留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于D-A反应的热可逆聚氨酯合成及其碳纤维复合材料的制备与性能

闫欣悦 丁楠洋 王成忠

闫欣悦, 丁楠洋, 王成忠. 基于D-A反应的热可逆聚氨酯合成及其碳纤维复合材料的制备与性能[J]. 复合材料学报, 2024, 41(4): 1914-1922. doi: 10.13801/j.cnki.fhclxb.20230816.001
引用本文: 闫欣悦, 丁楠洋, 王成忠. 基于D-A反应的热可逆聚氨酯合成及其碳纤维复合材料的制备与性能[J]. 复合材料学报, 2024, 41(4): 1914-1922. doi: 10.13801/j.cnki.fhclxb.20230816.001
YAN Xinyue, DING Nanyang, WANG Chengzhong. Synthesis of thermoreversible polyurethane based on D-A reaction and preparation and properties of its carbon fiber composites[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1914-1922. doi: 10.13801/j.cnki.fhclxb.20230816.001
Citation: YAN Xinyue, DING Nanyang, WANG Chengzhong. Synthesis of thermoreversible polyurethane based on D-A reaction and preparation and properties of its carbon fiber composites[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1914-1922. doi: 10.13801/j.cnki.fhclxb.20230816.001

基于D-A反应的热可逆聚氨酯合成及其碳纤维复合材料的制备与性能

doi: 10.13801/j.cnki.fhclxb.20230816.001
详细信息
    通讯作者:

    王成忠,博士,副教授,硕士生导师,研究方向为高性能树脂基复合材料 E-mail: czwang@mail.buct.edu.cn

  • 中图分类号: TB332

Synthesis of thermoreversible polyurethane based on D-A reaction and preparation and properties of its carbon fiber composites

  • 摘要: 以二异氰酸酯(MDI)、聚醚多元醇(PTMG)和2, 5-呋喃二甲醇合成了含有呋喃结构的线型聚氨酯,与双马来酰亚胺基二苯甲烷(BMI)通过Diels-Alder反应制备了热可逆聚氨酯固化物,并制备了碳纤维单向复合材料。通过高温红外和DSC分析了聚氨酯树脂的热可逆行为,研究了树脂的溶解性、熔融再加工性及力学性能,分析了碳纤维复合材料的力学性能和动态机械性能。结果表明:热可逆聚氨酯固化物在热循环中有反复断键-交联行为,160℃左右可完成逆反应;采用高温溶剂溶解法或热熔法均可以进行再加工,再加工3次后仍能保持原有力学性能;碳纤维单向复合材料的层间剪切呈二次失效特点,层间剪切强度为34.85 MPa,玻璃化转变温度为93.73℃。

     

  • 图  1  热可逆聚氨酯的合成路线

    Figure  1.  Synthetic route of thermoreversible polyurethane

    图  2  含呋喃环线型聚氨酯及热可逆聚氨酯固化物红外图谱

    Figure  2.  Infrared spectra of line type polyurethane containing furan rings and cured thermoreversible polyurethane

    图  3  热可逆聚氨酯固化物的升降温DSC曲线

    Figure  3.  Temperature heating and cooling DSC curves of cured thermoreversible polyurethane

    图  4  热可逆聚氨酯高低温红外图谱

    Figure  4.  High and low temperature infrared spectra of thermoreversible polyurethane

    图  5  单向碳纤维/热可逆聚氨酯复合材料层剪应力-应变曲线

    Figure  5.  Stress-strain curve of unidirectional carbon fiber/thermoreversible polyurethane under interlaminar shear

    图  6  层剪测试前(a)、后((b), (c))单向碳纤维/热可逆聚氨酯复合材料的SEM图像

    Figure  6.  SEM images of unidirectional carbon fiber/thermoreversible polyurethane before (a) and after ((b), (c)) interlayer shear test

    图  7  单向碳纤维/热可逆聚氨酯复合材料的DMA曲线

    Figure  7.  DMA curves of unidirectional carbon fiber/thermoreversible polyurethane

    E'—Storage modulus; E''—Loss modulus; tanδ—Dissipation factor

    表  1  热可逆聚氨酯再加工后力学性能

    Table  1.   Mechanical properties of thermoreversible polyurethane after reprocessing

    High-temperature dissolution processHot-melt process
    Tensile strength/MPaBreak at elongation/%Tensile strength/MPaBreak at elongation/%
    Original sample25.2±376.7±1525.2±376.7±15
    1st reprocessed27.3±372.3±1523.4±375.5±15
    2nd reprocessed31.3±368.9±1523.0±376.1±15
    3rd reprocessed30.0±369.2±1523.0±374.2±15
    下载: 导出CSV
  • [1] THAMIZH SELVAN R, VISHAKH RAJA P C, MANGAL P, et al. Recycling technology of epoxy glass fiber and epoxy carbon fiber composites used in aerospace vehicles[J]. Journal of Composite Materials,2021,55(23):3281-3292. doi: 10.1177/00219983211011532
    [2] 王蒙娜, 王志强, 苏韬, 等. 聚酰亚胺改性耐高温透波邻苯二甲腈复合材料制备[J]. 工程塑料应用, 2020, 48(6):40-45.

