留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯量子点对水泥砂浆流动度、强度和耐盐腐蚀性的影响

桂尊曜 蒲云东 张惠一 袁小亚 黎少伟 邵伟升

桂尊曜, 蒲云东, 张惠一, 等. 石墨烯量子点对水泥砂浆流动度、强度和耐盐腐蚀性的影响[J]. 复合材料学报, 2024, 41(4): 2043-2054. doi: 10.13801/j.cnki.fhclxb.20230810.001
引用本文: 桂尊曜, 蒲云东, 张惠一, 等. 石墨烯量子点对水泥砂浆流动度、强度和耐盐腐蚀性的影响[J]. 复合材料学报, 2024, 41(4): 2043-2054. doi: 10.13801/j.cnki.fhclxb.20230810.001
GUI Zunyao, PU Yundong, ZHANG Huiyi, et al. Effect of graphene quantum dots on fluidity, strength and salt corrosion resistance of cement mortar[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2043-2054. doi: 10.13801/j.cnki.fhclxb.20230810.001
Citation: GUI Zunyao, PU Yundong, ZHANG Huiyi, et al. Effect of graphene quantum dots on fluidity, strength and salt corrosion resistance of cement mortar[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2043-2054. doi: 10.13801/j.cnki.fhclxb.20230810.001

石墨烯量子点对水泥砂浆流动度、强度和耐盐腐蚀性的影响

doi: 10.13801/j.cnki.fhclxb.20230810.001
基金项目: 国家自然科学基金(51402030);重庆市技术创新与应用发展专项重点项目(CSTB2022TIAD-KPX0031);重庆科委基础科学与前沿技术研究重点项目(cstc2017jcyjBX0028);重庆市研究生导师团队建设项目(JDDSTD2022006);高端外国专家引进计划(G2022035007L);重庆市自然科学基金面上项目(2022NSCQ-MSX1165);重庆交通大学研究生科创项目(2023S0090);重庆交通大学校企合作项目(cqjt-2022-036)
详细信息
    通讯作者:

    袁小亚,博士,教授,博士生导师,研究方向为纳米复合材料、建筑功能材料、高性能水泥混凝土等领域 E-mail: yuanxy@cqjtu.edu.cn

  • 中图分类号: TB332;TU528

Effect of graphene quantum dots on fluidity, strength and salt corrosion resistance of cement mortar

Funds: National Natural Science Foundation of China (51402030); Chongqing Technical Innovation and Application Development Special Key Project (CSTB2022TIAD-KPX0031); Key Project of Basic Science and Frontier Technology Research of Chongqing Science and Technology Commission (cstc2017jcyjBX0028); Chongqing Graduate Tutor Team Construction Project (JDDSTD2022006); China High-end Foreign Expert Program (G2022035007L); Natural Science Foundation of Chongqing (Genetic Program) (2022NSCQ-MSX1165); Chongqing Jiaotong University Postgraduate Science and Technology Innovation Project (2023S0090); Chongqing Jiaotong University School Enterprise Cooperation Project (cqjt-2022-036)
  • 摘要: 采用吸光度试验和静置沉降试验考察了石墨烯量子点(GQDs)在模拟水泥水化孔隙液的饱和氢氧化钙溶液中分散性能及其对掺配砂浆工作性能、力学性能和耐久性的影响。吸光度测试和静置沉降试验表明GQDs在饱和氢氧化钙溶液中具有优异的分散稳定性,工作性能测试表明GQDs对水泥砂浆的流动度几乎无负面影响。力学性能测试表明GQDs最佳掺量为 0.04wt%时,28天抗折抗压强度比普通水泥砂浆分别提高了12.3%、12.5%,抗渗压力提升了 175%,120天抗压耐腐蚀系数提升了14.3%。微观结构测试表明 GQDs能改善孔径分布,填充纳米孔隙和提高水泥砂浆密实度。

     

