研究进展及发展前景综述[J]. 新材料产业, 2022(2):56-59.

    ZHANG Zhongkun. Review of research progress and development prospect of alkali-activated cementitious materials[J]. New Material Industry,2022(2):56-59(in Chinese).
    [37] 谭义. 碱矿渣快速修补砂浆制备与界面 性能研究[D]. 重庆: 重庆大学, 2018.

    TAN Yi. Research on bonding interface properties and preparation of alkali-activated slag cement using as rapid repairing mortar[D]. Chongqing: Chongqing University, 2018(in Chinese).
    [38] CRIADO M A F, PALOMO A. Alkali activation of fly ash: Effect of the SiO2/Na2O ratio: Part I: FTIR study[J]. Microporous and Mesoporous Materials,2007,106(1-3):180-191. doi: 10.1016/j.micromeso.2007.02.055
    [39] 程国东, 黄天勇, 刘泽, 等. 粉煤灰-矿渣基地聚合物胶砂性能研究[J]. 新型建筑材料, 2020, 47(1):50-53.

    CHENG Guodong, HUANG Tianyong, LIU Ze, et al. Research on the performance of ash-slag based geopolymer mortar[J]. New Building Materials,2020,47(1):50-53(in Chinese).
    [40] TRAN N P, GUNASEKARA C, LAW D W, et al. A critical review on drying shrinkage mitigation strategies in cement-based materials[J]. Journal of Building Engineering,2021,38(9):102210.
    [41] 贾兴文, 钱觉时. 粉煤灰加气混凝土干燥收缩特性的研究[J]. 新型建筑材料, 2006(10):29-31.

    JIA Xingwen, QIAN Jueshi. Study on drying shrinkage characteristics of fly ash aerated concrete[J]. New Building Materials,2006(10):29-31(in Chinese).
    [42] 李铮. 结构功能一体化碱激发矿渣泡沫混凝土性能及其机制研究[D]. 深圳: 深圳大学, 2020.

    LI Zheng. Study on performance and mechanism of structure-function integrated alkali-activated slag foam concrete[D]. Shenzhen: Shenzhen University, 2020(in Chinese).
    [43] 柴大霞, 周妤莲. 碱矿渣胶凝材料的机制研究[J]. 中国建材科技, 2013, 22(3):139-141.

    CHAI Daxia, ZHOU Shulian. Study on the mechanism of alkali-activated slag material[J]. China Building Materials Science & Technology,2013,22(3):139-141(in Chinese).
    [44] 王洪飞, 李月香, 王伟伟. 矿渣泡沫混凝土材料力学性能研究[J]. 墙材革新与建筑节能, 2015(8):38-41.

    WANG Hongfei, LI Yuexiang, WANG Weiwei. Study on mechanical properties of slag foam concrete material[J]. Construction Wall Innovation & Building Energy-Saving,2015(8):38-41(in Chinese).
    [45] ABDOLLAHNEJAD Z, PACHECO-TORGAL F, FELIX T, et al. Mix design, properties and cost analysis of fly ash-based geopolymer foam[J]. Construction and Building Materials,2015,80(4):18-30.
    [46] ZHANG Z H, PROVIS J L, REID A, et al. Geopolymer foam concrete: An emerging material for sustainable construction[J]. Construction and Building Materials, 2014, 56(4): 113-127.
    [47] ZHAO W H, SU Q, WANG W B, et al. Experimental study on the effect of water on the properties of cast In situ foamed concrete[J]. Advances in Materials Science and Engineering, 2018, 2018: 7130465.
    [48] 曹显志. 陶粒轻质混凝土墙体材料性能研究与应用[D]. 南京: 东南大学, 2022.

    CAO Xianzhi. Research and application of ceramsite lightweight concrete wall material[D]. Nanjing: Southeast University, 2022(in Chinese).
    [49] NAMBIAR E K K, RAMAMURTHY K. Shrinkage behavior of foam concrete[J]. Journal of Materials in Civil Engi-neering,2009,21(11):631-636. doi: 10.1061/(ASCE)0899-1561(2009)21:11(631)
    [50] RAZAEI M, BINDIGANARILE V. Alkali-activated fly ash foams for narrow-trench reinstatement[J]. Cement and Concrete Composites, 2021, 119: 103966.
    [51] BISSCHOP J, MIER J G M V. Drying shrinkage microcracking in cement-based materials[J]. Heron,2002,47(3):163-184.
    [52] 徐方, 周明凯, 李北星, 等. 影响聚合物改性多孔混凝土性能的因素研究[J]. 武汉理工大学学报, 2009, 31(4):84-86.

