留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中高温及低温作用后超高韧性水泥基复合材料的力学性能

钱维民 苏骏 史庆轩 李扬 嵇威

钱维民, 苏骏, 史庆轩, 等. 中高温及低温作用后超高韧性水泥基复合材料的力学性能[J]. 复合材料学报, 2024, 41(4): 2014-2030. doi: 10.13801/j.cnki.fhclxb.20230811.001
引用本文: 钱维民, 苏骏, 史庆轩, 等. 中高温及低温作用后超高韧性水泥基复合材料的力学性能[J]. 复合材料学报, 2024, 41(4): 2014-2030. doi: 10.13801/j.cnki.fhclxb.20230811.001
QIAN Weimin, SU Jun, SHI Qingxuan, et al. Study on mechanical properties of ultra-high toughness cementitious composites after medium-high temperature and low temperature[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2014-2030. doi: 10.13801/j.cnki.fhclxb.20230811.001
Citation: QIAN Weimin, SU Jun, SHI Qingxuan, et al. Study on mechanical properties of ultra-high toughness cementitious composites after medium-high temperature and low temperature[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2014-2030. doi: 10.13801/j.cnki.fhclxb.20230811.001

中高温及低温作用后超高韧性水泥基复合材料的力学性能

doi: 10.13801/j.cnki.fhclxb.20230811.001
基金项目: 国家自然科学基金(52178505;51878540);湖北省自然科学基金(2020CFB860)
详细信息
    通讯作者:

    苏骏,博士,教授,硕士生导师,研究方向为纤维混凝土及工程结构抗震 E-mail: sujun930@163.com

  • 中图分类号: TB332

Study on mechanical properties of ultra-high toughness cementitious composites after medium-high temperature and low temperature

Funds: National Natural Science Foundation of China (52178505; 51878540); Natural Science Foundation of Hubei Province of China (2020CFB860)
  • 摘要: 为研究超高韧性水泥基复合材料(UHTCC)在200~−100℃温度作用后的力学性能,设计了不同纤维体积掺量的UHTCC,经中高温和低温作用后进行基本力学性能试验,通过UHTCC强度和变形等参数评价了中高温和低温作用后UHTCC的力学性能。结果表明:纤维的掺入能有效改善基体的脆性,提升材料的韧性;同时温度作用导致材料内部出现初始缺陷,对UHTCC的力学性能有明显的影响,且低温作用的影响要明显高于高温作用,当温度降低至−100℃时,UHTCC强度最大降低约75%,变形最大降低约92%,但温度作用未对UHTCC的泊松比产生明显影响。在此基础上提出了中高温及低温作用后UHTCC轴压和轴拉应力-应变关系回归模型,为UHTCC材料在极端温度环境下的性能设计和工程应用提供参考。

     

  • 图  1  试件尺寸与纤维形态

    Figure  1.  Specimen size and fiber morphology

    PVA—Polyvinyl alcohol

    图  2  极端温度设备

    Figure  2.  Extreme temperature equipment

    图  3  加载装置示意图

    Figure  3.  Sketches of the test setup

    图  4  试件抗压破坏形态

    Figure  4.  Compressive failure mode of specimens

    UHTCC—Ultra high toughness cementitious composites

    图  5  UHTCC抗压强度和强度损失率

    Figure  5.  Compressive strength and strength loss ratio of UHTCC

    图  6  试件劈拉试验破坏形态

    Figure  6.  Specimen splitting tensile failure mode

    图  7  UHTCC劈拉强度和强度损失率

    Figure  7.  Splitting tensile strength and strength loss ratio of UHTCC

    图  8  不同影响因素下UHTCC应力-应变曲线

    Figure  8.  UHTCC stress-strain curves under different influencing factors

    图  9  UHTCC抗压强度与轴压强度转换系数

    Figure  9.  UHTCC compression strength and axial compression strength conversion coefficient

    图  10  UHTCC泊松比

    Figure  10.  Poisson’s ratio of UHTCC

    图  11  UHTCC弹性模量

    Figure  11.  Elastic modulus of UHTCC

    图  12  UHTCC修正弹性模量计算值与试验值对比

    Figure  12.  Comparison of calculated and experimental values of UHTCC modified elastic modulus

