Synthesis of thermoreversible polyurethane based on D-A reaction and preparation and properties of its carbon fiber composites
-
摘要: 以二异氰酸酯(MDI)、聚醚多元醇(PTMG)和2, 5-呋喃二甲醇合成了含有呋喃结构的线型聚氨酯,与双马来酰亚胺基二苯甲烷(BMI)通过Diels-Alder反应制备了热可逆聚氨酯固化物,并制备了碳纤维单向复合材料。通过高温红外和DSC分析了聚氨酯树脂的热可逆行为,研究了树脂的溶解性、熔融再加工性及力学性能,分析了碳纤维复合材料的力学性能和动态机械性能。结果表明:热可逆聚氨酯固化物在热循环中有反复断键-交联行为,160℃左右可完成逆反应;采用高温溶剂溶解法或热熔法均可以进行再加工,再加工3次后仍能保持原有力学性能;碳纤维单向复合材料的层间剪切呈二次失效特点,层间剪切强度为34.85 MPa,玻璃化转变温度为93.73℃。Abstract: The line type polyurethane containing furan rings was prepared by diisocyanate (MDI), polyether polyols (PTMG) and 2, 5-furandimethanol. The cured thermoreversible polyurethane was synthesized by Diels-Alder reaction between bismaleimide (BMI) and the line type polyurethane containing furan rings, and the unidirectional carbon fiber composite was prepared. The thermal reversible behavior of the cured thermoreversible polyurethane was analyzed through high-temperature FTIR and DSC. The solubility, melt reprocessing ability and mechanical properties of the cured thermoreversible polyurethane were studied, the mechanical properties and dynamic mechanical properties of carbon fiber composites were also analyzed. The results show that the cured thermoreversible polyurethane has a repeated behavior of bond breaking and cross-linking during thermal cycling, and the reversible reaction is completed about 160℃. Both high-temperature dissolution process and hot-melt process can be used for reprocessing. After being reprocessed three times, the original mechanical properties of the cured thermoreversible polyurethane can still be maintained. The interlaminar shear of unidirectional carbon fiber composites was characterized by secondary failure, and the interlaminar shear strength is 34.85 MPa. The glass transition temperature of thermoreversible polyurethane is 93.73℃.
-
Key words:
- thermoreversible polyurethane /
- D-A reaction /
- composite /
- recycling /
- secondary failure
-
表 1 热可逆聚氨酯再加工后力学性能
Table 1. Mechanical properties of thermoreversible polyurethane after reprocessing
High-temperature dissolution process Hot-melt process Tensile strength/MPa Break at elongation/% Tensile strength/MPa Break at elongation/% Original sample 25.2±3 76.7±15 25.2±3 76.7±15 1st reprocessed 27.3±3 72.3±15 23.4±3 75.5±15 2nd reprocessed 31.3±3 68.9±15 23.0±3 76.1±15 3rd reprocessed 30.0±3 69.2±15 23.0±3 74.2±15 -
[1] THAMIZH SELVAN R, VISHAKH RAJA P C, MANGAL P, et al. Recycling technology of epoxy glass fiber and epoxy carbon fiber composites used in aerospace vehicles[J]. Journal of Composite Materials,2021,55(23):3281-3292. doi: 10.1177/00219983211011532 [2] 王蒙娜, 王志强, 苏韬, 等. 聚酰亚胺改性耐高温透波邻苯二甲腈复合材料制备[J]. 工程塑料应用, 2020, 48(6):40-45.WANG Mengna, WANG Zhiqiang, SU Tao, et al. Preparation of high-temperature resistant wave-transmitting phthalonitrile based composites modified by polyimide[J]. Engineering Plastics Application,2020,48(6):40-45(in Chinese). [3] 张翼鹏, 颜春, 阮春寅, 等. 原位聚合法制备连续玻璃纤维增强PCBT复合材料及其性能[J]. 