    WANG Mengna, WANG Zhiqiang, SU Tao, et al. Preparation of high-temperature resistant wave-transmitting phthalonitrile based composites modified by polyimide[J]. Engineering Plastics Application,2020,48(6):40-45(in Chinese).
    [3] 张翼鹏, 颜春, 阮春寅, 等. 原位聚合法制备连续玻璃纤维增强PCBT复合材料及其性能[J]. 复合材料学报, 2012, 29(4):29-35. doi: 10.13801/j.cnki.fhclxb.2012.04.011

    ZHANG Yipeng, YAN Chun, RUAN Chunyin, et al. Preparation and properties of continuous fiber reinforced PCBT composites by in-situ polymerization[J]. Acta Materiae Compositae Sinica,2012,29(4):29-35(in Chinese). doi: 10.13801/j.cnki.fhclxb.2012.04.011
    [4] LIU L Z, XIA Y, WANG L, et al. Cyanate ester resin with high heat-resistance and degradable diacetal structure: Synthesis, polymerization, and properties[J]. Macromolecular Materials and Engineering,2022,307(11):2200423. doi: 10.1002/mame.202200423
    [5] SONNENFELD C, MENDIL-JAKANI H, AGOGUÉ R, et al. Thermoplastic/thermoset multilayer composites: A way to improve the impact damage tolerance of thermosetting resin matrix composites[J]. Composite Structures,2017,171:298-305. doi: 10.1016/j.compstruct.2017.03.044
    [6] YAO S S, JIN F L, RHEE K Y, et al. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review[J]. Composites Part B: Engineering,2018,142:241-250. doi: 10.1016/j.compositesb.2017.12.007
    [7] 周天睿, 方立, 万明, 等. 连续CF增强PEEK复合材料层压板的制备工艺[J]. 工程塑料应用, 2016, 44(7):52-56.

    ZHOU Tianrui, FANG Li, WAN Ming, et al. Preparation process of continuous CF reinforced PEEK composite laminates[J]. Engineering Plastics Application,2016,44(7):52-56(in Chinese).
    [8] VALVERDE M A, BELNOUE J P H, KUPFER R, et al. Compaction behaviour of continuous fibre-reinforced thermoplastic composites under rapid processing conditions[J]. Composites Part A: Applied Science and Manufacturing,2021,149:106446.
    [9] 刘锦成, 徐传昶, 姜侃, 等. 超高韧性聚氨酯复合材料性能影响因素[J]. 工程塑料应用, 2021, 49(4):104-108. doi: 10.3969/j.issn.1001-3539.2021.04.020

    LIU Jincheng, XU Chuanchang, JIANG Kan, et al. Influencing factors on the properties of ultra-high toughness polyurethane composite[J]. Engineering Plastics Application,2021,49(4):104-108(in Chinese). doi: 10.3969/j.issn.1001-3539.2021.04.020
    [10] ECHEVERRIA-ALTUNA O, OLLO O, CALVO-CORREAS T, et al. Effect of the catalyst system on the reactivity of a polyurethane resin system for RTM manufacturing of structural composites[J]. Express Polymer Letters,2022,16(3):234-247. doi: 10.3144/expresspolymlett.2022.19
    [11] 孙海欧, 杜俊超, 于文杰, 等. 反应注射成型聚氨酯复合材料阻燃性研究[J]. 化学推进剂与高分子材料, 2013, 11(1):66-68.

    SUN Hai'ou, DU Junchao, YU Wenjie, et al. A study on flame retardant performance of reaction injection molding polyurethane composite materials[J]. Chemical Propellants & Polymeric Materials,2013,11(1):66-68(in Chinese).
    [12] MOHAMED M, VUPPALAPATI R R, BHEEMREDDY V, et al. Characterization of polyurethane composites manufactured using vacuum assisted resin transfer molding[J]. Advanced Composite Materials,2015,24:13-31. doi: 10.1080/09243046.2014.909975
    [13] 李文斌, 陈洁, 黄金瑞, 等. 可降解热固性树脂及其碳纤维复合材料研究进展[J]. 热固性树脂, 2022, 37(5):60-69.

