留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D石墨烯气凝胶复合吸波材料的研究现状

乔明涛 齐靖泊 王佳妮 史金轩 李祥 雷琬莹 魏剑

乔明涛, 齐靖泊, 王佳妮, 等. 3D石墨烯气凝胶复合吸波材料的研究现状[J]. 复合材料学报, 2024, 41(2): 548-560. doi: 10.13801/j.cnki.fhclxb.20230815.001
引用本文: 乔明涛, 齐靖泊, 王佳妮, 等. 3D石墨烯气凝胶复合吸波材料的研究现状[J]. 复合材料学报, 2024, 41(2): 548-560. doi: 10.13801/j.cnki.fhclxb.20230815.001
QIAO Mingtao, QI Jingbo, WANG Jiani, et al. Recent progress on 3D graphene aerogel based microwave absorbing materials[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 548-560. doi: 10.13801/j.cnki.fhclxb.20230815.001
Citation: QIAO Mingtao, QI Jingbo, WANG Jiani, et al. Recent progress on 3D graphene aerogel based microwave absorbing materials[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 548-560. doi: 10.13801/j.cnki.fhclxb.20230815.001

3D石墨烯气凝胶复合吸波材料的研究现状

doi: 10.13801/j.cnki.fhclxb.20230815.001
基金项目: 陕西省教育厅重点科学研究计划项目(22 JY037; 22 JY039)
详细信息
    通讯作者:

    乔明涛,博士,副教授,硕士生导师,研究方向为核壳结构电磁复合纳米材料的构筑与功能性研究、MOF基衍生材料的结构设计及其在锂硫电池正极材料方面的应用研究  E-mail: mtqiao@xauat.edu.cn

  • 中图分类号: TB333

Recent progress on 3D graphene aerogel based microwave absorbing materials

Funds: Key Scientific Research Program of Shaanxi Provincial Department of Education (22 JY037; 22 JY039)
  • 摘要: 随着信息技术的发展,电磁污染问题日益严重,开发具有“薄、轻、宽、强”特性的高性能吸波材料成为当务之急。石墨烯高电导率、高比表面积、低密度的优良特性受到研究人员的广泛关注。为解决单一石墨烯材料易引起的阻抗失配及损耗机制单一问题,引入其他组分制备多元复合材料,改善阻抗匹配、创造多样化的损耗机制是通用的设计方案。本文简要讨论了吸波机制,分述了介电型、磁复合型、有序型、压力诱导型4个类别,并通过材料选择(金属、陶瓷、铁氧体、导电聚合物、生物质材料等)、结构设计、机制分析等角度,结合领域内近年来的研究成果,总结了石墨烯基气凝胶吸波材料的研究进展,并对未来研究方向进行展望。

     

  • 图  1  不同压缩应变下石墨烯泡沫(GF)的反射损耗(RL)曲线[15]

    GF-X—The strain of GF aerogel under pressure is X%

    Figure  1.  Reflection loss (RL) curves of graphene foam (GF) under different compressive strains[15]

    图  2  石墨烯气凝胶(GA)宏观图片(a)和电磁波吸收机制示意图(b)[18]

    Figure  2.  Macroscopic pictures (a) and schematic diagram of electromagnetic wave absorption mechanism (b) of graphene aerogel (GA)[18]

    图  3  复合气凝胶的SEM图像及其微波吸收机制示意图:(a) Ti3C2Tx MXene@氧化石墨烯杂化气凝胶微球(M@GAMS)[25];((b), (c)) 聚苯胺(PANI)/GA[26];(d) 石墨烯芯(DG)/Si3N4气凝胶[27]

    Pin—Incident electromagnetic wave; Pref—Reflected electromagnetic waves

    Figure  3.  SEM images of composite aerogel and schematic diagram of its microwave absorption mechanism: (a) Ti3C2Tx MXene@graphene oxide (M@GAMS)[25]; ((b), (c)) Polyaniline (PANI)/GA[26]; (d) Defect-engineered chemical vapor deposition graphene (DG)/Si3N4 aerogel[27]

    图  4  Fe3O4@C/还原氧化石墨烯(Fe3O4@C/rGO)纳米复合材料的微观示意图[33]

