留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应双相场模型的纤维增强复合材料单层板断裂性能

郭雯 马玉娥 Sundar Natarajan 陈鹏程 彭帆

郭雯, 马玉娥, Sundar Natarajan, 等. 基于自适应双相场模型的纤维增强复合材料单层板断裂性能[J]. 复合材料学报, 2024, 41(3): 1505-1515. doi: 10.13801/j.cnki.fhclxb.20230816.003
引用本文: 郭雯, 马玉娥, Sundar Natarajan, 等. 基于自适应双相场模型的纤维增强复合材料单层板断裂性能[J]. 复合材料学报, 2024, 41(3): 1505-1515. doi: 10.13801/j.cnki.fhclxb.20230816.003
GUO Wen, MA Yu'e, SUNDAR Natarajan, et al. Study on fracture of fiber-reinforced composite single layer laminate based on adaptive double phase-field model[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1505-1515. doi: 10.13801/j.cnki.fhclxb.20230816.003
Citation: GUO Wen, MA Yu'e, SUNDAR Natarajan, et al. Study on fracture of fiber-reinforced composite single layer laminate based on adaptive double phase-field model[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1505-1515. doi: 10.13801/j.cnki.fhclxb.20230816.003

基于自适应双相场模型的纤维增强复合材料单层板断裂性能

doi: 10.13801/j.cnki.fhclxb.20230816.003
基金项目: 国家自然科学基金国际(地区)合作与交流项目(52061135101)
详细信息
    通讯作者:

    马玉娥,博士,教授,博士生导师,研究方向为复合材料结构力学 E-mail: ma.yu.e@nwpu.edu.cn

  • 中图分类号: TB332

Study on fracture of fiber-reinforced composite single layer laminate based on adaptive double phase-field model

Funds: Projects of International Cooperation and Exchanges NSFC (52061135101)
  • 摘要: 相场法可以自动捕捉裂纹的萌生和演化,因此在模拟复合材料的复杂失效行为时具有明显优势。为区分纤维增强复合材料(Fiber-reinforced composites,FRC)中存在的不同断裂模式,采用双相场断裂模型来分别表征基体和纤维的损伤演化。同时采用相场变量作为误差指标,在各向异性的双相场模型中引入了基于四叉树分解的网格自适应细化策略。设计并开发了相应的Matlab程序,研究了单向及变刚度纤维增强复合材料单层板在拉伸位移载荷下的断裂行为。计算结果表明:采用基于自适应算法的各向异性双相场模型所得到的数值计算结果与试验结果吻合良好;自适应双相场模型能在保证较高计算精度的同时,配合序参量的演化准确地在裂纹路径上进行网格自动加密,简化网格前处理过程,减少网格数量,降低计算成本,提高计算效率。

     

  • 图  1  (a) 尖锐裂纹模型;(b) 双相场模型

    Figure  1.  (a) Sharp crack model; (b) Double phase-field model

    ${{\bar t}}$—Surface traction; ${{\bar u}}$—Surface displacement; $\partial {\varOmega _{\rm{t}}}$—Neuman boundary; $\partial {\varOmega _{\rm{u}}}$—Dirichlet boundary; ${\varGamma _{\text{m}}}$—Crack surface of matrix; ${\varGamma _{\text{f}}}$—Crack surface of fiber; ${d_{\text{m}}},{d_{\text{f}}}$—Phase field of matrix and fiber

    图  2  四叉树网格及带悬点单元的形函数构造

    Figure  2.  Quadtree mesh and the construction of shape function of elements with hanging nodes

    ${v_i}$—Node; ${\alpha _i}$—Internal angle; P—Pole

    图  3  单边裂纹纤维增强复合材料(FRC)试样:几何尺寸及边界条件

    Figure  3.  Single edge notched fiber-reinforced composites (FRC) specimen: Geometric size and boundary conditions

    ${e_1},{e_2}$—Orthogonal basis of local coordinate system; u—Displacement; θ—Angle between fiber and x-axis

    图  4  不同相场阈值下单边裂纹FRC试样的位移-载荷曲线

    dc—Phase field threshold

    Figure  4.  Displacement-load curves of single edge notched FRC specimen with different phase-field thresholds

    图  5  单边裂纹FRC试样沿不同纤维方向下的裂纹扩展:(a)计算结果;(b)试验结果[35];(c)自适应网格

    Figure  5.  Crack propagation paths of single edge notched FRC specimen with different fiber orientation: (a) Simulation results; (b) Experimental results[35]; (c) Adaptive elements