    XU Fang, ZHOU Mingkai, ZHANG Beixing, et al. Study on the effect factors of the performance of polymer-modified porous concrete[J]. Journal of Wuhan University of Technology,2009,31(4):84-86(in Chinese).
    [53] 叶家元, 钟卫华, 张文生, 等. 铝土矿选尾矿制备碱激发胶凝材料的性能[J]. 水泥, 2010(6):5-7.

    YE Jiayuan, ZHONG Weihua, ZHANG Wensheng, et al. Properties of alkali-activated cementitious materials prepared from bauxite tailings[J]. Cement,2010(6):5-7(in Chinese).
    [54] COLLINS F, SANJAYAN J G. Strength and shrinkage pro-perties of alkali-activated slag concrete placed into a large column[J]. Cement and Concrete Research,1999,29(5):659-666. doi: 10.1016/S0008-8846(99)00011-3
    [55] CHI M, HUANG R. Binding mechanism and properties of alkali-activated fly ash/slag mortars[J]. Construction & Building Materials,2013,40:291-298.
    [56] 薛恒岳. 粉煤灰基尾矿碱激发地质聚合物的制备和性能研究[D]. 沈阳: 沈阳工业大学, 2021.

    XUE Hengyue. Experimental study on preparation and properties of alkali-activated fly ash-based tailings geopolymer[D]. Shenyang: Shenyang University of Technology, 2021(in Chinese).
    [57] 李爽, 刘和鑫, 杨永, 等. 碱激发矿渣/偏高岭土复合胶凝材料干燥收缩机制研究[J]. 材料导报, 2021, 35(4):4088-4091.

    LI Shuang, LIU Hexin, YANG Yong, et al. Mechanisms of drying shrinkage for alkali-activated slag/metakaolin composite materials[J]. Materials Reports,2021,35(4):4088-4091(in Chinese).
    [58] 郑娟荣, 姚振亚, 刘丽娜. 碱激发胶凝材料化学收缩或膨胀的试验研究[J]. 硅酸盐通报, 2009, 28(1):49-53.

    ZHENG Juanrong, YAO Zhenya, LIU Lina. Test investigation on the chemical shrinkage or expansion of alkali-activated cementitious materials[J]. Bulletin of the Chinese Ceramic Society,2009,28(1):49-53(in Chinese).
    [59] SHI C J, PAVEL V K, DELLA R. Alkali-activated cements and concretes[M]. British: Taylor & Francis e-Library, 2005.
    [60] 杨长辉, 王磊, 田义, 等. 碱矿渣泡沫混凝土性能研究[J]. 硅酸盐通报, 2016, 35(2):555-560.

    YANG Changhui, WANG Lei, TIAN Yi, et al. Fundamental characteristics of alkali activated slag cement foam concrete[J]. Bulletin of the Chinese Ceramic Society,2016,35(2):555-560(in Chinese).
    [61] SERDAR A, BULENT B. Effect of activator type and content on properties of alkali-activated slag mortars[J]. Composites Part B: Engineering,2014,57:166-172.
    [62] 丁庆军, 丁晓歆, 黄辉, 等. 全矿渣碱激发制备内养护泡沫混凝土的研究[J]. 混凝土, 2015(8):156-160.

    DING Qingjun, DING Xiaoqin, HUANG Hui, et al. Research on preparation of internal curing foam concrete using slag alkali activated[J]. Concrete,2015(8):156-160(in Chinese).
    [63] AILAR H, TUAN N, ALIREZALIREZA K. Sustainable one-part geopolymer foams with glass fines versus sand as aggregates[J]. Construction and Building Materials,2018,171:223-231.
    [64] ZHANG L, YUE Y. Influence of waste glass powder usage on the properties of alkali-activated slag mortars based on response surface methodology[J]. Construction and Building Materials,2018,181(30):527-534.
    [65] 龚建清, 杨倩, 郭丽, 等. 碱激发矿渣-玻璃粉基泡沫混凝土性能研究[J]. 硅酸盐通报, 2022, 41(1):226-234. doi: 10.16552/j.cnki.issn1001-1625.2022.01.025

    GONG Jianqing, YANG Qian, GUO Li, et al. Performance of alkali-activated slag-glass powder based foamed concrete[J]. Bulletin of the Chinese Ceramic Society,2022,41(1):226-234(in Chinese). doi: 10.16552/j.cnki.issn1001-1625.2022.01.025
    [66] ZHANG S Z, KEULEN A, ARBI K, et al. Waste glass as partial mineral precursor in alkali-activated slag/fly ash system[J]. Cement and Concrete Research,2017,102:29-40. doi: 10.1016/j.cemconres.2017.08.012
    [67] 杨长辉, 蒲心诚, 吴芳. 碱矿渣水泥砂浆的碱集料反应膨胀研究[J]. 硅酸盐学报, 1999(6):651-657.