    LI Wenbin, CHEN Jie, HUANG Jinrui, et al. Research progress of degradable thermosetting resin and carbon fiber reinforced composites[J]. Thermosetting Resin,2022,37(5):60-69(in Chinese).
    [14] ZHANG Y H, YUAN L, LIANG G Z, et al. Developing reversible self-healing and malleable epoxy resins with high performance and fast recycling through building cross-linked network with new disulfide-containing hardener[J]. Industrial & Engineering Chemistry Research,2018,57(37):12397-12406.
    [15] DI MAURO C, MALBURET S, GRAILLOT A, et al. Recyclable, repairable, and reshapable (3R) thermoset materials with shape memory properties from bio-based epoxidized vegetable oils[J]. ACS Applied Bio Materials,2020,3(11):8094-8104. doi: 10.1021/acsabm.0c01199
    [16] LI Q T, JIANG M J, WU G, et al. Photothermal conversion triggered precisely targeted healing of epoxy resin based on thermoreversible Diels-Alder network and amino-functionalized carbon nanotubes[J]. ACS Applied Materials & Interfaces,2017,9(24):20797-20807.
    [17] 赵翰文, 冯利邦, 史雪婷, 等. 热可逆自修复环氧树脂的合成与修复行为[J]. 高分子学报, 2018(3):395-401.

    ZHAO Hanwen, FENG Libang, SHI Xueting, et al. Synthesis and healing behavior of thermo-reversible self-healing epoxy resins[J]. Acta Polymerica Sinica,2018(3):395-401(in Chinese).
    [18] 杨广杰, 潘李李, 李晓娟, 等. 基于可逆动态共价化学的新型可修复、可回收、可加工环氧树脂[J]. 功能高分子学报, 2017, 30(2):215-220.

    YANG Guangjie, PAN Lili, LI Xiaojuan, et al. New healable, recyclable and malleable epoxy resin based on dynamic imine bonding[J]. Journal of Functional Polymers,2017,30(2):215-220(in Chinese).
    [19] ZHAO S, ABU-OMAR M M. Recyclable and malleable epoxy thermoset bearing aromatic imine bonds[J]. Macromolecules,2018,51(23):9816-9824. doi: 10.1021/acs.macromol.8b01976
    [20] MEMON H, LIU H Y, RASHID M A, et al. Vanillin-based epoxy vitrimer with high performance and closed-loop recyclability[J]. Macromolecules,2020,53(2):621-630. doi: 10.1021/acs.macromol.9b02006
    [21] WANG Y Q, CUI X J, GE H, et al. Chemical recycling of carbon fiber reinforced epoxy resin composites via selective cleavage of the carbon-nitrogen bond[J]. ACS Sustainable Chemistry & Engineering,2015,3(12):3332-3337.
    [22] 张洋, 张隽爽, 马崇攀, 等. 碳纤维增强含酯键环氧树脂基复合材料的化学降解与回收[J]. 复合材料学报, 2023, 40(9):5026-5034.

    ZHANG Yang, ZHANG Junshuang, MA Chongpan, et al. Chemical degradation and recovery of carbon fiber reinforced epoxy resin matrix composites containing ester bond[J]. Acta Materiae Compositae Sinica,2023,40(9):5026-5034(in Chinese).
    [23] YU Q, LIANG Y Y, CHENG J, et al. Synthesis of a degradable high-performance epoxy-ended hyperbranched polyester[J]. ACS Omega,2017,2(4):1350-1359. doi: 10.1021/acsomega.7b00132
    [24] BANERJEE P, KUMAR S, BOSE S. Thermoreversible bonds and graphene oxide additives enhance the flexural and interlaminar shear strength of self-healing epoxy/carbon fiber laminates[J]. ACS Applied Nano Materials,2021,4(7):6821-6831. doi: 10.1021/acsanm.1c00888
    [25] KE X X, LIANG H B, XIONG L, et al. Synthesis, curing process and thermal reversible mechanism of UV curable polyurethane based on Diels-Alder structure[J]. Progress in Organic Coatings,2016,100:63-69. doi: 10.1016/j.porgcoat.2016.03.008
    [26] YU S, ZHANG R C, WU Q, et al. Bio-inspired high-performance and recyclable cross-linked polymers[J]. Advanced Materials,2013,25(35):4912-4917.
    [27] YU B F, FENG Y, ZHU W F, et al. Self-healing electromagnetic interference shielding composite based on Diels-Alder chemistry[J]. Journal of Materials Science: Materials in Electronics,2019,30(22):19994-20001. doi: 10.1007/s10854-019-02366-x
    [28] SAI F T, ZHANG H T, QU J B, et al. Thermal-driven self-healing and green recyclable waterborne polyurethane films based on double reversible covalent bonds[J]. Progress in Organic Coatings,2023,178:107460. doi: 10.1016/j.porgcoat.2023.107460
    [29] 王玉龙, 李雅琼, 王怡博, 等. 一种基于动态双硫键的自修复聚氨酯弹性体的制备与性能[J]. 聚氨酯工业, 2020, 35(2):22-25. doi: 10.3969/j.issn.1005-1902.2020.02.007

