留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cr(VI)对黄药光降解性能影响及其协同作用机制

张雪乔 钟晓娟 唐双 蒋莉萍 魏于凡 肖利

张雪乔, 钟晓娟, 唐双, 等. Cr(VI)对黄药光降解性能影响及其协同作用机制[J]. 复合材料学报, 2024, 41(3): 1391-1401. doi: 10.13801/j.cnki.fhclxb.20230814.001
引用本文: 张雪乔, 钟晓娟, 唐双, 等. Cr(VI)对黄药光降解性能影响及其协同作用机制[J]. 复合材料学报, 2024, 41(3): 1391-1401. doi: 10.13801/j.cnki.fhclxb.20230814.001
ZHANG Xueqiao, ZHONG Xiaojuan, TANG Shuang, et al. Effect of Cr(VI) on photocatalytic of xanthate and synergistic mechanism[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1391-1401. doi: 10.13801/j.cnki.fhclxb.20230814.001
Citation: ZHANG Xueqiao, ZHONG Xiaojuan, TANG Shuang, et al. Effect of Cr(VI) on photocatalytic of xanthate and synergistic mechanism[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1391-1401. doi: 10.13801/j.cnki.fhclxb.20230814.001

Cr(VI)对黄药光降解性能影响及其协同作用机制

doi: 10.13801/j.cnki.fhclxb.20230814.001
基金项目: 四川省科技计划项目(2021YFG0267);煤炭精细勘探与智能开发全国重点实验室开放基金资助项目(SKLCRSM21KF001)
详细信息
    通讯作者:

    张雪乔,博士,副教授,硕士生导师,研究方向为环境材料与水污染防治 E-mail: zxq@cuit.edu.cn

  • 中图分类号: TQ426.1;TB332

Effect of Cr(VI) on photocatalytic of xanthate and synergistic mechanism

Funds: Science and Technology Project of Sichuan Province (2021YFG0267); Project Supported by Open Fund of National Key Laboratory of Coal Fine Exploration and Intelligent Development (SKLCRSM21KF001)
  • 摘要: 为进一步研究黄药和Cr(VI)共存体系中,Cr(VI)对黄药光降解性能的影响以及两者协同作用机制,本文以煤矸石/钒酸铋(CG/BiVO4)为光催化剂,黄药和Cr(VI)共存体系为研究对象,通过光催化活性测试以及紫外光谱、红外光谱、离子色谱和猝灭实验等技术手段,深入研究黄药光氧化和Cr(VI)光还原过程以及两者之间的协同作用机制。结果表明,在黄药和Cr(VI)的共存体系中,两者之间存在显著的协同效应,当黄药浓度为25 mg/L、pH=7、催化剂投加量为1.5 g/L、Cr(VI)浓度为2.0 mg/L、反应480 min时,CG/BiVO4对黄药和Cr(VI)的去除率均达最佳,分别是98.81%和88.80%;基于响应面法预测得到共存体系中黄药的降解率为94.79%,与实际降解率相差 3.82%,该响应面模型可预测共存体系下黄药的降解过程;共存体系中黄药的C=S振动优先发生变化,其次为C—O—C、S—H、S—C—S和丁基,光反应3 h形成中间产物过黄药(ROCSSO),7 h的转化率最高为97.94%;协同作用机制研究发现,Cr(VI)光还原会迅速捕捉光生e,黄药光降解会大量消耗h+,两者在光反应过程中不断消耗光生电子和空穴,一方面可抑制光生电子和空穴对的复合,延长光生电子空穴对的寿命;另一方面光生电子-空穴对的快速消耗,加速了光能向化学能的转化,提高了可见光利用率的同时生成大量光生电子空穴对,进而促使黄药和Cr(VI)的协同去除。

     

  • 图  1  Cr(VI)对煤矸石/钒酸铋(CG/BiVO4)光降解黄药反应进程的影响

    Figure  1.  Effect of Cr(VI) on photodegradation of xanthate by coal gangue/bismuth vanadate (CG/BiVO4)

    图  2  CG/BiVO4对Cr(VI)的还原曲线图

    Figure  2.  Cr(VI) reduction curves of CG/BiVO4

    图  3  黄药降解率各因素的响应面:(a) A和B;(b) A和C;(c) A和D;(d) B和C;(e) B和D;(f) C和D

    Figure  3.  Response surface of factors for degradation rate of xanthate: (a) A and B; (b) A and C; (c) A and D; (d) B and C; (e) B and D; (f) C and D