  • 图  1  GQDs的XRD图谱

    Figure  1.  XRD pattern of GQDs

    图  2  GQDs的XPS全谱图

    Figure  2.  XPS full spectrum of GQDs

    图  3  GQDs的C1s高分辨XPS图谱

    Figure  3.  C1s high resolution XPS map of GQDs

    图  4  GQDs的O1s高分辨 XPS图谱

    Figure  4.  O1s high resolution XPS map of GQDs

    图  5  GQDs的TEM图像

    Figure  5.  TEM images of GQDs

    图  6  GQDs的AFM图像

    Figure  6.  AFM image of GQDs

    图  7  GQDs、GO溶液的紫外可见吸收光谱

    Figure  7.  UV-visible absorption spectra of GQDs and GO solutions

    图  8  GQDs、GO在饱和Ca(OH)2溶液的吸光度变化

    Figure  8.  Absorbance changes of GQDs and GO in saturated Ca(OH)2 solution

    图  9  GQDs、GO在饱和Ca(OH)2溶液中静置情况

    Figure  9.  GQDs and GO were static in saturated Ca(OH)2 solution

    图  10  不同GQDs掺量对砂浆流动度的影响

    Figure  10.  Effect of different GQDs contents on mortar fluidity

    图  11  不同GQDs掺量对砂浆抗折强度的影响

    Figure  11.  Effect of different GQDs contents on flexural strength of mortar

    图  12  不同GQDs掺量对砂浆抗压强度的影响

    Figure  12.  Effect of different GQDs contents on compressive strength of mortar

    图  13  不同GQDs掺量对砂浆抗渗压力的影响

    Figure  13.  Influence of different GQDs contents on impermeability pressure of mortar

    图  14  不同GQDs掺量对砂浆耐腐蚀系数的影响

    Figure  14.  Influence of different GQDs contents on corrosion resistance coefficient of mortar

    图  15  不同GQDs掺量水泥砂浆孔径分布

    Figure  15.  Pore size distribution of cement mortar with different GQDs contents

    图  16  不同GQDs掺量水泥砂浆SEM图像:((a), (b)) 普通水泥砂浆;((c), (d)) 0.04wt%GQDs/C

    Figure  16.  SEM images of mortars with different GQDs contents: ((a), (b)) Ordinary cement mortar; ((c), (d)) 0.04wt%GQDs/C

    C-S-H—Hydrate calcium silicate; AFt—Ettringite

    表  1  水泥物理性能

    Table  1.   Physical properties of the cement

    Water requirement
    of normal
    consistency/%
    Specific surface
    area/(m2·kg−1)
    Density/
    (g·cm−3)
    Setting time/minFlexural strength/MPaCompression strength/MPa
    InitialFinal3 d28 d3 d28 d
    27.83513.151362445.16.325.643.4
    下载: 导出CSV

    表  2  石墨烯量子点(GQDs)和氧化石墨烯(GO)的饱和Ca(OH)2溶液的配制

    Table  2.   Preparation of saturated Ca(OH)2 solution with graphene quantum dots (GQDs) and graphene oxide (GO)

    SampleWater/mLCa(OH)2/gGQDs/mLGO/mL
    X1900.1610
    X2900.1610
    Notes: —GQDs solution concentration is 0.2 mg/mL; —GO solution concentration is 0.2 mg/mL.
    下载: 导出CSV

    表  3  不同GQDs掺量的水泥砂浆配合比

    Table  3.   Mix ratios of cement mortars with different contents of GQDs

    SampleS/gC/gPCE/gW/g
    Blank13504501.35170
    0.01wt%GQDs/C13504501.35170
    0.02wt%GQDs/C13504501.35170
    0.03wt%GQDs/C13504501.35170
    0.04wt%GQDs/C13504501.35170
    0.05wt%GQDs/C13504501.35170
    0.01wt%GO/C13504501.35170
    0.02wt%GO/C13504501.35170
    0.03wt%GO/C13504501.35170
    0.04wt%GO/C13504501.35170
    0.05wt%GO/C13504501.35170
    Notes: —Content of GQDs is its mass ratio to C; —Content of GO is its mass ratio to C; C—Cement; S—Sand; W—Water; PCE—Polycarboxylate.
    下载: 导出CSV

