Effect of Cr(VI) on photocatalytic of xanthate and synergistic mechanism
-
摘要: 为进一步研究黄药和Cr(VI)共存体系中,Cr(VI)对黄药光降解性能的影响以及两者协同作用机制,本文以煤矸石/钒酸铋(CG/BiVO4)为光催化剂,黄药和Cr(VI)共存体系为研究对象,通过光催化活性测试以及紫外光谱、红外光谱、离子色谱和猝灭实验等技术手段,深入研究黄药光氧化和Cr(VI)光还原过程以及两者之间的协同作用机制。结果表明,在黄药和Cr(VI)的共存体系中,两者之间存在显著的协同效应,当黄药浓度为25 mg/L、pH=7、催化剂投加量为1.5 g/L、Cr(VI)浓度为2.0 mg/L、反应480 min时,CG/BiVO4对黄药和Cr(VI)的去除率均达最佳,分别是98.81%和88.80%;基于响应面法预测得到共存体系中黄药的降解率为94.79%,与实际降解率相差 3.82%,该响应面模型可预测共存体系下黄药的降解过程;共存体系中黄药的C=S振动优先发生变化,其次为C—O—C、S—H、S—C—S和丁基,光反应3 h形成中间产物过黄药(ROCSSO−),7 h的转化率最高为97.94%;协同作用机制研究发现,Cr(VI)光还原会迅速捕捉光生e−,黄药光降解会大量消耗h+,两者在光反应过程中不断消耗光生电子和空穴,一方面可抑制光生电子和空穴对的复合,延长光生电子空穴对的寿命;另一方面光生电子-空穴对的快速消耗,加速了光能向化学能的转化,提高了可见光利用率的同时生成大量光生电子空穴对,进而促使黄药和Cr(VI)的协同去除。Abstract: In order to further study the effect of Cr(VI) on the photodegradation of xanthate and its synergistic mechanism in the co-existing system of xanthate and Cr(VI), the photocatalyst of coal gangue/bismuth vanadate (CG/BiVO4) was used, xanthate and Cr(VI) coexisting systems were studied by photocatalytic activity test, UV, FTIR, ion chromatography and quenching experiments, the photooxidation of xanthate and photoreduction of Cr(VI) and their synergistic mechanism were explored. The results show that there is a significant synergistic effect between the photo-oxidation of xanthate and photo-reduction of Cr(VI) in the co-existence system of xanthate and Cr(VI). Then, at the xanthate of 25 mg/L and the pH value of 7, with the dosage of catalyst being 1. 5 g/L, at the Cr(VI) of 2.0 mg/L, the removal rate of xanthate and Cr(VI) by CG/BiVO4 are the best during a period of 480 min, reaching 98.81% and 88.80% respectively. The predicted degradation rate of xanthate is 94.79% by response surface methodology, lower 3.82% than the actual degradation rate, which indicates that the model can be used to predict the degradation of xanthate in the co-existing system. In the co-existing system, the vibration of C=S is changed first, followed by C—O—C, S—H, S—C—S, butyl, and the intermediate product peroxy xanthate (ROCSSO−) is formed after the visible light illumination 3 h , the highest conversion of sulfur is reached 97.94% after the visible light illumination 7 h. The synergistic mechanism analysis shows that the photogenerated e− are rapidly captured in the photo-reduction of Cr(VI) and photogenerated h+ are consumed by xanthate photodegradation. The photogenic electron and hole pairs are consumed, on the one hand, due to the inhibition of photogenerated electrons and holes recombination, the lifetime of photogenerated electron and hole pairs are prolonged, on the other hand, the rapid consumption of photogenerated electron-hole pairs accelerates the conversion of light energy to chemical energy, generating a large number of photogenerated electron-hole pairs, therefor promoting the synergistic removal of xanthate and Cr(VI) .