    图  4  废水Ⅰ (a)、废水Ⅱ (b)的紫外全谱扫描图及在226 nm处的局部放大图

    Figure  4.  UV full spectra scan and local magnification at 226 nm of wastewater Ⅰ (a) and wastewater Ⅱ (b)

    图  5  体系Ⅰ的红外同步光谱图(a)和异步图(b);体系Ⅱ的红外同步光谱图(c)和异步图(d)

    Figure  5.  Infrared synchronous spectra (a) and asynchronous spectra (b) of system Ⅰ; Infrared synchronous spectra (c) and asynchronous spectra (d) of system Ⅱ

    图  6  CG/BiVO4在不同猝灭剂下对黄药的降解图(a)和对Cr(VI)的降解图(b)

    Figure  6.  Degradation diagrams of CG/BiVO4 on xanthate (a) and Cr(VI) (b) under different quenching agents

    C/C0—Ratio of the concentration of Cr(VI) at different time to the initial concentration of Cr(VI); IPA—Isopropyl alchohol; BQ—Benzoquinone

    图  7  黄药降解率与S转化率的变化规律

    Figure  7.  Change rule of degradation rate of xanthate and sulfur conversion rate

    图  8  Cr(VI)和黄药共存体系中CG/BiVO4对黄药的光降解机制示意图

    Figure  8.  Mechanism of photodegradation of xanthate by CG/BiVO4 in the co-existence system of Cr(VI) and xanthate

    CB—Conduction band; VB—Valence band

    表  1  影响CG/BiVO4光降解黄药的因素及水平

    Table  1.   Factors and levels affecting CG/BiVO4 photodegradation of xanthate

    FactorLever
    −10+1
    pH7911
    m/(g·L-1)12 3
    C0/(mg·L−1)6810
    CCr/(mg·L−1)0.51.5 2.5
    Notes: m—Catalyst dosage; C0—Initial concentration of xanthate; CCr—Concentration of Cr(VI).
    下载: 导出CSV

    表  2  共存体系中优化CG/BiVO4光降解黄药实验回归模型的方差分析

    Table  2.   Variance analysis of regression model in optimizing CG/BiVO4 photodegradation of xanthate in co-existing system

    SourceSSDFMean squareF valueP value prob>F
    Model 22.73 14 1.62 236.55 <0.0001
    A 9.36 1 9.36 1364.23 <0.0001
    B 3.47 1 3.47 505.12 <0.0001
    C 4.38 1 4.38 638.19 <0.0001
    D 0.12 1 0.12 16.91 0.0011
    AB 6.75 1 6.75 9.87 0.9527
    AC 0 1 0 0 1.0000
    AD 6.75 1 6.75 9.87 0.9527
    BC 0 1 0 0 1.0000
    BD 0 1 0 0 1.0000
    CD 6.75 1 6.75 9.87 0.9527
    A2 2.12 1 2.12 309.12 <0.0001
    B2 2.12 1 2.12 309.03 <0.0001
    C2 0.072 1 0.072 10.55 0.0058
    D2 0.066 1 0.066 9.56 0.0080
    Residual 0.096 14 18.63
    Lack of fit 0.089 10 24.06 4.74 0.0736
    Pure error 20.3 4 5.05
    Cor total 22.83 28
    Notes: A—Initial pH of the reaction; B—Catalyst dosage; C—Initial concentration of xanthate; D—Cr(VI) concentration; SS—Sum of squares; DF—Degree of freedom; F value—Ratio of the mean square to the residual term; P value prob—Influence degree value of each factor.
    下载: 导出CSV
  • [1] 郑永兴, 黄宇松, 吕晋芳, 等. 有色金属选矿废水处理研究现状与进展[J]. 矿产综合利用, 2023(240):177-183, 190.

    ZHENG Yongxing, HUANG Yusong, LYU Jinfang, et al. Research status and progress on the treatment of non-ferrous metal dressing wastewater[J]. Comprehensive Utilization of Mineral Resources,2023(240):177-183, 190(in Chinese).
    [2] ROY S, DATTA A, REHANI S. Flotation of copper sulphide from copper smelter slag using multiple collectors and their mixtures[J]. International Journal of Mineral Processing,2015,143:43-49. doi: 10.1016/j.minpro.2015.08.008
    [3] 张文茜, 张婧, 王海洋, 等. 选矿废水中黄药的处理方法研究进展[J]. 广东化工, 2022, 49(20):130-132.