    GO—Graphene oxide

    Figure  4.  Microscopic schematic diagram of Fe3O4@C/reduced graphene oxide (Fe3O4@C/rGO) nanocomposite material[33]

    图  5  气凝胶微波吸收机制示意图:(a) CoFe2O4/氮掺杂的rGO[34];(b) GA/Fe3O4@SiO2[35]

    M—Magnetic induction line; H—Magnetic field intensity

    Figure  5.  Schematic diagram of microwave absorption mechanism of aerogel:(a) CoFe2O4/N-doped rGO[34]; (b) GA/Fe3O4@SiO2[35]

    图  6  有序型GA制备流程示意图:(a) Ni/MXene/rGO[38];(b) M(Fe,Co,Ni)@C/石墨烯(M@C/GA)气凝胶[39]

    Figure  6.  Schematic diagram of preparation process for ordered GA: (a) Ni/MXene/rGO[38]; (b) M(Fe,Co,Ni)@C/graphene (M@C/GA) aerogel[39]

    图  7  碱处理聚丙烯腈纤维复合石墨烯气凝胶的SEM图像((a)~(c), (g)~(i))和层间及层内结构图((d)~(f))[46]

    Figure  7.  SEM images ((a)-(c), (g)-(i)) and schematic diagram of interlayer and intralayer structure ((d)-(f)) of alkaline treated polyacrylonitrile fibre/graphene aerogel[46]

    图  8  rGO气凝胶(6.91 mm) (a)和GA (6.87 mm) (b)在不同压缩应变下在0.5~18 GHz的频率范围内的微波RL曲线;((c)~(f)) GA在不同压缩应变下的微波吸收机制示意图[47]

    Pout—Transmitted electromagnetic waves

    Figure  8.  Microwave RL curves in the frequency range of 0.5-18 GHz at different compression strains for rGO aerogel (6.91 mm) (a) and GA (6.87 mm) (b); ((c)-(f)) Schematic illustration of microwave absorption mechanism of GA under different compression strains[47]

    表  1  不同吸波剂性能对比

    Table  1.   Comparison of performance for different absorber

    SampleFilling ratio/wt%RLmin/dBEAB/GHzThickness/mmRef.
    M@GAMS10−49.12.9 (12.9-15.8)1.2[25]
    PANI/GA−42.33.2 (8.7-11.9)3.0[26]
    DG/Si3N4−77.37.4 (10.6-18.0)2.7[27]
    GA@Ni4.25−52.36.5 (11.3-17.8)3.0[32]
    Fe3O4@C/rGO−59.236.72 (−)3.57[33]
    CoFe2O4/N-rGO20− 60.46.48 (11.44-17.92)2.1[34]
    GA/Fe3O4@SiO25−51.56.5 (6.2-12.7)4.0[35]
    Ni/MXene/rGO0.64−75.27.3 (−)2.2[38]
    Co@C/GA−45.04.0 (13.1-17.1)1.5[39]
    GA−61.096.3 (7.5-13.8)4.81[47]
    C/rGO0.8−46.115.8 (12.2-18.0)2.70[48]
    Notes: RLmin—Minimum reflection loss; EAB—Effective absorption bandwidth.
    下载: 导出CSV
  • [1] 黎昌金, 陈琦, 李建龙. 电磁辐射的危害与防护探讨[J]. 内江科技, 2018, 39(9):108-110.

    LI Changjin, CHEN Qi, LI Jianlong. Discussion on the hazard and protection of electromagnetic radiation[J]. Neijiang Science and Technology,2018,39(9):108-110(in Chinese).
    [2] SUN X, HE J, LI G, et al. Laminated magnetic graphene with enhanced electro-magnetic wave absorption properties[J]. Journal of Materials Chemistry C,2013,1(4):765-777. doi: 10.1039/C2TC00159D
    [3] XIA Y, GAO W, GAO C, et al. A review on graphene-based electromagnetic functional materials: Electromagnetic wave shielding and absorption[J]. Advanced Functional Materials, 2022, 32(42): 2204591.
    [4] WANG P, WANG G, ZHANG J, et al. Excellent microwave absorbing performance of the sandwich structure absorber Fe@B2O3/MoS2/Fe@B2O3 in the Ku-band and X-band [J]. Chemical Engineering Journal, 2020, 382: 122804.
    [5] HU K, SZKOPEK T, CERRUTI M. Tuning the aggregation of graphene oxide dispersions to synthesize elastic, low density graphene aerogels[J]. Journal of Materials Che-mistry A,2017,5(44):23123-23130. doi: 10.1039/C7TA07006C
    [6] 许亚丽. 石墨烯纤维及其复合材料结构设计与电磁屏蔽性能[D]. 杭州: 浙江大学, 2020.