-
Keywords:
- Cr(VI) /
- xanthatet /
- photocatalysis /
- synergistic mechanism /
- degradation /
- removal
-
随着我国桥梁建设的快速发展,交通量的增加,桥梁结构遭遇火灾情况也时有发生[1-4],2007年10月广东广深高速虎门大桥,油罐车爆炸引发大火,拉索和桥墩都被大火湮灭;2014年,湖南郴州在建赤石特大桥在主跨合拢前6号桥墩左幅塔顶突发大火,事故导致6号桥墩左幅9根斜拉索断裂,这些火灾事故对缆索的受力性能构成了极大的考验。文献[5-8]对钢丝缆索的高温力学性能进行研究,在火灾高温下钢丝力学性能会明显下降,导致缆索的承载能力急剧下降。
采用轻质、高强、耐腐蚀、抗疲劳的碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)用于桥梁缆索,可提高桥梁跨径,从根本上解决钢质拉索的腐蚀及疲劳问题。但CFRP索内的CFRP筋遇到火灾后环氧树脂会燃烧分解,影响其极限承载性能,对桥梁结构的安全造成影响。文献[9-12]通过试验研究发现,高温下CFRP筋的力学性能下降十分明显。付成龙等[11]研究了温度对CFRP筋弯曲强度和压缩强度的影响,研究显示温度对试样弯曲强度和压缩强度的影响较大,CFRP筋的强度保留率随温度升高而降低。方志等[12]对较高玻璃化转变温度Tg(Tg >200℃)的CFRP筋高温后力学性能进行研究,处理温度为100℃时,筋材静力性能与常温试件相比未发生明显变化,筋材经历200℃和300℃温升作用后,其抗拉强度、弹性模量和极限拉应变均有所下降。
文献[13-15]对桥梁缆索的阻燃防火措施做了一些研究。李艳等[13]在索体外表面设置一种导热系数很低的耐高温防火涂层,从而降低火源热辐射传给索体的温度。张凯等[14]研究了带砂浆包覆层CFRP筋的高温力学性能,在砂浆包覆层保持完好未爆裂的情况下,包覆层为CFRP筋提供了较好的隔氧环境,CFRP筋在长时间高温作用后具有较高的残余强度。徐玉林等[15]对外包陶瓷纤维防火层的CFRP索的耐火性进行了火灾试验研究,对CFRP 缆索外包陶瓷纤维防火层可大幅提高缆索的临界安全耐火时长。
综上所述,目前已有一些缆索的阻燃防火措施,如外包砂浆或陶瓷纤维防火层,但这些措施会大幅度增大索体直径,严重影响索体外表面的空气动力学特性。本文针对桥梁缆索用CFRP筋在高温下的力学性能及CFRP索的阻燃防火措施进行系统研究,研制开发具有阻燃防火特性的CFRP索,避免火灾带来的风险,保障应用安全,有助于CFRP索的推广应用。
1. CFRP筋高温力学性能
CFRP筋采用拉挤成型工艺制备,为了便于锚固,筋材表面带有螺旋肋,筋材底径7 mm,纤维体积分数为72vol%,密度为1.52 g/cm3,玻璃化转变温度Tg为120℃。
图1为CFRP筋高温拉伸试验。可见,筋材两端采用粘结型锚固方式,筋材锚固后穿过试验台架,在筋材中间自由段部位外套金属铝筒,金属铝筒外缠绕加热带对筒内空气进行加热,采用热电偶监测空气温度,采用温度继电器控制温度,使金属铝筒内温度保持设定温度,采用千斤顶加载,加载速度不超过300 MPa/min。筋材拉伸强度为筋材破断时压力传感器载荷读数除以筋材承载面积。
1.1 CFRP筋不同加热温度下力学性能
对筋材中间自由段部位进行加热,加热至指定温度,保温2 h后进行破断拉伸试验,获得筋材在高温下的拉伸强度。
图2为不同温度下保温 2 h后的CFRP筋材抗拉强度。可以看出,随着试验温度的升高,筋材拉伸强度呈线性下降趋势,270℃加热2 h,筋材强度降为2000 MPa左右,210℃加热2 h,筋材强度最低为2245.8 MPa,比初始强度下降26.13%。图3为保温2 h后筋材高温拉伸破断照片。可以看出,筋材发生了散丝状断裂。
1.2 CFRP筋不同加热时间下力学性能
对筋材中间自由段部位进行加热,加热至210℃,分别保温1、2、3 h后进行破断拉伸试验,获得筋材在高温下的拉伸强度。图4为210℃不同保温时间下的CFRP筋材抗拉强度。
可以看出,筋材高温拉伸强度仅与试验温度有关,当筋材芯部温度达到保温温度时,筋材的高温拉伸强度与保温时间无关,210℃的高温3 h内,筋材剩余拉伸强度均能达到2245.8 MPa以上。
1.3 CFRP筋加热冷却后力学性能
对筋材中间自由段部位进行加热,加热至指定温度,保温2 h,待筋材充分冷却至室温后进行破断拉伸试验,获得筋材经历高温冷却后的拉伸强度,如图5所示。可以看出,筋材高温加热冷却后继续进行拉伸试验,拉伸强度会存在一定的可逆性恢复,且恢复后的剩余强度均能达到2800 MPa以上,但最终剩余拉伸强度较原始强度呈略微下降趋势,且加热温度越高,剩余拉伸强度越低,最大下降幅度为6.13%。
2. CFRP索阻燃防火措施
分别采用石棉布、陶瓷纤维布及阻燃防火涂层材料来研究对CFRP筋/索的阻燃防火效果。
2.1 石棉布、陶瓷纤维布阻燃防火效果