复合材料学报, 2012, 29(4):29-35. doi: 10.13801/j.cnki.fhclxb.2012.04.011ZHANG Yipeng, YAN Chun, RUAN Chunyin, et al. Preparation and properties of continuous fiber reinforced PCBT composites by in-situ polymerization[J]. Acta Materiae Compositae Sinica,2012,29(4):29-35(in Chinese). doi: 10.13801/j.cnki.fhclxb.2012.04.011 [4] LIU L Z, XIA Y, WANG L, et al. Cyanate ester resin with high heat-resistance and degradable diacetal structure: Synthesis, polymerization, and properties[J]. Macromolecular Materials and Engineering,2022,307(11):2200423. doi: 10.1002/mame.202200423 [5] SONNENFELD C, MENDIL-JAKANI H, AGOGUÉ R, et al. Thermoplastic/thermoset multilayer composites: A way to improve the impact damage tolerance of thermosetting resin matrix composites[J]. Composite Structures,2017,171:298-305. doi: 10.1016/j.compstruct.2017.03.044 [6] YAO S S, JIN F L, RHEE K Y, et al. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review[J]. Composites Part B: Engineering,2018,142:241-250. doi: 10.1016/j.compositesb.2017.12.007 [7] 周天睿, 方立, 万明, 等. 连续CF增强PEEK复合材料层压板的制备工艺[J]. 工程塑料应用, 2016, 44(7):52-56.ZHOU Tianrui, FANG Li, WAN Ming, et al. Preparation process of continuous CF reinforced PEEK composite laminates[J]. Engineering Plastics Application,2016,44(7):52-56(in Chinese). [8] VALVERDE M A, BELNOUE J P H, KUPFER R, et al. Compaction behaviour of continuous fibre-reinforced thermoplastic composites under rapid processing conditions[J]. Composites Part A: Applied Science and Manufacturing,2021,149:106446. [9] 刘锦成, 徐传昶, 姜侃, 等. 超高韧性聚氨酯复合材料性能影响因素[J]. 工程塑料应用, 2021, 49(4):104-108. doi: 10.3969/j.issn.1001-3539.2021.04.020LIU Jincheng, XU Chuanchang, JIANG Kan, et al. Influencing factors on the properties of ultra-high toughness polyurethane composite[J]. Engineering Plastics Application,2021,49(4):104-108(in Chinese). doi: 10.3969/j.issn.1001-3539.2021.04.020 [10] ECHEVERRIA-ALTUNA O, OLLO O, CALVO-CORREAS T, et al. Effect of the catalyst system on the reactivity of a polyurethane resin system for RTM manufacturing of structural composites[J]. Express Polymer Letters,2022,16(3):234-247. doi: 10.3144/expresspolymlett.2022.19 [11] 孙海欧, 杜俊超, 于文杰, 等. 反应注射成型聚氨酯复合材料阻燃性研究[J]. 化学推进剂与高分子材料, 2013, 11(1):66-68.SUN Hai'ou, DU Junchao, YU Wenjie, et al. A study on flame retardant performance of reaction injection molding polyurethane composite materials[J]. Chemical Propellants & Polymeric Materials,2013,11(1):66-68(in Chinese). [12] MOHAMED M, VUPPALAPATI R R, BHEEMREDDY V, et al. Characterization of polyurethane composites manufactured using vacuum assisted resin transfer molding[J]. Advanced Composite Materials,2015,24:13-31. doi: 10.1080/09243046.2014.909975 [13] 李文斌, 陈洁, 黄金瑞, 等. 可降解热固性树脂及其碳纤维复合材料研究进展[J]. 热固性树脂, 2022, 37(5):60-69.LI Wenbin, CHEN Jie, HUANG Jinrui, et al. Research progress of degradable thermosetting resin and carbon fiber reinforced composites[J]. Thermosetting Resin,2022,37(5):60-69(in Chinese). [14] ZHANG Y H, YUAN L, LIANG G Z, et al. Developing reversible self-healing and malleable epoxy resins with high performance and fast recycling through building cross-linked network with new disulfide-containing hardener[J]. Industrial & Engineering Chemistry Research,2018,57(37):12397-12406. [15] DI MAURO C, MALBURET S, GRAILLOT A, et al. Recyclable, repairable, and reshapable (3R) thermoset materials with shape memory properties from bio-based epoxidized vegetable oils[J]. ACS Applied Bio Materials,2020,3(11):8094-8104. doi: 10.1021/acsabm.0c01199 [16] LI Q T, JIANG M J, WU G, et al. Photothermal conversion triggered precisely targeted healing of epoxy resin based on thermoreversible Diels-Alder network and amino-functionalized carbon nanotubes[J]. ACS Applied Materials & Interfaces,2017,9(24):20797-20807. [17] 赵翰文, 冯利邦, 史雪婷, 等. 