    XU Yali. Structure design and electromagnetic shielding performance of graphene fibres and their composites[D]. Hangzhou: Zhejiang University, 2020(in Chinese).
    [7] 席嘉彬. 高性能碳基电磁屏蔽及吸波材料的研究[D]. 杭州: 浙江大学, 2018.

    XI Jiabin. Carbon-based materials for high-performance electromagnetic interference shielding and microwave absorption[D]. Hangzhou: Zhejiang University, 2018(in Chinese).
    [8] LIU D, DU Y, XU P, et al. Rationally designed hierarchical N-doped carbon nanotubes wrapping waxberry-like Ni@C microspheres for efficient microwave absorption[J]. Journal of Materials Chemistry A,2021,9(8):5086-5096. doi: 10.1039/D0TA10942H
    [9] HOU T, JIA Z, WANG B, et al. MXene-based accordion 2D hybrid structure with Co9S8/C/Ti3C2Tx as efficient electromagnetic wave absorber[J]. Chemical Engineering Journal,2021,414:128875. doi: 10.1016/j.cej.2021.128875
    [10] LYU H, ZHANG H, ZHAO J, et al. Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures[J]. Nano Research,2016,9:1813-1822. doi: 10.1007/s12274-016-1074-1
    [11] WANG J, GAO C N, JIANG Y N, et al. Ultra-broadband and polarization-independent planar absorber based on multilayered graphene[J]. Chinese Physics B,2017,26(11):114102. doi: 10.1088/1674-1056/26/11/114102
    [12] 王兰喜, 何延春, 卯江江, 等. 真空退火对氧化石墨烯纸的还原特性研究[J]. 表面技术, 2021, 50(10): 186-193.

    WANG Lanxi, HE Yanchun, MAO Jiangjiang, et al. Study on the reduction characteristics of oxygenated graphene paper by vacuum[J]. Surface Technology, 2021, 50(10): 186-193(in Chinese).
    [13] CAO Y, FATEMI V, FANG S, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 43-50.
    [14] GUAN Z J, JIANG J T, YAN S J, et al. Sandwich-like cobalt/reduced graphene oxide/cobalt composite structure presenting synergetic electromagnetic loss effect[J]. Journal of Colloid and Interface Science, 2020, 561: 687-695.
    [15] ZHANG Y, HUANG Y, ZHANG T, et al. Broad-band and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam[J]. Advanced Materials,2015,27(12):2049-2053. doi: 10.1002/adma.201405788
    [16] CHEN C, XI J, ZHOU E, et al. Porous graphene microflowers for high-performance microwave absorption[J]. Nano-micro Letters,2018,10:1-11. doi: 10.1007/s40820-017-0154-4
    [17] 王军军, 王贤明, 吴连锋, 等. 石墨烯基复合吸波材料研究进展[J]. 中国涂料, 2019, 34(12): 1-7, 11.

    WANG Junjun, WANG Xianming, WU Lianfeng, et al. Research progress on graphene-based composite absorbing materials[J]. China Coatings, 2019, 34(12): 1-7, 11(in Chinese).
    [18] HUANG X, YU G, ZHANG Y, et al. Design of cellular structure of graphene aerogels for electromagnetic wave absorption[J]. Chemical Engineering Journal,2021,426:131894. doi: 10.1016/j.cej.2021.131894
    [19] LIU B, LI J, WANG L, et al. Ultralight graphene aerogel enhanced with transformed micro-structure led by polypyrrole nano-rods and its improved microwave absorption properties[J]. Composites Part A: Applied Science and Manufacturing,2017,97:141-150. doi: 10.1016/j.compositesa.2017.03.001
    [20] ZHANG K L, ZHANG J Y, HOU Z L, et al. Multifunctional broadband microwave absorption of flexible graphene composites[J]. Carbon, 2019, 141: 608-617.
    [21] SUN Y, HAN X, GUO P, et al. Slippery graphene-bridging liquid metal layered heterostructure nanocomposite for stable high-performance electromagnetic interference shielding[J]. ACS Nano, 2023, 17(13): 12616-12628.
    [22] WANG B X, XU C, DUAN G, et al. Review of broadband metamaterial absorbers: From principles, design strategies, and tunable properties to functional applications[J]. Advanced Functional Materials,2023,33(14):2213818. doi: 10.1002/adfm.202213818
    [23] 李俊. Fe基磁性金属及其石墨烯复合吸波材料研究[D]. 南京: 南京邮电大学, 2019.