对在持荷状态下的7 mm直径CFRP筋试验件中间部位用火焰温度1000℃的高温火焰枪进行灼烧,如图6所示,其中图6(a)中筋材无保护,图6(b)中筋材包裹陶瓷纤维布,观测不同时间筋材的受力状态及筋材表面的温度变化,灼烧2 h后,进行破断拉伸试验,获得剩余强度。
表1为不同防护措施下筋材温度及持荷性能。可以看出,在无任何防护条件下,对拉伸应力水平1170 MPa条件下的CFRP筋用火焰温度1000℃的高温火焰枪进行灼烧,25 min后,筋材灼烧部位树脂热解,筋材断裂;采用45 mm厚度陶瓷纤维布与石棉包裹筋材,施加1170 MPa拉伸应力,经过1000℃火焰灼烧2 h,筋材表面温度最高分别为562℃与635℃,筋材高温部位树脂发生热解,没有发生断裂(图7),剩余强度分别为1646 MPa与1249 MPa,图8为其破断试样;采用60 mm厚度石棉包裹筋材,施加1170 MPa拉伸应力,经过1000℃火焰灼烧2 h,筋材表面温度最高为170℃,筋材完好,没有发生断裂,剩余强度为3121 MPa,筋材基本没有发生损伤。
表 1 不同防护类型下CFRP筋材温度及持荷性能Table 1. Temperature and load carrying capacity of CFRP tendons under different protection typesProtection
typeProtection thickness/mm Burning time/min CFRP tendons temperature/℃ Stress level/MPa Test result Resident strength/MPa — — 25 1000 1170 Resin pyrolysis,
tendon tensile fracture— Ceramic fiber cloth 45 120 562 1170 Resin pyrolysis,
tendon is not fracture1646 Asbestos 45 120 635 1170 Resin pyrolysis,
tendon is not fracture1249 Asbestos 60 120 170 1170 The tendon is not damaged 3121 以上试验研究可以看出,包裹60 mm厚的石棉可以起到很好的阻燃防火效果,但是过厚的石棉必然影响索体直径,给CFRP索的盘卷带来困难,同时会改变索体表面原有的空气动力学特性,不方便应用。
2.2 阻燃防火涂层
选用一种阻燃防火涂层,刷在CFRP索股索体双层聚乙烯(PE)护套外表面,其中索股直径61 mm,PE护套厚度6 mm,阻燃防火涂层厚度2 mm,如图9所示。所用阻燃防火涂料层由基料丙烯酸乳液、膨胀催化剂聚磷酸铵、碳化剂季戊四醇、膨胀发泡剂三聚氰胺与氯化石蜡、颜料钛白粉、成膜助剂醇酯等组成。
在PE表面刷有2 mm阻燃防火涂层,并在索体PE内表面预埋测温线,用火焰温度1000℃的高温火焰枪对索股局部进行长达2 h的高温灼烧试验(图10),阻燃防火涂料层发生膨胀并形成均匀而致密蜂窝状碳化层,保护双层PE护套不发生燃烧,使得缆索具有阻燃防火特性,PE护套仅发生软化。无阻燃防火涂层保护的索体5 min内PE护套燃烧殆尽,漏出索体(图11)。图12为2 mm阻燃防火涂层温度-时间曲线。可以看出,2 h灼烧索股PE内表面最高温度为206℃。
2.3 CFRP索股表层不同位置处温度测定
为探究发生火灾时CFRP索股内部PE内筋材温度,将测温线置于不同位置处测量灼烧试验时各位置的温度(图13),分别为索股PE内表面、距离PE内表面7 mm、距离PE内表面14 mm。图14为灼烧2 h索股内部不同位置处温度-时间曲线。可以看出,紧贴PE内表面的温度最高,为206℃,其次是测温线与PE内表层间隔7 mm处的温度(次外层筋材),为156℃,温度最低的是与PE内表层距离14 mm处的温度(第三层筋材),为100℃。
3. 阻燃防火涂层耐火时间
针对阻燃防火涂层的不同厚度,试验研究在1000℃火焰灼烧下阻燃防火效果的持续性,索股规格同2.2节。图15为不同厚度阻燃防火涂层温度-时间曲线。可知无阻燃防火涂层防护,索股PE层5 min燃烧殆尽;0.3 mm厚度阻燃防火涂层可保护索股PE层20 min;1.4 mm厚度阻燃防火涂层可保护索股PE层160 min;刷有2 mm厚度阻燃防火涂层的索股在长达360 min的火焰灼烧下,PE内表面最高温度为245℃,PE层未发生破坏,仅发生软化,建议阻燃防火涂层厚度为2 mm。
图16为2 mm厚度阻燃防火涂层的索股燃烧360 min试验过程的发泡过程。可以看出,随着火焰灼烧时间的增长,发泡层高度逐渐增大,发泡尺寸也逐渐增大,6 h熄火后形成一个6 cm×8 cm、高4 cm的发泡层,长达6 h的灼烧试验,PE内表面最高温度为245℃,熄火后,拨开厚厚的发泡层,PE护套仅发生软化。结合图15与图16,可以看出,燃烧前20 min为快速发泡升温阶段,发泡层快速增大,PE内表面温度从室温上升到196℃;20~140 min为稳定阶段,发泡层缓慢增大,PE内表面温度维持在203~209℃之间;140~360 min为动态平衡阶段,继续燃烧温度缓慢升高,燃烧至180 min,PE内表面温度达到216℃,阻燃防火涂层内层达到发泡温度开始发泡,发泡层高度增加,PE内表面温度下降,燃烧至240 min,PE内表面温度降至200℃,燃烧至280 min左右,发泡层表层开始发生热解,PE内表面温度升高至230℃左右,阻燃防火涂层内层达到发泡温度进一步发泡,发泡层高度持续增加,PE内表面温度下降,但随着发泡层表层热解,PE内表面温度又缓慢上升。
