留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于环氧基POSS改性的低介电纳米多孔复合材料:微观结构对介电性能的影响

李晓丹 刘小清 何瑞 刘宏宇 王锋 孟诗云

李晓丹, 刘小清, 何瑞, 等. 基于环氧基POSS改性的低介电纳米多孔复合材料:微观结构对介电性能的影响[J]. 复合材料学报, 2024, 41(2): 702-711. doi: 10.13801/j.cnki.fhclxb.20230812.001
引用本文: 李晓丹, 刘小清, 何瑞, 等. 基于环氧基POSS改性的低介电纳米多孔复合材料:微观结构对介电性能的影响[J]. 复合材料学报, 2024, 41(2): 702-711. doi: 10.13801/j.cnki.fhclxb.20230812.001
LI Xiaodan, LIU Xiaoqing, HE Rui, et al. Low dielectric nanoporous composites based on epoxy-based POSS modification: Effect of microstructure on dielectric properties[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 702-711. doi: 10.13801/j.cnki.fhclxb.20230812.001
Citation: LI Xiaodan, LIU Xiaoqing, HE Rui, et al. Low dielectric nanoporous composites based on epoxy-based POSS modification: Effect of microstructure on dielectric properties[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 702-711. doi: 10.13801/j.cnki.fhclxb.20230812.001

基于环氧基POSS改性的低介电纳米多孔复合材料:微观结构对介电性能的影响

doi: 10.13801/j.cnki.fhclxb.20230812.001
基金项目: 国家自然科学基金项目(42172321;51403025);重庆市自然科学基金面上项目(CSTB2023NSCQ-MSX0474);重庆市技术创新与应用发展专项面上项目(cstc2019jscx-msxmX0050);重庆市教委科学技术研究项目(KJZD-K202200807;KJQN202100830);重庆工商大学青年项目(1952015)
详细信息
    通讯作者:

    李晓丹,博士,教授,硕士生导师,研究方向为高性能基体树脂、功能复合材料 E-mail:12345 ruby@163.com

  • 中图分类号: TQ311;TB33

Low dielectric nanoporous composites based on epoxy-based POSS modification: Effect of microstructure on dielectric properties

Funds: National Natural Science Foundation of China (42172321; 51403025); Chongqing Natural Science Foundation General Project (CSTB2023NSCQ-MSX0474; cstc2019jscx-msxmx0050); Chongqing Technical Innovation and Application Development Special General Project (KJZD-K202200807; KJQN202100830); Chongqing University of Business and Technology Youth Program (1952015)
  • 摘要: 随着超大规模集成电路的迅速发展,微型集成化高密度半导体元件迫切需要低介电材料。本文合成了具有笼型结构的环氧基倍半硅氧烷(EOVS),并与环氧树脂E51共混得到纳米多孔EOVS/E51复合材料。改性后,EOVS在E51基体中均匀分散。随着EOVS的增多,其笼型结构引入的纳米孔隙使EOVS/E51复合材料的自由体积增大,单位体积内极化分子的密度降低,EOVS含量为15wt%时,介电常数由4.21下降至2.51(1 MHz)。但是,EOVS上的环氧基团提供了新的反应位点,EOVS/E51复合体系的交联密度随EOVS增多而增大,EOVS含量达20wt%时,复合材料的自由体积减小,介电常数转而增大。此外,EOVS中Si—O—Si键的疏水性使复合材料的耐湿性增强,而无机骨架的热稳定性及纳米增韧效应导致复合材料的耐热性和抗冲性能明显提升,在微电子领域应用前景广阔。

     

  • 图  1  由八乙烯基倍半硅氧烷(OVS)制备环氧基倍半硅氧烷(EOVS)

    m-CPBA—Metachloroperbenzoic acid

    Figure  1.  Preparation of epoxy sesquisiloxane (EOVS) from octavinylsesquioxane (OVS)

    图  2  复合材料EOVS/E51的制备

    Figure  2.  Preparation process of EOVS/E51 composites

    图  3  OVS和EOVS的FTIR图谱(a)、XPS图谱(b)和EOVS的TEM图像(c)

    Figure  3.  FTIR spectra (a) and XPS spectra (b) of OVS and EOVS, TEM image of EOVS (c)