    图  13  UHTCC破坏形态

    Figure  13.  Fracture morphology of UHTCC

    图  14  UHTCC应力-应变曲线

    Figure  14.  Stress-strain curves of UHTCC

    图  15  不同影响因素下UHTCC峰值应力、峰值应变的试验值与计算值

    Figure  15.  Experimental and calculated values of peak stress and peak strain of UHTCC under different influencing factors

    图  16  UHTCC受压计算模型与试验值对比

    Figure  16.  Comparison between UHTCC compression calculation model and experimental values

    ECC—Engineered cementitious composites

    图  17  UHTCC受拉应力和应变

    Figure  17.  Tensile stress and strain of UHTCC

    图  18  UHTCC试验曲线与计算曲线对比

    Figure  18.  Comparison of test curves and calculation curves of UHTCC

    图  19  混凝土的热应变行为[29]

    Figure  19.  Cooling-heating thermal strain behavior of concrete[29]

    图  20  UHTCC低温损伤演化示意图

    Figure  20.  Cryogenic temperatures damage evolution of UHTCC

    图  21  UHTCC高温损伤示意图

    Figure  21.  High temperature damage diagram of UHTCC

    图  22  UHTCC的SEM图像

    Figure  22.  SEM images of UHTCC

    C-S-H—Hydrate calcium silicate

    表  1  水泥、粉煤灰和硅灰的物理化学性质

    Table  1.   Physical and chemical properties of cement, fly ash and silica fume

    BinderConstituent mass fraction/wt%Specific surface area/(cm2·g−1)Density/(g·cm−3)
    CaOAl2O3SiO2Fe2O3MgOSO3
    Cement 64.94 4.50 19.58 3.20 2.14 3.06 3413 3.15
    Fly ash 2.44 30.63 48.74 2.61 1.21 1.02 8000 1.90
    Silica fume 4.32 0.42 93.52 0.18 0.34 0.15 200000 2.20
    下载: 导出CSV

    表  2  材料配比

    Table  2.   Ratio of materials

    Fly ash/(kg·m−3)Cement/(kg·m−3)Sand/(kg·m−3)Silica fume/(kg·m−3)Water/(kg·m−3)Water reducer/(kg·m−3)Fiber content/vol%
    811.6493.0386.713.3313.14.20, 0.5, 1.0, 1.5, 2.0
    下载: 导出CSV

    表  3  聚乙烯醇(PVA)纤维性能指标

    Table  3.   Polyvinyl alcohol (PVA) fiber performance index

    ModelDensity/(g·cm−3)Diameter/mmLength/mmElastic modulus/GPaTensile strength/MPaElongation/%
    REC15×121.30.041242.816206
    下载: 导出CSV

    表  4  UHTCC强度转换系数α

    Table  4.   Strength conversion coefficient α of UHTCC

    T/℃ α
    200 0.73
    100 0.73
    20 0.77
    −25 0.76
    −50 0.74
    −75 0.74
    −100 0.76
    Note: T—Temperature.
    下载: 导出CSV
  • [1] 韩广忠. 中国新建 LNG 接收站的经营困境及其对策[J]. 天然气工业, 2014, 34(5):168-173.

    HAN Guangzhong. The business difficulties in China newly-built LNG receiving terminals and countermeasures[J]. Natural Gas Industry,2014,34(5):168-173(in Chinese).
    [2] 侯明扬. 全球LNG市场2021年回顾及2022年展望[J]. 油气与新能源, 2022, 34(2):20-24.

    HOU Mingyang. Review of global LNG market in 2021 and outlook of 2022[J]. Petroleum and New Energy,2022,34(2):20-24(in Chinese).
    [3] 孙曼丽, 蒙青山, 秦锋, 等. 中国天然气分布式能源“十四五”前景预测及重点区域分析[J]. 国际石油经济, 2022, 30(6):74-79, 86.