    表  4  GQDs砂浆抗渗试件配合比

    Table  4.   Mix ratio of GQDs modified cement mortar for impermeability pressure test

    SampleS/gC/gW/g
    Blank1350320260
    0.01wt%GQDs/C1350320260
    0.02wt%GQDs/C1350320260
    0.03wt%GQDs/C1350320260
    0.04wt%GQDs/C1350320260
    0.05wt%GQDs/C1350320260
    下载: 导出CSV
  • [1] 程志海, 杨森, 袁小亚. 石墨烯及其衍生物掺配水泥基材料研究进展[J]. 复合材料学报, 2021, 38(2):339-360.

    CHENG Zhihai, YANG Sen, YUAN Xiaoya. Research progress of cement-based materials blended with graphene and its derivatives[J]. Acta Materiae Compositae Sinica,2021,38(2):339-360(in Chinese).
    [2] GAO Y A, JING H W, ZHOU Z F, et al. Reinforced impermeability of cementitious composites using graphene oxide-carbon nanotube hybrid under different water-to-cement ratios[J]. Construction and Building Materials,2019,222:610-621. doi: 10.1016/j.conbuildmat.2019.06.186
    [3] SANCHEZ F, SOBOLEV K. Nanotechnology in concrete—A review[J]. Construction and Building Materials,2010,24(11):2060-2071. doi: 10.1016/j.conbuildmat.2010.03.014
    [4] LIEW K M, KAI M F, ZHANG L W. Carbon nanotube reinforced cementitious composites: An overview[J]. Composites Part A: Applied Science and Manufacturing,2016,91:301-323. doi: 10.1016/j.compositesa.2016.10.020
    [5] LIN Y L, DU H J. Graphene reinforced cement composites: A review[J]. Construction and Building Materials,2020,265:120312-120327. doi: 10.1016/j.conbuildmat.2020.120312
    [6] MENG S Q, OUYANG X W, FU J Y, et al. The role of graphene/graphene oxide in cement hydration[J]. Nanotechnology Reviews,2021,10:768-778. doi: 10.1515/ntrev-2021-0055
    [7] ZHAO L, GUO X L, SONG L G, et al. An intensive review on the role of graphene oxide in cement-based materials[J]. Construction and Building Materials,2020,241:117939-117955. doi: 10.1016/j.conbuildmat.2019.117939
    [8] 杨森, 王远贵, 齐孟, 等. 氧化石墨烯对多壁碳纳米管掺配水泥砂浆强度、压敏性能与微观结构的影响[J]. 复合材料学报, 2022, 39(5):2340-2355.

    YANG Sen, WANG Yuangui, QI Meng, et al. Effect of graphene oxide on mechanical properties, piezoresistivity and microstructure of cement mortar blended with multi-walled carbon nanotubes[J]. Acta Materiae Compositae Sinica,2022,39(5):2340-2355(in Chinese).
    [9] 何威, 许吉航, 焦志男. 少层石墨烯对水泥净浆流动性能及力学性能的影响[J]. 复合材料学报, 2022, 39(11):5637-5649.

    HE Wei, XU Jihang, JIAO Zhinan. Effect of few-layer graphene on the fluidity and mechanical properties of cement paste[J]. Acta Materiae Compositae Sinica,2022,39(11):5637-5649(in Chinese).
    [10] 吕生华, 张佳, 殷海荣, 等. 氧化石墨烯调控水化产物增强增韧水泥基复合材料的研究进展[J]. 陕西科技大学学报, 2019, 37(3):136-145.