热可逆自修复环氧树脂的合成与修复行为[J]. 高分子学报, 2018(3):395-401.ZHAO Hanwen, FENG Libang, SHI Xueting, et al. Synthesis and healing behavior of thermo-reversible self-healing epoxy resins[J]. Acta Polymerica Sinica,2018(3):395-401(in Chinese). [18] 杨广杰, 潘李李, 李晓娟, 等. 基于可逆动态共价化学的新型可修复、可回收、可加工环氧树脂[J]. 功能高分子学报, 2017, 30(2):215-220.YANG Guangjie, PAN Lili, LI Xiaojuan, et al. New healable, recyclable and malleable epoxy resin based on dynamic imine bonding[J]. Journal of Functional Polymers,2017,30(2):215-220(in Chinese). [19] ZHAO S, ABU-OMAR M M. Recyclable and malleable epoxy thermoset bearing aromatic imine bonds[J]. Macromolecules,2018,51(23):9816-9824. doi: 10.1021/acs.macromol.8b01976 [20] MEMON H, LIU H Y, RASHID M A, et al. Vanillin-based epoxy vitrimer with high performance and closed-loop recyclability[J]. Macromolecules,2020,53(2):621-630. doi: 10.1021/acs.macromol.9b02006 [21] WANG Y Q, CUI X J, GE H, et al. Chemical recycling of carbon fiber reinforced epoxy resin composites via selective cleavage of the carbon-nitrogen bond[J]. ACS Sustainable Chemistry & Engineering,2015,3(12):3332-3337. [22] 张洋, 张隽爽, 马崇攀, 等. 碳纤维增强含酯键环氧树脂基复合材料的化学降解与回收[J]. 复合材料学报, 2023, 40(9):5026-5034.ZHANG Yang, ZHANG Junshuang, MA Chongpan, et al. Chemical degradation and recovery of carbon fiber reinforced epoxy resin matrix composites containing ester bond[J]. Acta Materiae Compositae Sinica,2023,40(9):5026-5034(in Chinese). [23] YU Q, LIANG Y Y, CHENG J, et al. Synthesis of a degradable high-performance epoxy-ended hyperbranched polyester[J]. ACS Omega,2017,2(4):1350-1359. doi: 10.1021/acsomega.7b00132 [24] BANERJEE P, KUMAR S, BOSE S. Thermoreversible bonds and graphene oxide additives enhance the flexural and interlaminar shear strength of self-healing epoxy/carbon fiber laminates[J]. ACS Applied Nano Materials,2021,4(7):6821-6831. doi: 10.1021/acsanm.1c00888 [25] KE X X, LIANG H B, XIONG L, et al. Synthesis, curing process and thermal reversible mechanism of UV curable polyurethane based on Diels-Alder structure[J]. Progress in Organic Coatings,2016,100:63-69. doi: 10.1016/j.porgcoat.2016.03.008 [26] YU S, ZHANG R C, WU Q, et al. Bio-inspired high-performance and recyclable cross-linked polymers[J]. Advanced Materials,2013,25(35):4912-4917. [27] YU B F, FENG Y, ZHU W F, et al. Self-healing electromagnetic interference shielding composite based on Diels-Alder chemistry[J]. Journal of Materials Science: Materials in Electronics,2019,30(22):19994-20001. doi: 10.1007/s10854-019-02366-x [28] SAI F T, ZHANG H T, QU J B, et al. Thermal-driven self-healing and green recyclable waterborne polyurethane films based on double reversible covalent bonds[J]. Progress in Organic Coatings,2023,178:107460. doi: 10.1016/j.porgcoat.2023.107460 [29] 王玉龙, 李雅琼, 王怡博, 等. 一种基于动态双硫键的自修复聚氨酯弹性体的制备与性能[J]. 