    YANG Changhui, PU Xincheng, WU Fang. The studies on alkali-aggregate reaction of alkali-activated slag cement mortars[J]. Journal of the Chinese Ceramic Society,1999(6):651-657(in Chinese).
    [68] 邱军付, 孙桂芳, 王永魁, 等. 纳米纤维增韧泡沫混凝土的机制研究[J]. 新型建筑材料, 2015, 42(12):37-39.

    QIU Junfu, SUN Guifang, WANG Yongkui, et al. Study on toughening mechanism of foam concrete with nano-fiber[J]. New Building Materials,2015,42(12):37-39(in Chinese).
    [69] YANG J , WANG Q , ZHOU Y . Influence of curing time on the drying shrinkage of concretes with different binders and water-to-binder ratios[J]. Advances in Materials Science and Engineering, 2017, 2017: 1-10.
    [70] DUAN P, YAN C J, LUO W J, et al. Effects of adding nano-TiO2 on compressive strength, drying shrinkage, carbonation and microstructure of fluidized bed fly ash based geopolymer paste[J]. Construction and Building Materials,2016,106:115-125. doi: 10.1016/j.conbuildmat.2015.12.095
    [71] 杨凌艳. 碱激发矿渣微结构优化及性能研究[D]. 南京: 东南大学, 2015.

    YANG Lingyan. The modification of microstructure and properties of alkali avtivated slag[D]. Nanjing: Southeast University, 2015(in Chinese).
    [72] JIN F, GU K, AL-TABBAA A. Strength and drying shrinkage of reactive MgO modified alkali-activated slag paste[J]. Construction and Building Materials, 2014, 51: 395-404.
    [73] HUANG D W, YUAN Q M, CHEN P, et al. Effect of activator properties on drying shrinkage of alkali-activated fly ash and slag[J]. Journal of Building Engineering, 2022, 62: 105341.
    [74] 甘戈金, 兰聪, 陈景, 等. 碱激发磷渣制备超轻质泡沫混凝土的试验研究[J]. 新型建筑材料, 2017, 44(2):125-129, 147.

    GAN Gejin, LAN Cong, CHEN Jing, et al. Experimental research on alkali-activated phosphorous slag prepared ultra-light foamed concrete[J]. New Building Materials,2017,44(2):125-129, 147(in Chinese).
    [75] HAWREEN A, BAGAS J A, DIAS A P S. On the mechanical and shrinkage behavior of cement mortars reinforced with carbon nanotubes[J]. Construction and Building Materials, 2018, 168: 459-470.
    [76] 罗纯辉. 碳纳米管改性碱激发矿渣复合材料性能及机制研究[D]. 深圳: 深圳大学, 2019.

    LUO Chunhui. Study on the properties and mechanism of carbon nanotubes reinforced alkali-activated-slag[D]. Shenzhen: Shenzhen University, 2019(in Chinese).
    [77] 赵星, 霍冀川, 高亚, 等. 玄武岩纤维增强泡沫混凝土性能的研究[J]. 混凝土与水泥制品, 2012(12):54-57.

    ZHAO Xing, HUO Jichuan, GAO Ya, et al. Study on properties of basalt fiber reinforced foamed concrete[J]. China Concrete and Cement Products,2012(12):54-57(in Chinese).
    [78] MASTALI M, DALVAND A, SATTARIFARD A R. The impact resistance and mechanical properties of reinforced self-compacting concrete with recycled glass fibre reinforced polymers[J]. Journal of Cleaner Production,2016,124:312-324. doi: 10.1016/j.jclepro.2016.02.148
    [79] AMRAN Y H M. Influence of structural parameters on the properties of fibred-foamed concrete[J]. Innovative Infrastructure Solutions,2020,5:1-18. doi: 10.1007/s41062-020-0262-8
    [80] KUDYAKOV A I, STESHENKO A B. Shrinkage deformation of cement foam concrete[J]. IOP Conference Series: Materials Science and Engineering,2015,71:012019. doi: 10.1088/1757-899X/71/1/012019
    [81] MAMUN M, BINDIGANAVILE V. Sulphate resistance of fibre reinforced cement-based foams[J]. Construction and Building Materials,2011,25(8):3427-3442. doi: 10.1016/j.conbuildmat.2011.03.034
    [82] 詹炳根, 郭建雷, 林兴胜. 玻璃纤维增强泡沫混凝土性能试验研究[J]. 合肥工业大学学报: 自然科学版, 2009, 32(2):226-229.