4. 结 论
(1) 碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)筋材高温剩余强度随温度升高呈线性下降趋势,210℃加热3 h,剩余强度最低为2245.8 MPa,比初始强度下降26.13%。
(2) CFRP筋材高温加热冷却后强度存在一定程度的可逆性恢复,剩余强度均能达到2800 MPa以上,但较原始强度略微下降,且经历温度越高剩余强度越低,最大下降幅度为6.13%。
(3) 对比3种阻燃防火措施,阻燃防火涂层具有较好的阻燃防火效果,2 h灼烧索股聚乙烯(PE)内表面最高温度为206℃,次外层筋材最高温度为156℃,第三层筋材最高温度为100℃,火灾2 h内,索股仍可承载,剩余强度≥2245 MPa。
(4) 阻燃防火涂层越厚防护时间越长,2 mm厚阻燃防火涂层的索股在长达360 min的火焰灼烧下,PE内表面最高温度为245℃,PE层未发生破坏,仅发生软化,建议阻燃防火涂层的厚度为2 mm。
-
表 1 影响CG/BiVO4光降解黄药的因素及水平
Table 1 Factors and levels affecting CG/BiVO4 photodegradation of xanthate
Factor Lever −1 0 +1 pH 7 9 11 m/(g·L-1) 1 2 3 C0/(mg·L−1) 6 8 10 CCr/(mg·L−1) 0.5 1.5 2.5 Notes: m—Catalyst dosage; C0—Initial concentration of xanthate; CCr—Concentration of Cr(VI). 表 2 共存体系中优化CG/BiVO4光降解黄药实验回归模型的方差分析
Table 2 Variance analysis of regression model in optimizing CG/BiVO4 photodegradation of xanthate in co-existing system
Source SS DF Mean square F value P value prob>F Model 22.73 14 1.62 236.55 <0.0001 A 9.36 1 9.36 1364.23 <0.0001 B 3.47 1 3.47 505.12 <0.0001 C 4.38 1 4.38 638.19 <0.0001 D 0.12 1 0.12 16.91 0.0011 AB 6.75 1 6.75 9.87 0.9527 AC 0 1 0 0 1.0000 AD 6.75 1 6.75 9.87 0.9527 BC 0 1 0 0 1.0000 BD 0 1 0 0 1.0000 CD 6.75 1 6.75 9.87 0.9527 A2 2.12 1 2.12 309.12 <0.0001 B2 2.12 1 2.12 309.03 <0.0001 C2 0.072 1 0.072 10.55 0.0058 D2 0.066 1 0.066 9.56 0.0080 Residual 0.096 14 18.63 Lack of fit 0.089 10 24.06 4.74 0.0736 Pure error 20.3 4 5.05 Cor total 22.83 28 Notes: A—Initial pH of the reaction; B—Catalyst dosage; C—Initial concentration of xanthate; D—Cr(VI) concentration; SS—Sum of squares; DF—Degree of freedom; F value—Ratio of the mean square to the residual term; P value prob—Influence degree value of each factor. -
[1] 郑永兴, 黄宇松, 吕晋芳, 等. 有色金属选矿废水处理研究现状与进展[J]. 矿产综合利用, 2023(240):177-183, 190. ZHENG Yongxing, HUANG Yusong, LYU Jinfang, et al. Research status and progress on the treatment of non-ferrous metal dressing wastewater[J]. Comprehensive Utilization of Mineral Resources,2023(240):177-183, 190(in Chinese).