    LYU Shenghua, ZHANG Jia, YIN Hairong, et al. Research progress of graphene oxide reinforced and toughened cement-based composites[J]. Journal of Shaanxi University of Science & Technology,2019,37(3):136-145(in Chinese).
    [11] 余东升, 付芳, 贾铁昆, 等. 亲水型功能化石墨烯的分散性及其对水泥基复合材料力学性能的影响[J]. 复合材料学报, 2021, 38(2):622-629.

    YU Dongsheng, FU Fang, JIA Tiekun, et al. Dispersity of hydrophilic functional graphene and its impact on mechanical properties of cement based composites[J]. Acta Materiae Compositae Sinica,2021,38(2):622-629(in Chinese).
    [12] 吴磊, 吕生华, 李泽雄, 等. 超低掺量氧化石墨烯的分散行为及其对水泥基材料结构与性能的影响[J]. 复合材料学报, 2023, 40(4):2296-2307.

    WU Lei, LYU Shenghua, LI Zexiong, et al. Dispersion behavior of ultra-low dosage graphene oxide and its effect on structures and performances of cement-based materials[J]. Acta Materiae Compositae Sinica,2023,40(4):2296-2307(in Chinese).
    [13] YANG S, JIA W, WANG Y G, et al. Hydroxylated graphene: A promising reinforcing nanofiller for nanoengineered cement composites[J]. ACS Omega,2021,6(45):30465-30477. doi: 10.1021/acsomega.1c03844
    [14] 陈卫丰, 吕果, 陶华超, 等. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7):1156-1162.

    CHEN Weifeng, LYU Guo, TAO Huachao, et al. A survey on the synthesis and application in sensors of graphene quantum dots[J]. Materials Reports,2019,33(7):1156-1162(in Chinese).
    [15] 黄奇萍, 刘慧, 张井岩, 等. 石墨烯量子点提高DNAzyme在细胞水平上的稳定性[J]. 生物学杂志, 2021, 38(2):26-31.

    HUANG Qiping, LIU Hui, ZHANG Jingyan, et al. Graphene quantum dots improve the stability of DNAzyme in cells[J]. Journal of Biology,2021,38(2):26-31(in Chinese).
    [16] 李港, 胡玉峰. 石墨烯碳量子点用于氟喹诺酮类抗生素的荧光检测[J]. 应用化工, 2023, 52(1):309-313.

    LI Gang, HU Yufeng. Fabrication of graphene carbon dots for the fluorescent detection of fluoroquinolones[J]. Applied Chemical Industry,2023,52(1):309-313(in Chinese).
    [17] 潘杰, 莫创荣, 许雪棠, 等. 掺氮石墨烯量子点复合钼酸铋降解水中四环素的研究[J]. 应用化工, 2022, 51(3):664-668. doi: 10.3969/j.issn.1671-3206.2022.03.010

    PAN Jie, MO Chuangrong, XU Xuetang, et al. Study on degradation of tetracycline in water by nitrogen-doped graphene quantum dots and bismuth molybdate[J]. Applied Chemical Industry,2022,51(3):664-668(in Chinese). doi: 10.3969/j.issn.1671-3206.2022.03.010
    [18] 中国国家标准化管理委员会. 水泥胶砂强度检验方法: GB/T 17671—1999[S]. 北京: 中国标准出版社, 1999.

    Standardization Administration of the People's Republic of China. Cement mortar strength inspection method: GB/T 17671—1999[S]. Beijing: China Standards Press, 1999(in Chinese).
    [19] 中国国家标准化管理委员会. 水泥胶砂流动度测定方法: GB/T 2419—2005[S]. 北京: 中国标准出版社, 2005.

    Standardization Administration of the People's Republic ofChina. Method for determining the flowability of cement mortar: GB/T 2419—2005[S]. Beijing: China Standards Press, 2005(in Chinese).
    [20] 中华人民共和国国家发展和改革委员会. 砂浆、混凝土防水剂: JC 474—2008[S]. 北京: 中国建筑材料科学研究总院, 2008.