    ZHANG Wenqian, ZHANG Jing, WANG Haiyang, et al. Research progress on the treatment of xanthate in mineral processing wastewater[J]. Guangdong Chemical,2022,49(20):130-132(in Chinese).
    [4] 吴吉昀, 冯博, 陈燕, 等. 粉煤灰-硅藻土复合材料对选矿废水中Cr(VI)的吸附行为研究[J]. 矿冶工程, 2022, 42(4):125-129. doi: 10.3969/j.issn.0253-6099.2022.04.029

    WU Jiyun, FENG Bo, CHEN Yan, et al. Adsorption behavior of fly ash-diatomite composite for Cr(VI) in mineral processing wastewater[J]. Mining and Metallurgical Engineering,2022,42(4):125-129(in Chinese). doi: 10.3969/j.issn.0253-6099.2022.04.029
    [5] MOHAMED R M, IBRAHIM F M. Vsible light photocataly-tic reduction of nitrobenzene using Ag/Bi2MoO6 nanocomposite[J]. Journal of Industrial and Engineering Chemistry,2015,22:28-33. doi: 10.1016/j.jiec.2014.06.021
    [6] 张明慧, 崔石岩, 刘凤春, 等. 石墨烯-TiO2复合材料可见光催化降解乙黄药[J]. 金属矿山, 2020(2):129-133.

    ZHANG Minghui, CUI Shiyan, LIU Fengchun, et al. Photocatalytic degradation of ethyl xanthateby graphite-TiO2 composite under visible light irradiation[J]. Metal Mines,2020(2):129-133(in Chinese).
    [7] WANG J C, REN J, YAO H C, et al. Synergistic photocatalysis of Cr(VI) reduction and 4-chlorophenol degradation over hydroxylated-Fe2O3 under visible light irradiation[J]. Journal of Hazardous Materials,2016,311:11-19. doi: 10.1016/j.jhazmat.2016.02.055
    [8] 唐双, 张雪乔, 蒋莉萍, 等. 煤矸石/BiVO4复合光催化剂的制备及其对黄药废水的降解[J]. 复合材料学报, 2023, 40(12): 6703-6717.

    TANG Shuang, ZHANG Xueqiao, JIANG Liping, et al. Preparation of coal gangue/BiVO4 composite photocatalyst and its degradation of xanthate wastewater [J]. Acta Mate-riae Compositae Sinica, 2023, 40(12): 6703-6717(in Chinese).
    [9] SHEN Q, ZHANG Y H, FAN Y J, et al. On-line in situ ATR-FTIR study on the adsorption behavior of heptyl xanthate on ZnO and Cu(II) activated ZnO surface[J]. Transactions of Nonferrous Metals Society of China,2022,32(7):2370-2378. doi: 10.1016/S1003-6326(22)65953-3
    [10] 李云红, 林雪梅, 张伟亚. 二苯碳酰二肼分光光度法测定实验废水中六价铬含量的研究[J]. 环境科学与管理, 2022, 47(8):111-115. doi: 10.3969/j.issn.1673-1212.2022.08.024

    LI Yunhong, LIN Xuemei, ZHANG Weiya. Determination of hexavalent chromium in experimental wastewater by diphenylcarbazide spectrophotometer[J]. Environmental Science and Management,2022,47(8):111-115(in Chinese). doi: 10.3969/j.issn.1673-1212.2022.08.024
    [11] ZHU C S, LI J Y, CHAI Y K, et al. Synergistic Cr(VI) reduction and chloramphenicol degradation by the visible-light-induced photocatalysis of CuInS2: Performance and reaction mechanism[J]. Frontiers in Chemistry, 2022, 10: 964008.
    [12] ZHAO X, DU P, CAI Z, et al. Photocatalysis of bisphenol A by an easy-settling titania/titanate composite: Effects of water chemistry factors, degradation pathway and theore-tical calculation[J]. Environmental Pollution,2018,232:580-590. doi: 10.1016/j.envpol.2017.09.094
    [13] 孙思琦, 黄齐茂. 新型黄原酸盐重金属离子螯合剂的合成[J]. 工业水处理, 2020, 40(11):41-44.