[2] ROY S, DATTA A, REHANI S. Flotation of copper sulphide from copper smelter slag using multiple collectors and their mixtures[J]. International Journal of Mineral Processing,2015,143:43-49. DOI: 10.1016/j.minpro.2015.08.008
[3] 张文茜, 张婧, 王海洋, 等. 选矿废水中黄药的处理方法研究进展[J]. 广东化工, 2022, 49(20):130-132. ZHANG Wenqian, ZHANG Jing, WANG Haiyang, et al. Research progress on the treatment of xanthate in mineral processing wastewater[J]. Guangdong Chemical,2022,49(20):130-132(in Chinese).
[4] 吴吉昀, 冯博, 陈燕, 等. 粉煤灰-硅藻土复合材料对选矿废水中Cr(VI)的吸附行为研究[J]. 矿冶工程, 2022, 42(4):125-129. DOI: 10.3969/j.issn.0253-6099.2022.04.029 WU Jiyun, FENG Bo, CHEN Yan, et al. Adsorption behavior of fly ash-diatomite composite for Cr(VI) in mineral processing wastewater[J]. Mining and Metallurgical Engineering,2022,42(4):125-129(in Chinese). DOI: 10.3969/j.issn.0253-6099.2022.04.029
[5] MOHAMED R M, IBRAHIM F M. Vsible light photocataly-tic reduction of nitrobenzene using Ag/Bi2MoO6 nanocomposite[J]. Journal of Industrial and Engineering Chemistry,2015,22:28-33. DOI: 10.1016/j.jiec.2014.06.021
[6] 张明慧, 崔石岩, 刘凤春, 等. 石墨烯-TiO2复合材料可见光催化降解乙黄药[J]. 金属矿山, 2020(2):129-133. ZHANG Minghui, CUI Shiyan, LIU Fengchun, et al. Photocatalytic degradation of ethyl xanthateby graphite-TiO2 composite under visible light irradiation[J]. Metal Mines,2020(2):129-133(in Chinese).
[7] WANG J C, REN J, YAO H C, et al. Synergistic photocatalysis of Cr(VI) reduction and 4-chlorophenol degradation over hydroxylated-Fe2O3 under visible light irradiation[J]. Journal of Hazardous Materials,2016,311:11-19. DOI: 10.1016/j.jhazmat.2016.02.055
[8] 唐双, 张雪乔, 蒋莉萍, 等. 煤矸石/BiVO4复合光催化剂的制备及其对黄药废水的降解[J]. 复合材料学报, 2023, 40(12): 6703-6717. TANG Shuang, ZHANG Xueqiao, JIANG Liping, et al. Preparation of coal gangue/BiVO4 composite photocatalyst and its degradation of xanthate wastewater [J]. Acta Mate-riae Compositae Sinica, 2023, 40(12): 6703-6717(in Chinese).
[9] SHEN Q, ZHANG Y H, FAN Y J, et al. On-line in situ ATR-FTIR study on the adsorption behavior of heptyl xanthate on ZnO and Cu(II) activated ZnO surface[J]. Transactions of Nonferrous Metals Society of China,2022,32(7):2370-2378. DOI: 10.1016/S1003-6326(22)65953-3
[10] 李云红, 林雪梅, 张伟亚. 二苯碳酰二肼分光光度法测定实验废水中六价铬含量的研究[J]. 环境科学与管理, 2022, 47(8):111-115. DOI: 10.3969/j.issn.1673-1212.2022.08.024 LI Yunhong, LIN Xuemei, ZHANG Weiya. Determination of hexavalent chromium in experimental wastewater by diphenylcarbazide spectrophotometer[J]. Environmental Science and Management,2022,47(8):111-115(in Chinese). DOI: 10.3969/j.issn.1673-1212.2022.08.024
[11] ZHU C S, LI J Y, CHAI Y K, et al. Synergistic Cr(VI) reduction and chloramphenicol degradation by the visible-light-induced photocatalysis of CuInS2: Performance and reaction mechanism[J]. Frontiers in Chemistry, 2022, 10: 964008.