    SUN Manli, MENG Qingshan, QIN Feng, et al. Prospect forecast and key area analysis on natural gas distributed energy in China during the 14th Five-Year Plan period[J]. International Petroleum Economics,2022,30(6):74-79, 86(in Chinese).
    [4] DEROSA D, HOULT N A, GREEN M F. Effects of varying temperature on the performance of reinforced concrete[J]. Materials and Structures,2015,48(4):1109-1123. doi: 10.1617/s11527-013-0218-y
    [5] GERWICK B. Eighth international congress of the FIP[J]. Engineering Structures,1978,1(1):55. doi: 10.1016/0141-0296(78)90010-X
    [6] 蔡向荣, 徐世烺. UHTCC薄板弯曲荷载-变形硬化曲线与单轴拉伸应力-应变硬化曲线对应关系研究[J]. 工程力学, 2010, 27(1):8-16.

    CAI Xiangrong, XU Shilang. Study on corresponding relationships between flexural load-deformation hardening curves and tensile stress-strain hardening curves of UHTCC[J]. Engineering Mechanics,2010,27(1):8-16(in Chinese).
    [7] 徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008, 41(6):45-60.

    XU Shilang, LI Hedong. A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Engineering Journal,2008,41(6):45-60(in Chinese).
    [8] 张秀芳, 徐世烺, 侯利军. 采用超高韧性水泥基复合材料提高钢筋混凝土梁弯曲抗裂性能研究(II): 试验研究[J]. 土木工程学报, 2009, 42(10):53-66.

    ZHANG Xiufang, XU Shilang, HOU Lijun. Improvement on flexural and cracking behavior of RC beam using ultra-high toughness cementitious composite II: Experimental study[J]. China Civil Engineering Journal,2009,42(10):53-66(in Chinese).
    [9] 李红兵. 超高韧性水泥基复合材料高温性能试验研究[D]. 南京: 东南大学, 2016.

    LI Hongbing. Experimental research on high temperature properties of engineered cementitious composites[D]. Nanjing: Southeast University, 2016(in Chinese).
    [10] 陈猛, 曹宇新, 王瑜婷. 工程水泥基复合材料高温损伤超声特性[J]. 东北大学学报(自然科学版), 2022, 43(11):1638-1643.

    CHEN Meng, CAO Yuxin, WANG Yuting. Ultrasonic characteristics of thermal-damaged engineered cementitious composites[J]. Journal of Northeastern University (Natural Science),2022,43(11):1638-1643(in Chinese).
    [11] 时旭东, 马驰, 张天申, 等. 不同强度等级混凝土–190℃时受压强度性能试验研究[J]. 工程力学, 2017, 34(3):61-67.

    SHI Xudong, MA Chi, ZHANG Tianshen, et al. Experimental study on compressive behavior of different strength grade concretes exposed to –190℃[J]. Engineering Mechanics,2017,34(3):61-67(in Chinese).
    [12] 时旭东, 居易, 郑建华, 等. 混凝土低温受压强度试验研究[J]. 建筑结构, 2014, 44(5):29-33.

    SHI Xudong, JU Yi, ZHENG Jianhua, et al. Experimental study on compressive strength of concrete exposed to cryogenic temperature[J]. Building Structure,2014,44(5):29-33(in Chinese).
    [13] 时旭东, 张亮, 郑建华, 等. 低温-常温循环作用下混凝土力学性能试验研究[J]. 混凝土与水泥制品, 2012, 7(7):6-10.