    SUN Siqi, HUANG Qimao. Synthesis of a new xanthate heavy metal ion chelating agent[J]. Industrial Water Treatment,2020,40(11):41-44(in Chinese).
    [14] 曹阳, 王楷, 王湖坤. 重金属捕集剂丁基黄药处理电镀废水的研究[J]. 电镀与精饰, 2014, 36(10):43-46. doi: 10.3969/j.issn.1001-3849.2014.10.011

    CAO Yang, WANG Kai, WANG Hukun. Study on the treatment of electroplating wastewater with butyl xanthate[J]. Plating and Finishing,2014,36(10):43-46(in Chinese). doi: 10.3969/j.issn.1001-3849.2014.10.011
    [15] D.W.贝宁, 俞继华. 黄药的水毒性与环境结局[J]. 国外选矿快报, 1999(18):18-20.

    D.W.Benin, YU Jihua. Water toxicity and environmental consequences of xanthate[J]. Foreign Mineral Processing Express,1999(18):18-20(in Chinese).
    [16] LUO L, WANG G, WANG Z, et al. Optimization of Fenton process on removing antibiotic resistance genes from excess sludge by single-factor experiment and response surface methodology[J]. Science of the Total Environment,2021,788:147889. doi: 10.1016/j.scitotenv.2021.147889
    [17] LI M, ZHAO G, LIU J, et al. Optimization of ultrasound-assisted extraction of peony seed oil with response surface methodology and analysis of fatty acid[J]. Agricultural Research, 2021, 10: 543-555.
    [18] 邓萍. Gaussian软件在有机化合物波谱解析教学中的应用(II)−吲哚紫外光谱及其跃迁轨道的可视化[J]. 化学教育, 2017, 38(8):66-68.

    DENG Ping. Application of Gaussian software in the teaching of spectral analysis of organic compounds (II)—Visualization of indole ultraviolet spectra and their transition trajectories[J]. Chemistry Education,2017,38(8):66-68(in Chinese).
    [19] 刘嘉友, 聂倩倩, 俞和胜, 等. 卷心菜状Bi2WO6光催化降解黄药废水[J]. 金属矿山, 2020(524):122-128.

    LIU Jiayou, NIE Qianqian, YU Hesheng, et al. Photocatalytic degradation of xanthate wastewater[J]. Metal Mines,2020(524):122-128(in Chinese).
    [20] HU C, TANG Y, JIMMY C Y, et al. Photocatalytic degradation of cationic blue X-GRL adsorbed on TiO2/SiO2 photocatalyst[J]. Applied Catalysis B: Environmental,2003,40(2):131-140. doi: 10.1016/S0926-3373(02)00147-9
    [21] RENZI C, GUILLARD C, HERRMANN J M, et al. Effects of methanol, formamide, acetone and acetate ions on phenol disappearance rate and aromatic products in UV-irra-diated TiO2 aqueous suspensions[J]. Chemosphere,1997,35(4):819-826. doi: 10.1016/S0045-6535(97)00203-8
    [22] GUO Y, CUI K, HU M, et al. Fe(III) ions enhanced catalytic properties of (BiO)2CO3 nanowires and mechanism study for complete degradation of xanthate[J]. Chemosphere,2017,181:190-196. doi: 10.1016/j.chemosphere.2017.04.069
    [23] HAO F P, SILVESTER E, SENIOR G D. Spectroscopic characterization of ethyl xanthate oxidation products and analysis by ion interaction chromatography[J]. Analytical Chemistry,2000,72(20):4836-4845. doi: 10.1021/ac991277o
    [24] 刘楚玉, 黄自力, 袁晨光, 等. 磁性活性炭的制备及其对选矿废水中丁基黄药的去除研究[J]. 矿冶工程, 2022, 42(3):70-75. doi: 10.3969/j.issn.0253-6099.2022.03.016

    LIU Chuyu, HUANG Zili, YUAN Chenguang, et al. Preparation of magnetic activated carbon and its removal of butyl xanthate from mineral processing wastewater[J]. Mining and Metallurgical Engineering,2022,42(3):70-75(in Chinese). doi: 10.3969/j.issn.0253-6099.2022.03.016
    [25] 葛东来, 范迎菊, 尹龙, 等. 连续在线原位ATR-FTIR技术测定介孔CuAl2O4对黄药的吸附[J]. 物理化学学报, 2013, 29(2): 371-376.