[12] ZHAO X, DU P, CAI Z, et al. Photocatalysis of bisphenol A by an easy-settling titania/titanate composite: Effects of water chemistry factors, degradation pathway and theore-tical calculation[J]. Environmental Pollution,2018,232:580-590. DOI: 10.1016/j.envpol.2017.09.094
[13] 孙思琦, 黄齐茂. 新型黄原酸盐重金属离子螯合剂的合成[J]. 工业水处理, 2020, 40(11):41-44. SUN Siqi, HUANG Qimao. Synthesis of a new xanthate heavy metal ion chelating agent[J]. Industrial Water Treatment,2020,40(11):41-44(in Chinese).
[14] 曹阳, 王楷, 王湖坤. 重金属捕集剂丁基黄药处理电镀废水的研究[J]. 电镀与精饰, 2014, 36(10):43-46. DOI: 10.3969/j.issn.1001-3849.2014.10.011 CAO Yang, WANG Kai, WANG Hukun. Study on the treatment of electroplating wastewater with butyl xanthate[J]. Plating and Finishing,2014,36(10):43-46(in Chinese). DOI: 10.3969/j.issn.1001-3849.2014.10.011
[15] D.W.贝宁, 俞继华. 黄药的水毒性与环境结局[J]. 国外选矿快报, 1999(18):18-20. D.W.Benin, YU Jihua. Water toxicity and environmental consequences of xanthate[J]. Foreign Mineral Processing Express,1999(18):18-20(in Chinese).
[16] LUO L, WANG G, WANG Z, et al. Optimization of Fenton process on removing antibiotic resistance genes from excess sludge by single-factor experiment and response surface methodology[J]. Science of the Total Environment,2021,788:147889. DOI: 10.1016/j.scitotenv.2021.147889
[17] LI M, ZHAO G, LIU J, et al. Optimization of ultrasound-assisted extraction of peony seed oil with response surface methodology and analysis of fatty acid[J]. Agricultural Research, 2021, 10: 543-555.
[18] 邓萍. Gaussian软件在有机化合物波谱解析教学中的应用(II)−吲哚紫外光谱及其跃迁轨道的可视化[J]. 化学教育, 2017, 38(8):66-68. DENG Ping. Application of Gaussian software in the teaching of spectral analysis of organic compounds (II)—Visualization of indole ultraviolet spectra and their transition trajectories[J]. Chemistry Education,2017,38(8):66-68(in Chinese).
[19] 刘嘉友, 聂倩倩, 俞和胜, 等. 卷心菜状Bi2WO6光催化降解黄药废水[J]. 金属矿山, 2020(524):122-128. LIU Jiayou, NIE Qianqian, YU Hesheng, et al. Photocatalytic degradation of xanthate wastewater[J]. Metal Mines,2020(524):122-128(in Chinese).
[20] HU C, TANG Y, JIMMY C Y, et al. Photocatalytic degradation of cationic blue X-GRL adsorbed on TiO2/SiO2 photocatalyst[J]. Applied Catalysis B: Environmental,2003,40(2):131-140. DOI: 10.1016/S0926-3373(02)00147-9
[21] RENZI C, GUILLARD C, HERRMANN J M, et al. Effects of methanol, formamide, acetone and acetate ions on phenol disappearance rate and aromatic products in UV-irra-diated TiO2 aqueous suspensions[J]. Chemosphere,1997,35(4):819-826. DOI: 10.1016/S0045-6535(97)00203-8
[22] GUO Y, CUI K, HU M, et al. Fe(III) ions enhanced catalytic properties of (BiO)2CO3 nanowires and mechanism study for complete degradation of xanthate[J]. Chemosphere,2017,181:190-196. DOI: 10.1016/j.chemosphere.2017.04.069
[23] HAO F P, SILVESTER E, SENIOR G D. Spectroscopic characterization of ethyl xanthate oxidation products and analysis by ion interaction chromatography[J]. Analytical Chemistry,2000,72(20):4836-4845. DOI: 10.1021/ac991277o
[24] 刘楚玉, 黄自力, 袁晨光, 等. 磁性活性炭的制备及其对选矿废水中丁基黄药的去除研究[J]. 矿冶工程, 2022, 42(3):70-75. DOI: 10.3969/j.issn.0253-6099.2022.03.016 LIU Chuyu, HUANG Zili, YUAN Chenguang, et al. Preparation of magnetic activated carbon and its removal of butyl xanthate from mineral processing wastewater[J]. Mining and Metallurgical Engineering,2022,42(3):70-75(in Chinese). DOI: 10.3969/j.issn.0253-6099.2022.03.016
[25] 葛东来, 范迎菊, 尹龙, 等. 连续在线原位ATR-FTIR技术测定介孔CuAl2O4对黄药的吸附[J]. 物理化学学报, 2013, 29(2): 371-376. GE Donglai, FAN Yingju, YIN Long, et al. Continuous on-line in situ ATR-FTIR determination of CuAl2O4 adsorption on xanthate[J]. Journal of Physical Chemistry, 2013, 29(2): 371-376(in Chinese).