聚氨酯工业, 2020, 35(2):22-25. doi: 10.3969/j.issn.1005-1902.2020.02.007WANG Yulong, LI Yaqiong, WANG Yibo, et al. Preparation and properties of a self-healing polyurethane elastomer based on dynamic disulfide bond[J]. Polyurethane Industry,2020,35(2):22-25(in Chinese). doi: 10.3969/j.issn.1005-1902.2020.02.007 [30] ZHANG X, CHEN P, ZHAO Y, et al. High-performance self-healing polyurethane binder based on aromatic disulfide bonds and hydrogen bonds for the sulfur cathode of lithium-sulfur batteries[J]. Industrial & Engineering Chemistry Research,2021,60(32):12011-12020. [31] WU D L, LIU L, MA Q H, et al. Biomimetic supramolecular polyurethane with sliding polyrotaxane and disulfide bonds for strain sensors with wide sensing range and self-healing capability[J]. Journal of Colloid and Interface Science,2023,630:909-920. doi: 10.1016/j.jcis.2022.10.058 [32] GAINA C, URSACHE O, GAINA V. Re-mendable polyurethanes[J]. Polymer-Plastics Technology and Engineering,2011,50(7):712-718. doi: 10.1080/03602559.2010.551392 [33] HEO Y, SODANO H A. Self-healing polyurethanes with shape recovery[J]. Advanced Functional Materials,2014,24(33):5261-5268. doi: 10.1002/adfm.201400299 [34] LI X P, YU R, HE Y Y, et al. Self-healing polyurethane elastomers based on a disulfide bond by digital light processing 3D printing[J]. ACS Macro Letters,2019,8(11):1511-1516. [35] ZHANG R C, YU S, CHEN S L, et al. Reversible cross-linking, microdomain structure, and heterogeneous dynamics in thermally reversible cross-linked polyurethane as revealed by solid-state NMR[J]. The Journal of Physical Chemistry B,2014,118(4):1126-1137. doi: 10.1021/jp409893f [36] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.Standardization Administration of the People's Republic of China. Rubber, vulcanized or thermoplastic—Determination of tensile stress-strain properties: GB/T 528—2009[S]. Beijing: Standards Press of China, 2009(in Chinese). [37] 全国纤维增强塑料标准化技术委员会. 纤维增强塑料 短梁法测定层间剪切强度: JC/T 773—2010 [S]. 北京: 中国建材工业出版社, 2010.National Technical Committee on Fiber Reinforced Plastic of Standardization Administration of China. Fibre-reinforced plastics composites—Determination of apparent interlaminar shear strength by short-beam method: JC/T 773—2010[S]. Beijing: China Building Materials Press, 2010(in Chinese). [38] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10):752-760.WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and properties of PU-DA system based on thermoreversible Diels-Alder dynamic covalent bond[J]. Chinese Journal of Materials Research,2021,35(10):752-760(in Chinese). [39] EHRHARDT D, VAN DURME K, JANSEN J F G A, et al. Self-healing UV-curable polymer network with reversible Diels-Alder bonds for applications in ambient conditions[J]. Polymer, 2020, 203: 122762. [40] LIU Z Y, ZHU X Y, TIAN Y Z, et al. Bio-based recyclable form-stable phase change material based on thermally reversible Diels-Alder reaction for sustainable thermal energy storage[J]. Chemical Engineering Journal,2022,448(15):137749. [41] 双超, 刘璐璐, 赵振华, 等. 湿热老化对T700/TDE-85复合材料层间剪切强度的影响[J]. 机械工程材料, 2018, 42(3):62-66. doi: 10.11973/jxgccl201803012SHUANG Chao, LIU Lulu, ZHAO Zhenhua, et al. Effect of hygrothermal aging on interlaminar shear strength of T700/TDE-85 composite[J]. Materials for Mechanical Engineering,2018,42(3):62-66(in Chinese). doi: 10.11973/jxgccl201803012