    图  6  不同纤维方向的单边裂纹FRC试样位移-载荷曲线

    Figure  6.  Displacement-load curves of single edge notched FRC specimen with different fiber directions

    图  7  中心含孔FRC试样:(a)几何尺寸及边界条件;(b)部分计算结果

    R—Radius; dm—Phase field of matrix

    Figure  7.  Open hole FRC specimen: (a) Geometric size and boundary conditions; (b) Some calculation results

    图  8  不同纤维角度对应下中心含孔FRC试样的结构等效强度

    σf—Effective strength

    Figure  8.  Effective strengths of the central circle FRC specimen with different fiber orientations

    图  9  中心含孔FRC试样的自适应和非自适应的网格数量对比

    Figure  9.  Comparison of the number of elements between adaptive and unadaptive schemes for central circle FRC specimen

    图  10  变刚度FRC试样的几何尺寸及边界条件

    Figure  10.  Geometric size and boundary conditions of variable stiffness FRC specimen

    ${T_0}$—Initial angle of fiber; $a$—Characteristic length of one period; T1—Termination angle of fiber; φ—Rotation angle of fiber path

    图  11  变刚度FRC试件部分模拟结果:((a)~(c)), ((e)~(g))裂纹扩展路径;((d), (h))自适应网格

    Figure  11.  Some simulation results of variable stiffness FRC specimen:((a)-(c)), ((e)-(g)) Crack propagation paths; ((d),(h)) Adaptive elements

    图  12  变刚度FRC试样等效强度对比:不同旋转角度和不同特征尺寸

    Figure  12.  Comparison of the effective strength of variable stiffness FRC specimen: Different rotation angles and different reference length

    表  1  单边裂纹纤维增强复合材料试样材料参数[35]

    Table  1.   Material parameters of single edge notched fiber reinforced composite specimen[35]

    Material parameterValue
    E11/GPa114.8
    E22/GPa11.7
    G12/GPa9.66
    ${v_{{\text{12}}}}$0.21
    Gf/(kJ·m−2)106.3
    GmI/(kJ·m−2)0.2774
    GmII/(kJ·m−2)0.7879
    Notes: E11, E22 and G12—Longitudinal modulus, transverse modulus and in-plane shear modulus; ${v_{{\text{12}}}}$—Poisson's ratio; Gf—Longitudinal critical energy release rate; GmI and GmII—Transverse normal and shear critical energy release rate.
    下载: 导出CSV

    表  2  不同相场阈值对应的网格数

    Table  2.   Number of elements with different phase-field thresholds

    dcNumber of elements
    0.115966
    0.3 9469
    0.5 7794
    0.7 8313
    0.9 7479
    下载: 导出CSV

    表  3  计算时间和网格数量对比

    Table  3.   Comparison of computation time and number of elements

    Fiber
    orientation
    CPU time/sNumber of elements
    UnadaptiveAdaptivePercent reduction/%UnadaptiveAdaptivePercent reduction/%
    30°14537.263827 5910.20120759.3480000779490.25
    45°21364.296175 7913.42378662.9680000805789.37
    60°21604.27428011615.33052446.2380000896488.80
    下载: 导出CSV

    表  4  中心含孔FRC试样材料参数[36]

    Table  4.   Material parameters of open hole FRC specimen[36]

    Material parameterValue
    E11/GPa26.5
    E22/GPa2.6
    G12/GPa1.3
    ${v_{12}}$0.35
    Gf/(kJ·m2)31.1
    GmI/(kJ·m2)0.622
    GmII/(kJ·m2)0.472
    下载: 导出CSV
  • [1] CHE L, LIU S, LIANG J, et al. An improved four-parameter conjugated bond-based peridynamic method for fiber-reinforced composites[J]. Engineering Fracture Mechanics,2022,275:108863. doi: 10.1016/j.engfracmech.2022.108863
    [2] TALREJA R, WAAS A M. Concepts and definitions related to mechanical behavior of fiber reinforced composite materials[J]. Composites Science and Technology,2022,217:109081. doi: 10.1016/j.compscitech.2021.109081
    [3] 黄争鸣. 复合材料的力学理论[J]. 复合材料学报, 2023, 40(6):3090-3114.