[26] MORITA S, SHINZAWA H, TSENKOVA R, et al. Computational simulations and a practical application of moving-window two-dimensional correlation spectroscopy[J]. Journal of Molecular Structure,2006,799(1-3):111-120. DOI: 10.1016/j.molstruc.2006.03.023
[27] DOU L, MA D, CHEN J, et al. F127-assisted hydrothermal preparation of BiOI with enhanced sunlight-driven photocatalytic activity originated from the effective separation of photo-induced carriers[J]. Solid State Sciences,2019,90:1-8. DOI: 10.1016/j.solidstatesciences.2019.01.010
[28] GUO M, XIANG H, TANG S, et al. Effect of pyrolysis tempe-rature on structure and photocatalytic properties of biochar-coupled BiVO4[J]. Journal of Environmental Chemical Engineering,2022,10(2):107255. DOI: 10.1016/j.jece.2022.107255
[29] JAWAD A, LU X, CHEN Z, et al. Degradation of chlorophenols by supported Co-Mg-Al layered double hydrotalcite with bicarbonate activated hydrogen peroxide[J]. The Journal of Physical Chemistry A,2014,118(43):10028-10035. DOI: 10.1021/jp5085313
[30] 杨宏剑, 薛秀玲, 付旺. 过硫酸盐氧化剂对Al0/O2/H+体系降解TC的协同作用[J]. 环境化学, 2020, 39(9):2584-2592. DOI: 10.7524/j.issn.0254-6108.2019062305 YANG Hongjian, XUE Xiuling, FU Wang. Synergistic effect of persulfate oxidant on the degradation of TC in Al0/O2/H+ system[J]. Environmental Chemistry,2020,39(9):2584-2592(in Chinese). DOI: 10.7524/j.issn.0254-6108.2019062305
[31] PAN L, WAN Z, FENG Q, et al. Biofilm response and removal via the coupling of visible-light-driven photocataly-sis and biodegradation in an environment of sulfamethoxazole and Cr(VI)[J]. Journal of Environmental Sciences,2022,122(12):50-61.
[32] 李官超, 祝瑄, 滕青, 等. TiO2@芽孢杆菌光催化性能研究[J]. 金属矿山, 2021(8):186-195. LI Guanchao, ZHU Xuan, TENG Qing, et al. Photocatalytic activity of TiO2@bacillus[J]. Metal Mines,2021(8):186-195(in Chinese).
[33] 崔陪陪, 胡芸, 黄倩倩, 等. MIL-101光催化剂对Cr(VI)-RhB复合污染的定向分离及其高效光催化协同处理[J]. 化工进展, 2018, 37(7):2860-2866. CUI Peipei, HU Yun, HUANG Qianqian, et al. Directional separation of Cr(VI)-RhB compound pollution by MIL-101 photocatalyst and its high efficient photocatalytic synergistic treatment[J]. Progress in Chemical Engineering,2018,37(7):2860-2866(in Chinese).
[34] 李红艳, 李玉鉴, 崔建国, 等. rGO/TNTs光催化剂协同降解水中Cr(VI)与苯酚的性能[J]. 工业水处理, 2019, 39(10):32-36. DOI: 10.11894/iwt.2019-0166 LI Hongyan, LI Yujian, CUI Jianguo, et al. Photocatalytic degradation of Cr(VI) and phenol in water by rGO/TNTs photocatalyst[J]. Industrial Water Treatment,2019,39(10):32-36(in Chinese). DOI: 10.11894/iwt.2019-0166
[35] 陈运双, 马瑞雪, 蒋潇宇, 等. TiO2/蒙脱土复合材料光催化降解丁基黄药性能研究[J]. 金属矿山, 2022(5):212-220. CHEN Yunshuang, MA Ruixue, JIANG Xiaoyu, et al. Photocatalytic degradation of butyl xanthate by TiO2/montmorillonite composite[J]. Metal Mines,2022(5):212-220(in Chinese).