    LI Jun. Study on Fe-based magnetic metal and its graphene composite absorbing materials[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2019(in Chinese).
    [24] LIU Y, LU Q, WANG J, et al. A flexible sandwich structure carbon fiber cloth with resin coating composite improves electro-magnetic wave absorption performance at low frequency[J]. Polymers,2022,14(2):233. doi: 10.3390/polym14020233
    [25] LI Y, MENG F, MEI Y, et al. Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption[J]. Chemical Engineering Journal,2020,391:123512. doi: 10.1016/j.cej.2019.123512
    [26] WANG Y, GAO X, FU Y, et al. Enhanced microwave absorption performances of polyaniline/graphene aerogel by covalent bonding[J]. Composites Part B: Engineering,2019,169:221-228. doi: 10.1016/j.compositesb.2019.04.008
    [27] LIANG J, YE F, CAO Y, et al. Defect-engineered graphene/Si3N4 multilayer alternating core-shell nanowire membrane: A plainified hybrid for broadband electromagnetic wave absorption[J]. Advanced Functional Materials,2022,32(22):2200141. doi: 10.1002/adfm.202200141
    [28] TIAN Y, ZHI D, LI T, et al. Graphene-based aerogel microspheres with annual ring-like structures for broadband electromagnetic attenuation[J]. Chemical Engineering Journal,2023,464:142644. doi: 10.1016/j.cej.2023.142644
    [29] ZHONG W, LI B, MA Z, et al. Double salt-template strategy for the growth of N, S-codoped graphitic carbon nanoframes on the graphene toward high-performance electromagnetic wave absorption[J]. Carbon,2023,202:235-243. doi: 10.1016/j.carbon.2022.10.086
    [30] WANG G, GAO Z, WAN G, et al. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers[J]. Nano Research,2014,7:704-716. doi: 10.1007/s12274-014-0432-0
    [31] MENG F, WANG H, HUANG F, et al. Graphene-based microwave absorbing composites: A review and prospec-tive[J]. Composites Part B: Engineering,2018,137:260-277. doi: 10.1016/j.compositesb.2017.11.023
    [32] XU D, YANG S, CHEN P, et al. Synthesis of magnetic graphene aerogels for microwave absorption by in-situ pyrolysis[J]. Carbon,2019,146:301-312. doi: 10.1016/j.carbon.2019.02.005
    [33] ZHANG H, JIA Z, FENG A, et al. In situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber[J]. Composites Part B: Engineering,2020,199:108261. doi: 10.1016/j.compositesb.2020.108261
    [34] WANG X, LU Y, ZHU T, et al. CoFe2O4/N-doped reduced graphene oxide aerogels for high-performance microwave absorption[J]. Chemical Engineering Journal,2020,388:124317. doi: 10.1016/j.cej.2020.124317
    [35] MENG F, WANG H, WEI, et al. Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process[J]. Nano Research,2018,11:2847-2861. doi: 10.1007/s12274-017-1915-6
    [36] 刘鹏飞. 冰模板法构筑各向异性石墨烯三维结构及其应用研究[D]. 北京: 北京化工大学, 2021.