    ZHAN Binggen, GUO Jianlei, LIN Xingsheng. Properties of foamed concrete with fiber glass reinforcement[J]. Jour-nal of Hefei University of Technology (Natural Science),2009,32(2):226-229(in Chinese).
    [83] YAN L B, BOHUMIL K, HUANG L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering[J]. Composites Part B: Engi-neering, 2016, 92: 94-132.
    [84] RAMAKRISHNA G, SUNDARARAJAN T. Impact strength of a few natural fibre reinforced cement mortar slabs: A comparative study[J]. Cement & Concrete Composites,2005,27(5):547-553.
    [85] 詹炳根, 李建勋, 林涛. 混杂纤维对泡沫混凝土收缩开裂的影响[J]. 合肥工业大学学报:自然科学版, 2020, 43(3):400-405.

    ZHAN Binggen, LI Jianxun, LIN Tao. Effect of hybrid fiber on shrinkage cracking of foam concrete[J]. Journal of Hefei University of Technology (Natural Science),2020,43(3):400-405(in Chinese).
    [86] ABDOLLAHNEJAD Z, ZHANG Z, WANG H, et al. Comparative study on the drying shrinkage and mechanical properties of geopolymer foam concrete incorporating different dosages of fiber, sand and foam agents[C]//High Tech Concrete: Where Technology and Engineering Meet: Proceedings of the 2017 Fib Symposium. Maastricht: Springer International Publishing, 2018: 42-48.
    [87] 白光, 田义, 余林文, 等. 聚乙烯醇纤维对碱矿渣泡沫混凝土性能的影响[J]. 材料导报, 2018, 32(12):2096-2099. doi: 10.11896/j.issn.1005-023X.2018.12.029

    BAI Guang, TIAN Yi, YU Linwen, et al. Effect of PVA fiber on the properties of alkali activated slag foam concrete[J]. Materials Reports,2018,32(12):2096-2099(in Chinese). doi: 10.11896/j.issn.1005-023X.2018.12.029
    [88] 邓均, 霍冀川, 宋言红, 等. 聚乙烯醇纤维泡沫混凝土的性能试验[J]. 混凝土与水泥制品, 2012(2): 41-44.

    DENG Jun, HUO Jichuan, SONG Yanhong, et al. Performance test of polyvinyl alcohol fiber foamed concrete[J]. China Concrete and Cement Products, 2012(2): 41-44(in Chinese).
    [89] 江旋, 季韬, 徐维, 等. 聚丙烯纤维掺量对碱矿渣泡沫混凝土砌块性能影响的研究[J]. 新型建筑材料, 2021, 48(4):95-98, 114.

    JIANG Xuan, JI Tao, XU Wei, et al. Effect of polypropylene fiber content on behavior of lkali-activated slag foamed concrete block[J]. New Building Materials,2021,48(4):95-98, 114(in Chinese).
    [90] HADIPRAMANA J, SAMAD A A A, ZAIDI A M A, et al. Contribution of polypropylene fibre in improving strength of foamed concrete[J]. Advanced Materials Research,2012,626:762-768. doi: 10.4028/www.scientific.net/AMR.626.762
    [91] 顾亚敏, 方永浩. 碱矿渣水泥的收缩与开裂特性及其减缩与增韧[J]. 硅酸盐学报, 2012, 40(1): 76-84.

    GU Yamin, FANG Yonghao. Shrinkage, cracking, shrinkage-reducing and toughening of alkali-activated slag cement—A short review[J]. Journal of the Chinese Ceramic Society, 2012, 40(1): 76-84.
    [92] 陈科, 杨长辉, 潘群, 等. 碱-矿渣水泥砂浆的干缩特性[J]. 重庆大学学报, 2012, 35(5):64-68.

