留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D机织预制体准纤维尺度建模方法

朱琬清 谢军波 吴兰芳 陈利 杨林 刘静妍

朱琬清, 谢军波, 吴兰芳, 等. 3D机织预制体准纤维尺度建模方法[J]. 复合材料学报, 2024, 41(3): 1528-1538. doi: 10.13801/j.cnki.fhclxb.20230816.002
引用本文: 朱琬清, 谢军波, 吴兰芳, 等. 3D机织预制体准纤维尺度建模方法[J]. 复合材料学报, 2024, 41(3): 1528-1538. doi: 10.13801/j.cnki.fhclxb.20230816.002
ZHU Wanqing, XIE Junbo, WU Lanfang, et al. Quasi-fiber scale modelling of 3D woven preforms[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1528-1538. doi: 10.13801/j.cnki.fhclxb.20230816.002
Citation: ZHU Wanqing, XIE Junbo, WU Lanfang, et al. Quasi-fiber scale modelling of 3D woven preforms[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1528-1538. doi: 10.13801/j.cnki.fhclxb.20230816.002

3D机织预制体准纤维尺度建模方法

doi: 10.13801/j.cnki.fhclxb.20230816.002
基金项目: 国家科技重大专项(Y2019-I-0018-0017);天津市海河实验室科学研究项目(22HHXCJC00007)
详细信息
    通讯作者:

    谢军波,博士,副研究员,博士生导师,研究方向为复合材料力学、织物力学 E-mail: xiejunbo@tiangong.edu.cn

  • 中图分类号: TB332;V258

Quasi-fiber scale modelling of 3D woven preforms

Funds: National Science and Technology Major Project of the Ministry of Science and Technology of China (Y2019-I-0018-0017); Scientific Research Program Funded by Haihe Laboratory in Tianjin (22HHXCJC00007)
  • 摘要: 3D机织复合材料在航空航天领域有着广泛应用,作为复合材料的增强结构,纤维预制体的几何构造对复合材料的力学性能有着决定性影响。但预制体是一种柔性结构,在成型过程中容易发生显著的几何结构变异,包括纱线路径的变化和截面的挤压变形。实现预制体的精细化、高保真度建模是对复合材料进行性能预测和结构设计的重要前提。针对碳纤维3D机织预制体的复杂纤维结构,基于虚拟纤维的概念提出了准纤维尺度建模方法,模拟了织造过程中纱线的运动和变形,实现了预制体的精确重构。利用Micro-CT技术表征了预制体样件的内部单胞结构,验证了模型的可靠性。

     

  • 图  1  3D机织预制体单胞结构示意图:((a), (b)) 经纬纱交织结构;((c)~(f)) 经纱路径

    Figure  1.  Schematic diagram of unit cell structure for 3D woven preform: ((a), (b)) Warp and weft woven structure; ((c)-(f)) Warp paths

    图  2  (a) Micro-CT测试;(b) 预制体表面形貌

    Figure  2.  (a) Micro-CT test; (b) Surface morphology of the preform

    图  3  3D机织预制体经纱模型:(a) 虚拟纤维模型;(b) 经纱路径示意图

    Figure  3.  Warp yarn model of 3D woven preform: (a) Virtual fiber model; (b) Schematic diagram of warp yarn

    Lweft—Horizontal spacing between adjacent weft yarns; h—Interlayer spacing of weft yarns

    图  4  3D机织预制体初始状态模型:(a) 纱线交织结构;(b) 经向截面;(c) 纬向截面

    Figure  4.  Numerical model of 3D woven preform in loose state: (a) Woven structure; (b) Cross-section along warp direction; (c) Cross section along weft direction

    图  5  3D机织预制体张紧过程仿真结果:(a) 位移云图;(b) 应力云图

    Figure  5.  Simulation results of the tightening process for 3D woven preform: (a) Displacement contour; (b) Stress contour

    U—Displacement value; S—Stress; S11—Stress experienced in the x-axis direction

    图  6  3D机织预制体虚拟纤维模型和Micro-CT图像对比:((a)~(c)) 虚拟重构模型;((d)~(f)) Micro-CT图像

    Figure  6.  Comparison between virtual fiber model and Micro-CT images of 3D woven preform: ((a)-(c)) Virtual fiber model; ((d)-(f)) Micro-CT images

    图  7  纱线几何信息提取:((a), (b)) Micro-CT图像;((c), (d)) 虚拟纤维模型

    Figure  7.  Geometric information extraction of the yarns from: ((a), (b)) Micro-CT images; ((c), (d)) Virtual fiber model

    $A_{\rm{weft\_section}}^{\rm {CT}}$—Area of the weft cross-section in the CT image; $A_{{\rm{weft\_section}}}^{{\rm{model}}}$—Area of the weft cross-section in the virtual fiber model; $A_{{\rm{warp\_section}}}^{{\rm{CT}}} $—Area of the warp cross-section in the CT image; $A_{{\rm{warp\_section}}}^{{\rm{model}}}$—Area of the warp cross-section in the virtual fiber model