    HUANG Zhengming. Mechanics theories for composites[J]. Acta Materiae Compositae Sinica,2023,40(6):3090-3114(in Chinese).
    [4] FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics and Physics of Solids,1998,46(8):1319-1342. doi: 10.1016/S0022-5096(98)00034-9
    [5] BOURDIN B, FRANCFORT G A, MARIGO J J. Numerical experiments in revisited brittle fracture[J]. Journal of the Mechanics and Physics of Solids,2000,48(4):797-826. doi: 10.1016/S0022-5096(99)00028-9
    [6] BUI T Q, HU X. A review of phase-field models, fundamentals and their applications to composite laminates[J]. Engineering Fracture Mechanics,2021,248:107705. doi: 10.1016/j.engfracmech.2021.107705
    [7] 胡小飞, 张鹏, 姚伟岸. 断裂相场法[M]. 北京: 科学出版社, 2022: 3-4.

    HU Xiaofei, ZHANG Peng, YAO Wei'an. Phase field method for fracture[M]. Beijing: Science Press, 2022: 3-4(in Chinese).
    [8] ZHOU S, WANG T, WU X, et al. Three-dimensional phase field modeling of progressive failure in aramid short fiber reinforced paper[J]. Mechanics of Advanced Materials and Structures, 2023, 30(24): 5106-5121.
    [9] WU J Y, CHEN W X. Phase-field modeling of electromechanical fracture in piezoelectric solids: Analytical results and numerical simulations[J]. Computer Methods in Applied Mechanics and Engineering,2021,387:114125. doi: 10.1016/j.cma.2021.114125
    [10] CHEN W X, WU J Y. Phase-field cohesive zone modeling of multi-physical fracture in solids and the open-source implementation in Comsol Multiphysics[J]. Theoretical and Applied Fracture Mechanics,2022,117:103153. doi: 10.1016/j.tafmec.2021.103153
    [11] 彭帆, 马玉娥, 黄玮, 等. 基于相场法的复合材料失效分析研究进展[J]. 复合材料学报, 2023, 40(5):2495-2506.

    PENG Fan, MA Yu'e, HUANG Wei, et al. Failure analysis of composite materials based on phase field method–A review[J]. Acta Materiae Compositae Sinica,2023,40(5):2495-2506(in Chinese).
    [12] MESGARNEJAD A, IMANIAN A, KARMA A. Phase-field models for fatigue crack growth[J]. Theoretical and Applied Fracture Mechanics,2019,103:102282. doi: 10.1016/j.tafmec.2019.102282
    [13] TAN Y, HE Y, LI X, et al. A phase field model for fatigue fracture in piezoelectric solids: A residual controlled staggered scheme[J]. Computer Methods in Applied Mechanics and Engineering,2022,399:115459. doi: 10.1016/j.cma.2022.115459
    [14] NGUYEN V P, WU J Y. Modeling dynamic fracture of solids with a phase-field regularized cohesive zone model[J]. Computer Methods in Applied Mechanics and Engineering,2018,340:1000-1022. doi: 10.1016/j.cma.2018.06.015
    [15] NIU Z, ZIAEI-RAD V, WU Z, et al. An asynchronous variational integrator for the phase field approach to dynamic fracture[J]. International Journal for Numerical Methods in Engineering,2023,124(2):434-457. doi: 10.1002/nme.7127
    [16] WU J, MCAULIFFE C, WAISMAN H, et al. Stochastic analysis of polymer composites rupture at large deformations modeled by a phase field method[J]. Computer Methods in Applied Mechanics and Engineering,2016,312:596-634. doi: 10.1016/j.cma.2016.06.010
    [17] CLAYTON J D, KNAP J. Phase field modeling of directional fracture in anisotropic polycrystals[J]. Computational Materials Science,2015,98:158-169. doi: 10.1016/j.commatsci.2014.11.009
    [18] NATARAJAN S, ANNABATTULA R K. Modeling crack propagation in variable stiffness composite laminates using the phase field method[J]. Composite Structures,2019,209:424-433. doi: 10.1016/j.compstruct.2018.10.083
    [19] ZHANG P, HU X, BUI T Q, et al. Phase field modeling of fracture in fiber reinforced composite laminate[J]. International Journal of Mechanical Sciences,2019,161:105008.
    [20] ZHANG P, YAO W, HU X, et al. 3D micromechanical progressive failure simulation for fiber-reinforced composites[J]. Composite Structures,2020,249:112534. doi: 10.1016/j.compstruct.2020.112534
    [21] PAN Z Z, ZHANG L W, LIEW K M. A phase-field framework for failure modeling of variable stiffness composite laminae[J]. Computer Methods in Applied Mechanics and Engineering,2022,388:114192. doi: 10.1016/j.cma.2021.114192
    [22] BLEYER J, ALESSI R. Phase-field modeling of anisotropic brittle fracture including several damage mechanisms[J]. Computer Methods in Applied Mechanics and Engineering,2018,336:213-236. doi: 10.1016/j.cma.2018.03.012
    [23] DEAN A, REINOSO J, JHA N K, et al. A phase field approach for ductile fracture of short fibre reinforced composites[J]. Theoretical and Applied Fracture Mechanics,2020,106:102495. doi: 10.1016/j.tafmec.2020.102495
    [24] ZHANG P, TAN S, HU X, et al. A double-phase field model for multiple failures in composites[J]. Composite Structures,2022,293:115730. doi: 10.1016/j.compstruct.2022.115730
    [25] DAN S, TARAFDER P, GHOSH S. Adaptive wavelet-enhanced cohesive zone phase-field FE model for crack evolution in piezoelectric composites[J]. Computer Methods in Applied Mechanics and Engineering,2022,392:114636. doi: 10.1016/j.cma.2022.114636
    [26] 邵玉龙, 段庆林, 高欣, 等. 自适应一致性高阶无单元伽辽金法[J]. 力学学报, 2017, 49(1):105-116. doi: 10.6052/0459-1879-16-252