    GE Donglai, FAN Yingju, YIN Long, et al. Continuous on-line in situ ATR-FTIR determination of CuAl2O4 adsorption on xanthate[J]. Journal of Physical Chemistry, 2013, 29(2): 371-376(in Chinese).
    [26] MORITA S, SHINZAWA H, TSENKOVA R, et al. Computational simulations and a practical application of moving-window two-dimensional correlation spectroscopy[J]. Journal of Molecular Structure,2006,799(1-3):111-120. doi: 10.1016/j.molstruc.2006.03.023
    [27] DOU L, MA D, CHEN J, et al. F127-assisted hydrothermal preparation of BiOI with enhanced sunlight-driven photocatalytic activity originated from the effective separation of photo-induced carriers[J]. Solid State Sciences,2019,90:1-8. doi: 10.1016/j.solidstatesciences.2019.01.010
    [28] GUO M, XIANG H, TANG S, et al. Effect of pyrolysis tempe-rature on structure and photocatalytic properties of biochar-coupled BiVO4[J]. Journal of Environmental Chemical Engineering,2022,10(2):107255. doi: 10.1016/j.jece.2022.107255
    [29] JAWAD A, LU X, CHEN Z, et al. Degradation of chlorophenols by supported Co-Mg-Al layered double hydrotalcite with bicarbonate activated hydrogen peroxide[J]. The Journal of Physical Chemistry A,2014,118(43):10028-10035. doi: 10.1021/jp5085313
    [30] 杨宏剑, 薛秀玲, 付旺. 过硫酸盐氧化剂对Al0/O2/H+体系降解TC的协同作用[J]. 环境化学, 2020, 39(9):2584-2592. doi: 10.7524/j.issn.0254-6108.2019062305

    YANG Hongjian, XUE Xiuling, FU Wang. Synergistic effect of persulfate oxidant on the degradation of TC in Al0/O2/H+ system[J]. Environmental Chemistry,2020,39(9):2584-2592(in Chinese). doi: 10.7524/j.issn.0254-6108.2019062305
    [31] PAN L, WAN Z, FENG Q, et al. Biofilm response and removal via the coupling of visible-light-driven photocataly-sis and biodegradation in an environment of sulfamethoxazole and Cr(VI)[J]. Journal of Environmental Sciences,2022,122(12):50-61.
    [32] 李官超, 祝瑄, 滕青, 等. TiO2@芽孢杆菌光催化性能研究[J]. 金属矿山, 2021(8):186-195.

    LI Guanchao, ZHU Xuan, TENG Qing, et al. Photocatalytic activity of TiO2@bacillus[J]. Metal Mines,2021(8):186-195(in Chinese).
    [33] 崔陪陪, 胡芸, 黄倩倩, 等. MIL-101光催化剂对Cr(VI)-RhB复合污染的定向分离及其高效光催化协同处理[J]. 化工进展, 2018, 37(7):2860-2866.

    CUI Peipei, HU Yun, HUANG Qianqian, et al. Directional separation of Cr(VI)-RhB compound pollution by MIL-101 photocatalyst and its high efficient photocatalytic synergistic treatment[J]. Progress in Chemical Engineering,2018,37(7):2860-2866(in Chinese).
    [34] 李红艳, 李玉鉴, 崔建国, 等. rGO/TNTs光催化剂协同降解水中Cr(VI)与苯酚的性能[J]. 工业水处理, 2019, 39(10):32-36. doi: 10.11894/iwt.2019-0166

    LI Hongyan, LI Yujian, CUI Jianguo, et al. Photocatalytic degradation of Cr(VI) and phenol in water by rGO/TNTs photocatalyst[J]. Industrial Water Treatment,2019,39(10):32-36(in Chinese). doi: 10.11894/iwt.2019-0166
    [35] 陈运双, 马瑞雪, 蒋潇宇, 等. TiO2/蒙脱土复合材料光催化降解丁基黄药性能研究[J]. 金属矿山, 2022(5):212-220.

    CHEN Yunshuang, MA Ruixue, JIANG Xiaoyu, et al. Photocatalytic degradation of butyl xanthate by TiO2/montmorillonite composite[J]. Metal Mines,2022(5):212-220(in Chinese).
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  402
  • HTML全文浏览量:  340
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-25
  • 修回日期:  2023-07-12
  • 录用日期:  2023-07-29
  • 网络出版日期:  2023-08-14
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回