    图  4  不同EOVS含量的E51复合材料的DSC曲线(a)和5EOVS/E51在不同温度固化阶段的红外图谱(b)

    Figure  4.  DSC curves of E51 composites with different contents of EOVS (a) and FTIR spectra of 5EOVS/E51 at different temperature curing stages (b)

    图  5  E51树脂和EOVS/E51复合材料在不同放大倍数下的SEM图像

    Figure  5.  SEM images of E51 resin and EOVS/E51 composite at different magnifications

    图  6  15EOVS/E51 (a)和20EOVS/E51 (b)复合材料的能量色散X射线光谱(EDS)

    Figure  6.  Energy dispersive X-ray spectroscopy (EDS) of composites with 15EOVS/E51 (a) and 20EOVS/E51 (b)

    图  7  E51树脂和EOVS/E51复合材料的DMA曲线:储能模量(a)和损耗角正切tanδ (b)

    Figure  7.  DMA curves of E51 resin and EOVS/E51 composites: storage modulus (a) and loss tangent tanδ (b)

    图  8  EOVS/E51复合材料的正电子(o-Ps)湮没寿命谱

    Figure  8.  Positron (o-Ps) annihilation lifetime spectra of EOVS/E51 composites

    图  9  E51树脂和EOVS/E51复合材料在不同频率下的介电常数(a)和介电损耗(b)

    Figure  9.  Dielectric constant (a) and dielectric loss (b) of E51 resin and EOVS/E51 composite at different frequencies

    图  10  不同EOVS含量复合材料的接触角及室温放置480 h后的吸水率

    Figure  10.  Contact angle and water absorption after standing at room temperature for 480 h of composites with different contents of EOVS

    图  11  E51树脂和EOVS/E51复合材料的TGA曲线

    Figure  11.  TGA curves of E51 resin and EOVS/E51 composites

    图  12  E51树脂和EOVS/E51复合材料的冲击强度

    Figure  12.  Impact strength of E51 resin and EOVS/E51 composites

    表  1  不同EOVS含量的EOVS/环氧树脂(E51)复合材料

    Table  1.   EOVS/epoxy resin (E51) composites with different contents of EOVS

    Sample EOVS/wt%
    E51 0
    5EOVS/E51 5
    10EOVS/E51 10
    15EOVS/E51 15
    20EOVS/E51 20
    下载: 导出CSV

    表  2  EOVS/E51复合材料的DSC数据

    Table  2.   DSC data of EOVS/E51 nanocomposites

    SampleTiTpTf
    E51112.7125.9142.7
    5EOVS/E51114.4134.4155.1
    10EOVS/E51118.1141.5157.2
    15EOVS/E51111.9143.0160.7
    20EOVS/E51117.2141.8159.0
    Notes: Ti—Onset temperature; Tp—Peak temperature; Tf—Termination temperature.
    下载: 导出CSV