    图  8  虚拟纤维模型与Micro-CT图像经纱路径对比:Warp-1 (a)、Warp-2 (b)、Warp-3 (c)、Warp-4 (d)

    Figure  8.  Comparison between warp paths extracted from virtual fiber model and the Micro-CT images: Warp-1 (a), Warp-2 (b), Warp-3 (c), Warp-4 (d)

    图  9  虚拟纤维模型与Micro-CT图像纬纱路径对比:Weft-1 (a)、Weft-2 (b)、Weft-3 (c)、Weft-4 (d)

    Figure  9.  Comparison between weft paths extracted from virtual fiber model and the Micro-CT images: Weft-1 (a), Weft-2 (b), Weft-3 (c), Weft-4 (d)

    图  10  虚拟纤维模型与Micro-CT图像纱线横截面面积对比:(a) 经纱横截面;(b) 纬纱横截面

    Figure  10.  Comparison between cross sectional area of virtual fiber model and the Micro-CT images: (a) Cross sectional area of warp yarn; (b) Cross sectional area of weft yarn

    图  11  经纱张紧收缩量ΔU对预制体结构的影响:((a)~(c)) ΔU=0.25 mm;((d)~(f)) ΔU=0.63 mm;((g)~(i)) ΔU=0.75 mm

    Figure  11.  Effect of warp yarn shrinkage value ΔU on fiber structure of the preform: ((a)-(c)) ΔU=0.25 mm; ((d)-(f)) ΔU=0.63 mm; ((g)-(i)) ΔU=0.75 mm

    图  12  不同张紧条件下虚拟纤维模型与Micro-CT图像纱线路径对比:(a) 经纱路径;(b) 纬纱路径

    Figure  12.  Comparison of virtual fiber models with Micro-CT images yarn paths under different tensioning conditions: (a) Warp path; (b) Weft path

    表  1  3D机织预制体建模参数

    Table  1.   Modeling parameters of 3D woven prefabrications

    Modeling parameteraweftbweftbwarpLwefth
    Value/mm2.4500.5500.6001.1880.064
    Notes:aweft, bweft—Major and minor axes of the weft cross-section; bwarp—Minor axes of the warp cross-section.
    下载: 导出CSV
  • [1] 陈利, 焦伟, 王心淼, 等. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8):62-72. doi: 10.11868/j.issn.1001-4381.2020.000210

    CHEN Li, JIAO Wei, WANG Xinmiao, et al. Research progress on mechanical properties of three-dimensional woven composites[J]. Journal of Materials Engineering,2020,48(8):62-72(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000210
    [2] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. doi: 10.3321/j.issn:1000-3851.2007.01.001

    DU Shanyi. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). doi: 10.3321/j.issn:1000-3851.2007.01.001
    [3] 刘强, 赵龙, 黄峰, 等. 机织复合材料风扇叶片成型技术研究[J]. 纤维复合材料, 2019, 36(4):68-72.

    LIU Qiang, ZHAO Long, HUANG Feng, et al. Study on forming technology of woven composite fan blades[J]. Fiber Composites,2019,36(4):68-72(in Chinese).
    [4] 杨志, 焦亚男, 谢军波, 等. 纺织复合材料纤维预制体力学性能测试方法研究进展[J]. 复合材料学报, 2022, 39(4):1511-1533. doi: 10.13801/j.cnki.fhclxb.20210820.001

    YANG Zhi, JIAO Yanan, XIE Junbo, et al. Research progress on mechanical properties test methods for textile composite fiber preforms[J]. Acta Materiae Compositae Sinica,2022,39(4):1511-1533(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210820.001
    [5] JUAN P, VALTER C , STEPAN V L. Micro-CT analysis of the internal deformed geometry of a non-crimp 3D orthogonal weave E-glass composite reinforcement[J]. Composites Part B: Engineering,2014,65:147-157. doi: 10.1016/j.compositesb.2013.11.024
    [6] BARBURSKI M, STRAUMIT I, ZHANG X W, et al. Micro-CT analysis of internal structure of sheared textile composite reinforcement[J]. Composites Part A: Applied Science and Manufacturing,2015,73:45-54. doi: 10.1016/j.compositesa.2015.03.008
    [7] 邵梦洁, 谢军波, 杨志, 等. 基于Micro-CT技术的3D机织预制件细观结构分析[J]. 复合材料学报, 2022, 39(8):4129-4138.