    LIU Pengfei. The construction of three-dimensional anisotropic graphene aerogels by ice-templating method and their applications[D]. Beijing: Beijing University of Che-mical Technology, 2021(in Chinese).
    [37] PAN D, YANG G, ABODIEF H M, et al. Vertically aligned silicon carbide nanowires/boron nitride cellulose aerogel networks enhanced thermal conductivity and electromagnetic absorbing of epoxy composites[J]. Nano-micro Letters, 2022, 14(1): 118.
    [38] LIANG L, LI Q, YAN X, et al. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance[J]. ACS Nano,2021,15(4):6622-6632. doi: 10.1021/acsnano.0c09982
    [39] XU J, ZHANG X, ZHAO Z, et al. Lightweight, fire-retardant, and anti-compressed honeycombed-like carbon aerogels for thermal management and high-efficiency electromagnetic absorbing properties[J]. Small,2021,17(33):2102032. doi: 10.1002/smll.202102032
    [40] CHENG J B, ZHAO H B, CAO M, et al. Banana leaflike C-doped MoS2 aerogels toward excellent microwave absorption performance[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 26301-26312.
    [41] YANG C, ZHU X, WANG X, et al. Phase-field model of graphene aerogel formation by ice template method[J]. Applied Physics Letters, 2019, 115(11): 111901.
    [42] HUANG J, WANG H, LIANG B, et al. Oriented freeze-casting fabrication of resilient copper nanowire-based aerogel as robust piezoresistive sensor[J]. Chemical Engineering Journal,2019,364:28-36. doi: 10.1016/j.cej.2019.01.071
    [43] WANG S, MENG W, LYU H, et al. Thermal insulating, light-weight and conductive cellulose/aramid nanofibers composite aerogel for pressure sensing[J]. Carbohydrate Polymers,2021,270:118414. doi: 10.1016/j.carbpol.2021.118414
    [44] HU Y, CAO M, XU J, et al. Thermally insulating and electroactive cellular nanocellulose composite cryogels from hybrid nanofiber networks[J]. Chemical Engineering Journal,2023,455:140638. doi: 10.1016/j.cej.2022.140638
    [45] 于泓轩. 石墨烯气凝胶柔韧及传感特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    YU Hongxuan. Study of graphene aerogel flexibility and sensing properties[D]. Harbin: Harbin Institute of Technology, 2021(in Chinese).
    [46] CAO X, ZHANG J, CHEN S, et al. 1D/2D nanomaterials synergistic, compressible, and response rapidly 3D graphene aerogel for piezoresistive sensor[J]. Advanced Functional Materials,2020,30(35):2003618. doi: 10.1002/adfm.202003618
    [47] WANG Z, WEI R, GU J, et al. Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption[J]. Carbon,2018,139:1126-1135. doi: 10.1016/j.carbon.2018.08.014
    [48] BAI T, GUO Y, WANG D, et al. A resilient and lightweight bacterial cellulose-derived C/rGO aerogel-based electromagnetic wave absorber integrated with multiple functions[J]. Journal of Materials Chemistry A,2021,9(9):5566-5577. doi: 10.1039/D0TA11122H
    [49] HADI J M, AZIZ S B, MUSTAFA M S, et al. Role of nano-capacitor on dielectric constant enhancement in PEO: NH4SCN: xCeO2 polymer nano-composites: Electrical and electrochemical properties[J]. Journal of Materials Research and Technology, 2020, 9(4): 9283-9294.
    [50] ZHENG Y, LI C, ZHAO Y, et al. Engineering of magnetic coupling in nanographene[J]. Physical Review Letters,2020,124(14):147206. doi: 10.1103/PhysRevLett.124.147206
    [51] 杨晴. 陶瓷基干涉型吸波材料的制备和性能研究[D]. 烟台: 烟台大学, 2022.

    YANG Qing. Preparation and performance study of ceramic-based interference absorbing material[D]. Yantai: Yantai University, 2022(in Chinese).
    [52] SHU R, WAN Z, ZHANG J, et al. Synergistically assembled nitrogen-doped reduced graphene oxide/multi-walled carbon nanotubes composite aerogels with superior electromagnetic wave absorption performance[J]. Compo-sites Science and Technology,2021,210:108818. doi: 10.1016/j.compscitech.2021.108818
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  567
  • HTML全文浏览量:  213
  • PDF下载量:  109
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-12
  • 修回日期:  2023-07-19
  • 录用日期:  2023-07-29
  • 网络出版日期:  2023-08-15
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回