    National Development and Reform Commission. Mortar, concrete waterproofing agent: JC 474—2008[S]. Beijing: China Academy of Building Materials Science Research, 2008(in Chinese).
    [21] 姜晓琳, 李君, 刘臻, 等. 石墨烯炭材料的结构表征方法研究 [J]. 洁净煤技术, 2023, 29(12): 75-82.

    JIANG Xiaolin, LI Jun, LIU Zhen, et al. Research on the characterization methods of graphene carbon materials[J]. Clean Coal Technology, 2023, 29(12): 75-82(in Chinese).
    [22] 张北龙, 李金华, 陆冬筱, 等. 石墨烯量子点荧光增强及pH响应特性研究[J]. 中国光学, 2023, 16(3):523-534.

    ZHANG Beilong, LI Jinhua, LU Dongxiao, et al. Graphene quantum dots fluorescence enhancement and pH response characteristics[J]. Chinese Optics,2023,16(3):523-534(in Chinese).
    [23] 唐跃刚, 李瑞青, 樊江涛, 等. 宁夏碱沟山脱灰无烟煤石墨烯量子点制备与谱学特征[J]. 煤炭学报, 2022, 47(12):4278-4289.

    TANG Yuegang, LI Ruiqing, FAN Jiangtao, et al. Preparation and spectroscopic characteristics of coal-based graphene quantum dots from demineralized anthracite in Jiangoushan, Ningxia[J]. Journal of China Coal Society,2022,47(12):4278-4289(in Chinese).
    [24] 张泰然, 孙陆威, 何海平, 等. 化学法制备水溶性良好的石墨烯及其荧光淬灭应用[J]. 材料科学与工程学报, 2013, 31(4):484-488.

    ZHANG Tairan, SUN Luwei, HE Haiping, et al. Chemically-derived water-soluble graphene and its application in fluorescence quenching[J]. Journal of Materials Science and Engineering,2013,31(4):484-488(in Chinese).
    [25] 陈宽, 田建华, 崔兰, 等. 石墨烯和铂/石墨烯的合成及其表征[J]. 无机化学学报, 2012, 28(8):1541-1546.

    CHEN Kuan, TIAN Jianhua, CUI Lan, et al. Preparation and characterization of graphene and platinum/graphene[J]. Chinese Journal of Inorganic Chemistry,2012,28(8):1541-1546(in Chinese).
    [26] 刘金萍, 李欣, 王瑞荣, 等. 激光诱导聚二甲基硅氧烷制备石墨烯量子点[J]. 发光学报, 2021, 42(12):1900-1905. doi: 10.37188/CJL.20210251

    LIU Jinping, LI Xin, WANG Ruirong, et al. Preparation of graphene quantum dots by laser-induced polydimethylsiloxane[J]. Chinese Journal of Luminescence,2021,42(12):1900-1905(in Chinese). doi: 10.37188/CJL.20210251
    [27] 盛况, 杨森, 毕俊峰, 等. 有机染料辅助分散氧化石墨烯及其对水泥砂浆强度和耐久性的影响[J]. 复合材料学报, 2022, 39(11):5486-5498.