    SHI Xudong, ZHANG Liang, ZHENG Jianhua, et al. Experimental study on mechanical properties of concrete under cryogenic-normal temperatures cycles[J]. China Concrete and Cement Products,2012,7(7):6-10(in Chinese).
    [14] DAHMANI L, KHENANE A, KACI S. Behavior of the reinforced concrete at cryogenic temperatures[J]. Cryogenics,2007,47(9):517-525.
    [15] DAHMANI L. Behavior of water in the concrete during the freezing process[J]. International Journal of Materials Science,2011,6(2):247-254.
    [16] MASAD N, ZOLLINGER D, KIM S M, et al. Meso-scale model for simulations of concrete subjected to cryogenic temperatures[J]. Materials and Structures,2016,49(6):2141-2159. doi: 10.1617/s11527-015-0639-x
    [17] RAHMAN S, GRASLEY Z. A poromechanical model of freezing concrete to elucidate damage mechanisms associated with substandard aggregates[J]. Cement and Concrete Research,2014,55:88-101. doi: 10.1016/j.cemconres.2013.10.001
    [18] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国计划出版社, 2009.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods for long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Plan Press, 2009(in Chinese).
    [19] 中国工程建设标准化协会. 纤维混凝土试验方法标准: CECS 13—2009[S]. 北京: 中国计划出版社, 2009.

    China Association for Engineering Construction Standardization. Standard test methods for fiber reinforced concrete: CECS 13—2009[S]. Beijing: China Planning Press, 2009(in Chinese).
    [20] 中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012[S]. 北京: 中国建筑工业出版社, 2012.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete structures: GB/T 50152—2012[S]. Beijing: China Building Industry Press, 2012(in Chinese).
    [21] 李艳, 刘泽军. 高韧性PVA-FRCC单轴受压力学性能及本构关系[J]. 建筑材料学报, 2014, 17(4):606-612.

    LI Yan, LIU Zejun. Study on mechanical performance and constitutive equation of high toughness PVA-FRCC under uniaxial compression[J]. Journal of Building Materials,2014,17(4):606-612(in Chinese).
    [22] 过镇海. 混凝土的强度和变形−试验基础和本构关系[M]. 北京: 清华大学出版社, 1997: 31-32.

    GUO Zhenhai. Strength and deformation of concrete—Experimental basis and constitutive relation[M]. Beijing: Tsinghua University Press, 1997: 31-32(in Chinese).
    [23] 曾志兴. 钢纤维轻骨料混凝土力学性能的试验研究及损伤断裂分析[D]. 天津: 天津大学, 2002.

    ZENG Zhixing. Experimental study on mechanical properties and damage fracture analysis of steel fiber reinforced lightweight aggregate concrete[D]. Tianjin: Tianjin University, 2002(in Chinese).
    [24] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB/T 50010—2010[S]. 北京: 建筑工业出版社, 2010.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: GB/T 50010—2010[S]. Beijing: China Architecture & Building Press, 2010(in Chinese).
    [25] 张勤, 朱潇鹏, 代欢欢, 等. 耐碱玻璃纤维ECC复合材料受压应力-应变关系[J]. 工程科学与技术, 2022, 54(5):82-92.

    ZHANG Qin, ZHU Xiaopeng, DAI Huanhuan, et al. Stress-strain relationship of alkali-resistant glass fiber ECC composites under compression[J]. Advanced Engineering Sciences,2022,54(5):82-92(in Chinese).
    [26] HAN T S, FEENSTRA P H, BILLINGTON S L. Simulation of highly ductile fiber-reinforced cement based composite components under cyclic loading[J]. ACI Structural Journal,2003,100(6):749.
    [27] SKAPSKI A, BILLUPS R, ROONEY A. Capillary cone method for determination of surface tension of solids[J]. Journal of Chemical Physics,1957,26(5):1350-1351.
    [28] KOGBARA R B, IYENGAR S R, GRASLEY Z C, et al. A review of concrete properties at cryogenic temperatures: Towards direct LNG containment[J]. Construction and Building Materials,2013,47(10):760-770.
    [29] ROSTÁSY F S, WIEDEMANN G. Stress-strain-behaviour of concrete at extremely low temperature[J]. Cement and Concrete Research,1980,10(4):565-572. doi: 10.1016/0008-8846(80)90100-3
  • 加载中
图(22) / 表(4)
计量
  • 文章访问数:  526
  • HTML全文浏览量:  273
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-05
  • 修回日期:  2023-07-18
  • 录用日期:  2023-07-31
  • 网络出版日期:  2023-08-14
  • 刊出日期:  2024-04-01

目录

    /

    返回文章
    返回