    表  3  E51树脂和EOVS/E51复合材料的DMA数据

    Table  3.   DMA data of E51 resin and EOVS/E51 composite

    SampleE'/MPaTg/℃E/MPaρ/(103 mol∙m−3)
    E512842.3142.9129.811.40
    5EOVS/E513107.7148.9 98.2 8.52
    10EOVS/E513680.0139.2212.918.90
    15EOVS/E514046.0136.7225.520.10
    20EOVS/E514660.0128.1235.221.40
    Notes: E'—Storage modulus at 30℃; Tg—Glass transition temperature; E—Storage modulus corresponding to 40℃ above the glass transition temperature; ρ—Crosslink density.
    下载: 导出CSV
  • [1] JOSEPH A M, NAGENDRA B, SURENDRAN K P, et al. Syndiotactic polystyrene/hybrid silica spheres of POSS siloxane composites exhibiting ultralow dielectric constant[J]. ACS Applied Materials & Interfaces,2015,7(34):19474-19483. doi: 10.1021/acsami.5b05933
    [2] TEMNIKOV M N, VASIL'EV V G, BUZIN M I, et al. Synthesis and comparison of the rheological and thermal properties of acyclic and polycyclic forms of polyphenylsilsesquioxane[J]. European Polymer Journal,2020,130:109676. doi: 10.1016/j.eurpolymj.2020.109676
    [3] LI X, ZHANG P, DONG J, et al. Preparation of low-k polyimide resin with outstanding stability of dielectric properties versus temperature by adding a reactive cardo-containing diluent[J]. Composites Part B: Engineering,2019,177:107401. doi: 10.1016/j.compositesb.2019.107401
    [4] ZHAO H, ZHAO S Q, LI Q, et al. Fabrication and properties of waterborne thermoplastic polyurethane nanocompo-site enhanced by the POSS with low dielectric constants[J]. Polymer,2020,209:122992. doi: 10.1016/j.polymer.2020.122992
    [5] CHAE C G, YU Y G, SEO H B, et al. Molecular design of an interfacially active POSS-bottlebrush block copolymer for the fabrication of three-dimensional porous films with unimodal pore size distributions through the breath-figure self-assembly[J]. Macromolecules,2019,52(5):1912-1922. doi: 10.1021/acs.macromol.9b00089
    [6] KIM Y H, LIM Y W, KIM Y H, et al. Thermally stable siloxane hybrid matrix with low dielectric loss for copper-clad laminates for high-frequency applications[J]. ACS Applied Materials & Interfaces,2016,8(13):8335-8340. doi: 10.1021/acsami.6b01497
    [7] WANG T, LI J, NIU F, et al. Low-temperature curable and low-dielectric polyimide nanocomposites using aminoquinoline-functionalized graphene oxide nanosheets[J]. Composites Part B: Engineering,2022,228:109412. doi: 10.1016/j.compositesb.2021.109412
    [8] HAN X, YUAN L, GU A, et al. Development and mechanism of ultralow dielectric loss and toughened bismaleimide resins with high heat and moisture resistance based on unique amino-functionalized metal-organic frameworks[J]. Composites Part B: Engineering,2018,132:28-34. doi: 10.1016/j.compositesb.2017.07.087
    [9] CONSTANTIN F, GÂREA S A, IOVU H, et al. The influence of organic substituents of polyhedral oligomeric silsesquioxane on the properties of epoxy-based hybrid nanomaterials[J]. Composites Part B: Engineering,2013,44(1):558-564. doi: 10.1016/j.compositesb.2012.02.036
    [10] QIN P, YI D, HAO J, et al. Fabrication of melamine trimetaphosphate 2D supermolecule and its superior performance on flame retardancy, mechanical and dielectric pro-perties of epoxy resin[J]. Composites Part B: Engineering,2021,225:109269. doi: 10.1016/j.compositesb.2021.109269
    [11] LI D, PENG E, LU F, et al. Toughing epoxy nanocomposites with graphene-encapsulated liquid metal framework[J]. Chemical Engineering Journal,2023,455(2):140887. doi: DOI:10.1016/j.cej.2022.140887
    [12] YANG K, CHEN W, ZHAO Y, et al. Enhancing dielectric strength of epoxy polymers by constructing interface charge traps[J]. ACS Applied Materials & Interfaces,2021,13(22):25850-25857. doi: 10.1021/acsami.1c01933
    [13] ZHAO Y, YUAN M, WANG L, et al. Preparation of bio-based polybenzoxazine/pyrogallol/polyhedral oligomeric silsesquioxane nanocomposites: Low dielectric constant and low curing temperature[J]. Macromolecular Materials and Engineering,2021,307(3):2100747.
    [14] JI M, MIN D, WU Q, et al. Ultra-low electrical conductivity originated from ordered and tightly aggregated interfacial regions in polymer nanocomposites[J]. Composites Part B: Engineering,2022,233:109649. doi: 10.1016/j.compositesb.2022.109649
    [15] CHEN H J, LI S Y, LIU X J, et al. Evaluation on pore structures of organosilicate thin films by grazing incidence small-angle X-ray scattering[J]. Journal of Physical Che-mistry B,2009,113(38):12623-12627. doi: 10.1021/jp905457b
    [16] LIU Y L, FANGCHIANG M H. Polyhedral oligomeric silsesquioxane nanocomposites exhibiting ultra-low dielectric constants through POSS orientation into lamellar structures[J]. Journal of Materials Chemistry,2009,19:3643-3647. doi: 10.1039/b900141g
    [17] WANG L L, LIU X C, LIU C Y, et al. Ultralow dielectric constant polyarylene ether nitrile foam with excellent mechanical properties[J]. Chemical Engineering Journal,2020,384:123231. doi: 10.1016/j.cej.2019.123231
    [18] 叶建宇, 郑祥宏, 祝奥奇, 等. 笼形聚倍半硅氧烷-六方氮化硼-苯胺三聚体共掺杂的改性环氧树脂防腐涂层[J]. 复合材料学报, 2022, 39(12):5665-5677.