    SHAO Mengjie, XIE Junbo, YANG Zhi, et al. Meso-structure analysis of 3D woven precast parts based on Micro-CT technology[J]. Acta Materiae Compositae Sinica,2022,39(8):4129-4138(in Chinese).
    [8] YANG Z, JIAO Y, XIE J, et al. Modeling of 3D woven fibre structures by numerical simulation of the weaving process[J]. Composites Science and Technology,2021,206(8):108679.
    [9] MENGRAN L, KAI L, GE J R, et al. A novel modeling method for the mechanical behavior of 3D woven fabrics considering yarn distortion[J]. Composites Science and Technology,2022,230:109691. doi: 10.1016/j.compscitech.2022.109691
    [10] LIU Z F, GE J R, LIU K, et al. High-fidelity modeling of 3D woven composites considering inhomogeneous intra-yarn fiber volume fractions[J]. Composite Structures,2022,290:115505. doi: 10.1016/j.compstruct.2022.115505
    [11] ISART N, EL SAID B, IVANOV D S, et al. Internal geometric modelling of 3D woven composites: A comparison between different approaches[J]. Composite Structures,2015,132:1219-1230. doi: 10.1016/j.compstruct.2015.07.007
    [12] ISART N, MAYUGO J A, BLANCO N, et al. Geometric model for 3D through-thickness orthogonal interlock composites[J]. Composite Structures,2015,119:787-798. doi: 10.1016/j.compstruct.2014.09.044
    [13] ZHENG T, GUO L C, HUANG J Z, et al. A novel mesoscopic progressive damage model for 3D angle-interlock woven composites[J]. Composites Science and Technology,2020,185:107894. doi: 10.1016/j.compscitech.2019.107894
    [14] NAOUAR N, VASIUKOV D, PARK C H, et al. Meso-FE mo-delling of textile composites and X-ray tomography[J]. Journal of Materials Science,2020,55(36):16969-16989. doi: 10.1007/s10853-020-05225-x
    [15] WINTIBA B, VASIUKOV D, PANIER S, et al. Automated reconstruction and conformal discretization of 3D woven composite CT scans with local fiber volume fraction control[J]. Composite Structures,2020,248:112438. doi: 10.1016/j.compstruct.2020.112438
    [16] STRAUMIT I, LOMOV S V, WEVERS M. Quantification of the internal structure and automatic generation of voxel models of textile composites from X-ray computed tomography data[J]. Composites Part A: Applied Science and Manufacturing,2015,69:150-158. doi: 10.1016/j.compositesa.2014.11.016
    [17] HUANG W, CAUSSE P, BRAILOVSKI V, et al. Reconstruction of mesostructural material twin models of engineering textiles based on Micro-CT aided geometric modeling[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105481. doi: 10.1016/j.compositesa.2019.105481
    [18] YANG H, WANG W F, SHANG J C, et al. Segmentation of computed tomography images and high-precision reconstruction of rubber composite structure based on deep learning[J]. Composites Science and Technology,2021,213:108875. doi: 10.1016/j.compscitech.2021.108875
    [19] SINCHUK Y, KIBLEUR P, AELTERMAN J, et al. Variational and deep learning segmentation of very-low-contrast X-ray computed tomography images of carbon/epoxy woven composites[J]. Materials,2020,13(4):936. doi: 10.3390/ma13040936
    [20] EMERSON M J, JESPERSEN K M, DAHL A B, et al. Indivi-dual fibre segmentation from 3D X-ray computed tomography for characterising the fibre orientation in unidirectional composite materials[J]. Composites Part A: Applied Science and Manufacturing,2017,97:83-92. doi: 10.1016/j.compositesa.2016.12.028
    [21] DONG S, WANG P, ABBAS K. A survey on deep learning and its applications[J]. Computer Science Review,2021,40:100379. doi: 10.1016/j.cosrev.2021.100379
    [22] 李昊东. 基于全卷积网络改进的图像语义分割应用研究[D]. 南京: 南京邮电大学, 2019.

    LI Haodong. Research on application of improved image semantic segmentation based on fully convolutional network[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019(in Chinese).
    [23] WANG Y Q, SUN X K. Digital-element simulation of textile processes[J]. Composites Science and Technology,2001,61(2):311-319. doi: 10.1016/S0266-3538(00)00223-2
    [24] XIE J B, CHEN X M, ZHANG Y F, et al. Experimental and numerical investigation of the needling process for quartz fibers[J]. Composites Science and Technology,2018,165:115-23. doi: 10.1016/j.compscitech.2018.06.009
    [25] XIE J B, FANG J, CHEN L, et al. Micro-scale modeling of 3D needled nonwoven fiber preforms[J]. Composite Structures,2022,281:114995. doi: 10.1016/j.compstruct.2021.114995
    [26] 郭珍珍, 谢军波, 焦伟, 等. 碳纤维3D机织预制体弯曲性能[J]. 复合材料学报: 2023, 40(6): 3396-3404.

    GUO Zhenzhen, XIE Junbo, JIAO Wei, et al. Bending properties of carbon fiber 3D woven preforms[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3396-3404(in Chinese).
    [27] LIU C, XIE J B, SUN Y, et al. Micro-scale modeling of textile composites based on the virtual fiber embedded models[J]. Composite Structures,2019,230:111552. doi: 10.1016/j.compstruct.2019.111552
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  610
  • HTML全文浏览量:  441
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-07
  • 修回日期:  2023-08-01
  • 录用日期:  2023-08-04
  • 网络出版日期:  2023-08-17
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回