    CHEN Ke, YANG Changhui, PAN Qun, et al. Drying shrinkage characteristics of alkali- slag cement mortar[J]. Journal of Chongqing University,2012,35(5):64-68(in Chinese).
    [93] 梅琳. 碱矿渣混凝土干缩性能及改善措施研究[D]. 重庆: 重庆大学, 2010.

    MEI Lin. Research on the drying performance and improving measures of alkali-activated slag concrete[D]. Chongqing: Chongqing University, 2010(in Chinese).
    [94] 郑安然. 碱矿渣泡沫混凝土的研制与性能研究[D]. 合肥: 合肥工业大学, 2020.

    ZHENG Anran. Preparation and properties of alkali-activated slag foamed concrete[D]. Hefei: Hefei University of Technology, 2020(in Chinese).
    [95] BAKHAREV T, SANJAYAN J G, CHENG Y B. Effect of admixtures on properties of alkali-activated slag concrete[J]. Cement & Concrete Research,2000,30(9):1367-1374.
    [96] 蒋俊, 牛云辉, 卢忠远. 减缩剂对泡沫混凝土收缩的影响研究[J]. 功能材料, 2014, 45(11):11032-11035, 11040.

    JIANG Jun, NIU Yunhui, LU Zhongyuan. Research on influence of shrinkage reducer on shrinkage of foamed concrete[J]. Journal of Functional Materials,2014,45(11):11032-11035, 11040(in Chinese).
    [97] PRINYA C, UBOLLUK R. Shrinkage behavior of structural foam lightweight concrete containing glycol compounds and fly ash[J]. Materials & Design,2011,32(2):723-727.
    [98] LING Y F, WANG K J, FU C Q. Shrinkage behavior of fly ash based geopolymer pastes with and without shrinkage reducing admixture[J]. Cement and Concrete Compo-sites, 2019, 9(98): 74-82.
    [99] 柴大霞, 周妤莲. 轻骨料对碱-矿渣胶凝材料基免蒸压多孔混凝土收缩性能的研究[J]. 广东建材, 2012, 28(9):26-28.

    CHAI Daxia, ZHOU Shulian. Study on shrinkage performance of alkali-slag cementitious material-based autoclaved porous concrete by lightweight aggregate[J]. Guangdong Building Materials,2012,28(9):26-28(in Chinese).
    [100] OMKAR D, NARAYANAN N. Compressive behavior of pervious concretes and a quantification of the influence of random pore structure features[J]. Materials Science & Engineering A,2010,528(1):402-412.
    [101] 文甜. 粉煤灰-矿渣基地聚物混凝土基本性能及早期收缩研究[D]. 成都: 西南交通大学, 2020.

    WEN Tian. Study on the basic properties and early shrinkage of geopolymer concrete based on fly ash and slag[D]. Chengdu: Southwest Jiaotong University, 2020(in Chinese).
    [102] TRAVEN K, ENOVAR M, KAPIN S D, et al. High temperature resistant fly-ash and metakaolin-based alkali-activated foams[J]. Ceramics International,2021,47(17):25105-25120. doi: 10.1016/j.ceramint.2021.05.241
    [103] DUXSON P, LUKEY G C, DEVENTER J. Thermal evolution of metakaolin geopolymers: Part 1—Physical evolution[J]. Journal of Non-Crystalline Solids,2006,352(52-54):5541-5555. doi: 10.1016/j.jnoncrysol.2006.09.019
    [104] HE Y, CUI X M, LIU X D, et al. Preparation of self-supporting NaA zeolite membranes using geopolymers[J]. Jour-nal of Membrane Science,2013,447:66-72. doi: 10.1016/j.memsci.2013.07.027
    [105] LANCELLOTTI I, CATAURO M, PONZONI C, et al. Inorganic polymers from alkali-activation of metakaolin: Effect of setting and curing on structure[J]. Journal of Solid State Chemistry,2013,200:341-348. doi: 10.1016/j.jssc.2013.02.003
    [106] 李国豪. 碱激发胶凝材料制备高强自支撑沸石的研究[D]. 北京: 中国建筑材料科学研究总院, 2022.

    LI Guohao. Preparation of high strength and self-supporting zeolites synthesized from alkali-activated cementitious materials[D]. Beijing: China Building Materlals Academy, 2022(in Chinese).
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  537
  • HTML全文浏览量:  562
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-09
  • 修回日期:  2023-07-20
  • 录用日期:  2023-07-28
  • 网络出版日期:  2023-08-18
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回