    YE Jianyu, ZHENG Xianghong, ZHU Aoqi, et al. Epoxy resin anticorro-sive coating modified by the co-doping of polyhedral silsesquioxane/hexagonal boron nitride/aniline trimer[J]. Acta Materiae Compositae Sinica,2022,39(12):5665-5677(in Chinese).
    [19] KONNERTZ N, BÖHNING M, SCHÖNHALS A. Dielectric investigations of nanocomposites based on Matrimid and polyhedral oligomeric phenethyl-silsesquioxanes (POSS)[J]. Polymer,2016,90:89-101. doi: 10.1016/j.polymer.2016.02.060
    [20] ERVITHAYASUPORN V, CHIMJARN S. Synthesis and isolation of methacrylate- and acrylate-functionalized polyhedral oligomeric silsesquioxanes (T8, T10, and T12) and characterization of the relationship between their chemical structures and physical properties[J]. Inorganic Chemistry,2013,52(22):13108-13112. doi: 10.1021/ic401994m
    [21] ZHOU D L, LI J H, GUO Q Y, et al. Polyhedral oligomeric silsesquioxanes based ultralow-k materials: The effect of cage size[J]. Advanced Functional Materials,2021,31(31):2102074. doi: 10.1002/adfm.202102074
    [22] WANG J, ZHOU D L, LIN X, et al. Preparation of low-k poly(dicyclopentadiene) nanocomposites with excellent comprehensive properties by adding larger POSS[J]. Chemical Engineering Journal,2022,439:135737. doi: 10.1016/j.cej.2022.135737
    [23] LIU L L, YUAN Y, HUANG Y, et al. A new mechanism for the low dielectric property of POSS nanocomposites: The key role of interfacial effect[J]. Physical Chemistry Chemical Physics,2017,19:14503-14511. doi: 10.1039/C7CP02678A
    [24] SASI KUMAR R, ALAGAR M. Dielectric and thermal behaviors of POSS reinforced polyurethane based polybenzoxazine nanocomposites[J]. RSC Advances,2015,5:33008-33015. doi: 10.1039/C5RA04328J
    [25] ZHAO C, WEI X, HUANG Y. Preparation and unique dielectric properties of nanoporous materials with well-controlled closed-nanopores[J]. Physical Chemistry Chemical Physics,2016,18:19183-19193. doi: 10.1039/C6CP00465B
    [26] ZHAO H, ZHAO S Q, LI Q, et al. Fabrication and properties of waterborne thermoplastic polyurethane nanocompo-site enhanced by the POSS with low dielectric constants[J]. Polymer,2020,209(3):122992.
    [27] ZHU P, LIU S, FENG R, et al. Rigid epoxy microspheres reinforced and toughened polylactic acid through enhancement of interfacial reactivity[J]. Composites Science and Technology,2023,232:109888. doi: 10.1016/j.compscitech.2022.109888
    [28] SUN X, WANG Y, TANG Y, et al. Synthesis of isocyanurate-based imidazole carboxylate as thermal latent curing accelerator for thermosetting epoxy resins[J]. Journal of Applied Polymer Science,2020,137(40):49221. doi: 10.1002/app.49221
    [29] CHEN Z, ZHOU Y, WU Y, et al. Fluorinated polyimide with polyhedral oligomeric silsesquioxane aggregates: Toward low dielectric constant and high toughness[J]. Compo-sites Science and Technology,2019,181:107700. doi: 10.1016/j.compscitech.2019.107700
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  299
  • HTML全文浏览量:  222
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-19
  • 修回日期:  2023-05-25
  • 录用日期:  2023-06-11
  • 网络出版日期:  2023-08-14
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回