    SHAO Yulong, DUAN Qinglin, GAO Xin, et al. Adaptive consistent high order element-free Galerkin method[J]. Chinese Journal of Theoretical and Applied Mechanics,2017,49(1):105-116(in Chinese). doi: 10.6052/0459-1879-16-252
    [27] GUPTA A, KRISHNAN U M, MANDAL T K, et al. An adaptive mesh refinement algorithm for phase-field fracture models: Application to brittle, cohesive, and dynamic fracture[J]. Computer Methods in Applied Mechanics and Engineering,2022,399:115347. doi: 10.1016/j.cma.2022.115347
    [28] NOII N, ALDAKHEEL F, WICK T, et al. An adaptive global-local approach for phase-field modeling of anisotropic brittle fracture[J]. Computer Methods in Applied Mechanics and Engineering,2020,361:112744. doi: 10.1016/j.cma.2019.112744
    [29] CHEN L, LI B, DE BORST R. Adaptive isogeometric analysis for phase-field modeling of anisotropic brittle fracture[J]. International Journal for Numerical Methods in Engineering,2020,121(20):4630-4648.
    [30] HIRSHIKESH, JANSARI C, KANNAN K, et al. Adaptive phase field method for quasi-static brittle fracture based on recovery based error indicator and quadtree decomposition[J]. Engineering Fracture Mechanics,2019,220:106599. doi: 10.1016/j.engfracmech.2019.106599
    [31] 吴建营. 固体结构损伤破坏统一相场理论、算法和应用[J]. 力学学报, 2021, 53(2):301-329. doi: 10.6052/0459-1879-20-295

    WU Jianying. On the theoretical and numerical aspects of the unified phase-field theory for damage and failure in solids and structures[J]. Chinese Journal of Theoretical and Applied Mechanics,2021,53(2):301-329(in Chinese). doi: 10.6052/0459-1879-20-295
    [32] TAN Y, HE Y, LI X. Phase field fracture modeling of transversely isotropic piezoelectric material with anisotropic fracture toughness[J]. International Journal of Solids and Structures,2022,248:111615. doi: 10.1016/j.ijsolstr.2022.111615
    [33] REZAEI S, OKOE-AMON J N, VARKEY C A, et al. A cohesive phase-field fracture model for chemo-mechanical environments: Studies on degradation in battery materials[J]. Theoretical and Applied Fracture Mechanics, 2023, 124: 103758.
    [34] FLOATER M S. Mean value coordinates[J]. Computer Aided Geometric Design,2003,20(1):19-27. doi: 10.1016/S0167-8396(03)00002-5
    [35] CAHILL L M A, NATARAJAN S, BORDAS S P A, et al. An experimental/numerical investigation into the main driving force for crack propagation in unidirectional fibre-reinforced composite laminae[J]. Composite Structures,2014,107:119-130. doi: 10.1016/j.compstruct.2013.05.039
    [36] MODNIKS J, SPĀRNIŅŠ E, ANDERSONS J, et al. Analysis of the effect of a stress raiser on the strength of a UD flax/epoxy composite in off-axis tension[J]. Journal of Composite Materials,2015,49(9):1071-1080. doi: 10.1177/0021998314528827
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  373
  • HTML全文浏览量:  194
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-21
  • 修回日期:  2023-07-26
  • 录用日期:  2023-08-06
  • 网络出版日期:  2023-08-21
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回