    WANG Yulong, LI Yaqiong, WANG Yibo, et al. Preparation and properties of a self-healing polyurethane elastomer based on dynamic disulfide bond[J]. Polyurethane Industry,2020,35(2):22-25(in Chinese). doi: 10.3969/j.issn.1005-1902.2020.02.007
    [30] ZHANG X, CHEN P, ZHAO Y, et al. High-performance self-healing polyurethane binder based on aromatic disulfide bonds and hydrogen bonds for the sulfur cathode of lithium-sulfur batteries[J]. Industrial & Engineering Chemistry Research,2021,60(32):12011-12020.
    [31] WU D L, LIU L, MA Q H, et al. Biomimetic supramolecular polyurethane with sliding polyrotaxane and disulfide bonds for strain sensors with wide sensing range and self-healing capability[J]. Journal of Colloid and Interface Science,2023,630:909-920. doi: 10.1016/j.jcis.2022.10.058
    [32] GAINA C, URSACHE O, GAINA V. Re-mendable polyurethanes[J]. Polymer-Plastics Technology and Engineering,2011,50(7):712-718. doi: 10.1080/03602559.2010.551392
    [33] HEO Y, SODANO H A. Self-healing polyurethanes with shape recovery[J]. Advanced Functional Materials,2014,24(33):5261-5268. doi: 10.1002/adfm.201400299
    [34] LI X P, YU R, HE Y Y, et al. Self-healing polyurethane elastomers based on a disulfide bond by digital light processing 3D printing[J]. ACS Macro Letters,2019,8(11):1511-1516.
    [35] ZHANG R C, YU S, CHEN S L, et al. Reversible cross-linking, microdomain structure, and heterogeneous dynamics in thermally reversible cross-linked polyurethane as revealed by solid-state NMR[J]. The Journal of Physical Chemistry B,2014,118(4):1126-1137. doi: 10.1021/jp409893f
    [36] 中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Rubber, vulcanized or thermoplastic—Determination of tensile stress-strain properties: GB/T 528—2009[S]. Beijing: Standards Press of China, 2009(in Chinese).
    [37] 全国纤维增强塑料标准化技术委员会. 纤维增强塑料 短梁法测定层间剪切强度: JC/T 773—2010 [S]. 北京: 中国建材工业出版社, 2010.

    National Technical Committee on Fiber Reinforced Plastic of Standardization Administration of China. Fibre-reinforced plastics composites—Determination of apparent interlaminar shear strength by short-beam method: JC/T 773—2010[S]. Beijing: China Building Materials Press, 2010(in Chinese).
    [38] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10):752-760.

    WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and properties of PU-DA system based on thermoreversible Diels-Alder dynamic covalent bond[J]. Chinese Journal of Materials Research,2021,35(10):752-760(in Chinese).
    [39] EHRHARDT D, VAN DURME K, JANSEN J F G A, et al. Self-healing UV-curable polymer network with reversible Diels-Alder bonds for applications in ambient conditions[J]. Polymer, 2020, 203: 122762.
    [40] LIU Z Y, ZHU X Y, TIAN Y Z, et al. Bio-based recyclable form-stable phase change material based on thermally reversible Diels-Alder reaction for sustainable thermal energy storage[J]. Chemical Engineering Journal,2022,448(15):137749.
    [41] 双超, 刘璐璐, 赵振华, 等. 湿热老化对T700/TDE-85复合材料层间剪切强度的影响[J]. 机械工程材料, 2018, 42(3):62-66. doi: 10.11973/jxgccl201803012

    SHUANG Chao, LIU Lulu, ZHAO Zhenhua, et al. Effect of hygrothermal aging on interlaminar shear strength of T700/TDE-85 composite[J]. Materials for Mechanical Engineering,2018,42(3):62-66(in Chinese). doi: 10.11973/jxgccl201803012
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  334
  • HTML全文浏览量:  192
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-30
  • 修回日期:  2023-07-29
  • 录用日期:  2023-08-03
  • 网络出版日期:  2023-08-16
  • 刊出日期:  2024-04-15

目录

    /

    返回文章
    返回