-
期刊类型引用(2)
1. 李友明,景昭,吴增文,李冰垚,刘琛,葛敬冉,梁军. 随机疲劳下复合材料剩余刚度-剩余强度关联模型及寿命预测. 强度与环境. 2024(01): 23-30 . 百度学术
2. 马帅,金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用. 材料导报. 2022(S1): 252-256 . 百度学术
其他类型引用(1)
-
目的
本课题组前期开发出的新型复合光催化剂煤矸石/钒酸铋(CG/BiVO)在可见光下对黄药具有较好的光催化活性,为进一步研究黄药与Cr(VI)共存体系下,Cr(VI)对黄药光降解性能的影响以及两者协同作用机制,本文以Cr(VI)与黄药共存体系为主要反应体系,CG/BiVO为光催化剂,考察黄药的光降解与Cr(VI)的光还原作用,探索Cr(VI)对黄药光降解的影响规律及协同作用机制。
方法①通过光催化活性测试,考察在黄药和Cr(VI)的共存条件下,Cr(VI)对黄药降解的影响以及Cr(VI)的光催化还原性能。并在单因素实验基础上,选择反应起始pH值、催化剂投加量t、黄药初始浓度C、Cr(VI)含量C这四个影响因素进行响应面优化实验。②设计黄药废水A以及黄药和Cr(VI)的混合废水B,分析水样在不同反应时间段的紫外光谱和红外光谱,判断黄药光氧化和Cr(VI)光还原过程,中间产物的生成与变化。③采用猝灭实验考察在CG/BiVO光催化剂的作用下,黄药光氧化与Cr(VI)光还原的主要活性物质,并通过离子色谱,深入研究黄药降解率与S转化率的变化规律,分析总结黄药和Cr(VI)之间的协同作用机制。
结果①Cr(VI)的存在可促进黄药的光降解过程,同时黄药也能显著提高Cr(VI)的光反应速率,当黄药浓度为25mg/L,pH=7、催化剂投加量为1.5 g/L、Cr(VI)浓度为2.0 mg/L、反应480 min时,CG/BiVO对黄药的降解率和Cr(VI)的去除率均最佳,黄药降解率高达98.81%,Cr(VI)去除率为88.80%。②利用响应面分析得到的最优反应条件,pH= 7.0、=2.47 g/L、=6.00 mg/L、=1.02 mg/L时,预测黄药降解率达到最大,为94.79%,该预测值与实际降解率仅相差3.82%,可见该模型可用于共存体系下黄药的降解过程预测。③CG/BiVO对Cr(VI)的吸附能力明显优于对黄药的吸附,但Cr(VI)的存在对黄药的光催化有明显促进作用,体系A、B光反应3 h时均形成中间产物过黄药(ROCSSO),然而A、B两种体系有机官能团变化次序存在明显差异,体系A中,C—O—C、C═S、C—O、—SH、S—C—S和C—H依次发生振动,共存体系B中,黄药官能团依次发生断裂的顺序是C═S、C—O—C、S—H、S—C—S和丁基。④协同作用机制研究发现,Cr(VI)光还原会迅速捕捉光生e,黄药光降解会大量消耗h,相同光反应时间内,体系B的S转化率和黄药降解率均明显高于体系A,可见,Cr(VI)的存在,不仅有利于黄药的降解,还促使黄药中S的快速转化。
结论在黄药和Cr(VI)的共存体系中,两者之间存在显著的协同效应,在可见光的照射下,黄药的C═S振动优先发生变化,其次为C—O—C、S—H、S—C—S和丁基,光反应3 h形成中间产物过黄药(ROCSSO),7 h S的转化率最高为97.94%;协同作用机制研究发现,Cr(VI)光还原会迅速捕捉光生e,黄药光降解会大量消耗h,两者在光反应过程中不断消耗光生电子和空穴,一方面可抑制光生电子和空穴对的复合,延长光生电子空穴对的寿命;另一方面光生电子-空穴对的快速消耗,加速了光能向化学能的转化,提高了可见光利用率的同时生成大量光生电子空穴对,进而促使黄药和Cr(VI)的协同去除。
-
选矿废水的排放量大,成分复杂,污染物之间的相互作用易导致废水毒性增强,治理难度加大。本课题组开发的煤矸石/钒酸铋(CG/BiVO4)不仅能够实现黄药的高效光解,还能在黄药和Cr(VI)共存体系下,促使黄药和Cr(VI)协同光解;通过猝灭实验及光谱分析,推测得到Cr(VI)与黄药两者之间的协同光解机制,为实际选矿废水的治理以及未来光催化技术的推广应用提供宝贵的理论依据和实践经验。
(a)Cr(VI)对CG/BiVO4光降解黄药反应进程的影响和(b)CG/BiVO4对Cr(VI)的还原曲线图