    SHENG Kuang, YANG Sen, BI Junfeng, et al. Effect of organic dye assisted dispersion of graphene oxide on mechanical properties and durability of cement mortar[J]. Acta Materiae Compositae Sinica,2022,39(11):5486-5498(in Chinese).
    [28] NGUYEN H D, ZHANG Q H, LIN J L, et al. Dispersion of silane-functionalized GO and its reinforcing effects in cement composites[J]. Journal of Building Engineering,2021,43:103228-103236. doi: 10.1016/j.jobe.2021.103228
    [29] SHENG K, LI D N, YUAN X Y. Methyl orange assisted dispersion of graphene oxide in the alkaline environment for improving mechanical properties and fluidity of ordinary Portland cement composites[J]. Journal of Building Engineering,2021,43:103166-103175. doi: 10.1016/j.jobe.2021.103166
    [30] WANG M, WANG R M, YAO H, et al. Study on the three dimensional mechanism of graphene oxide nanosheets modified cement[J]. Construction and Building Materials,2016,126:730-739. doi: 10.1016/j.conbuildmat.2016.09.092
    [31] YANG K J, CHEN B L, ZHU X Y, et al. Aggregation, adsorption, and morphological transformation of graphene oxide in aqueous solutions containing different metal cations[J]. Environmental Science & Technology,2016,50(20):11066-11075. doi: 10.1021/acs.est.6b04235
    [32] YUAN X Y, NIU J W, ZENG J J, et al. Cement-induced coagulation of aqueous graphene oxide with ultrahigh capacity and high rate behavior[J]. Nanomaterials (Basel),2018,8(8):574-587. doi: 10.3390/nano8080574
    [33] 吕生华, 张佳, 罗潇倩, 等. 氧化石墨烯/水泥基复合材料的微观结构和性能[J]. 材料研究学报, 2018, 32(3):233-240.

    LYU Shenghua, ZHANG Jia, LUO Xiaoqian, et al. Microstructure and properties for composites of graphene oxide/cement[J]. Chinese Journal of Materials Research,2018,32(3):233-240(in Chinese).
    [34] 刘艳明, 施韬, 黄炜, 等. 石墨烯改性水泥基材料的力学和收缩性能[J]. 材料科学与工程学报, 2022, 40(1):28-33.

    LIU Yanming, SHI Tao, HUANG Wei, et al. Mechanical and shrinkage resistance of graphene-modified cement-based materials[J]. Journal of Materials Science and Engineering,2022,40(1):28-33(in Chinese).
    [35] 魏致强, 王远贵, 齐孟, 等. 没食子酸协同聚羧酸减水剂分散氧化石墨烯及其对水泥砂浆性能的影响[J]. 材料导报, 2021, 35(10):10042-10047.

    WEI Zhiqiang, WANG Yuangui, QI Meng, et al. The synergistic effect of Gallic acid and polycarboxylic water-reducer on aqueous GO dispersion and the enhanced mechanical properties of cement mortar composites[J]. Materials Reports,2021,35(10):10042-10047(in Chinese).
    [36] 齐孟, 蒲云东, 杨森, 等. 氧化石墨烯对水泥基渗透结晶型防水材料抗渗性能的影响[J]. 复合材料学报, 2023, 40(3):1598-1610.

    QI Meng, PU Yundong, YANG Sen, et al. Effect of graphene oxide on the impermeability of cementitious capillary crystalline waterproofing[J]. Acta Materiae Compositae Sinica,2023,40(3):1598-1610(in Chinese).
    [37] 袁小亚, 曾俊杰, 高军, 等. 氧化石墨烯与石墨烯复掺对水泥砂浆性能影响研究[J]. 重庆交通大学学报(自然科学版), 2019, 38(9):45-50.

    YUAN Xiaoya, ZENG Junjie, GAO Jun, et al. Effect of addition of graphene oxide and graphene on properties of cement mortar[J]. Journal of Chongqing Jiaotong University (Natural Science),2019,38(9):45-50(in Chinese).
    [38] 孙道胜, 王辉, 刘开伟, 等. 低湿度半浸泡环境下粉煤灰对砂浆试件硫酸盐侵蚀性能的影响[J]. 材料导报, 2020, 34(14):14079-14086.

    SUN Daosheng, WANG Hui, LIU Kaiwei, et al. Effect of fly ash on performance of mortars partially exposed to sulfate solution under low humidity[J]. Materials Reports,2020,34(14):14079-14086(in Chinese).
    [39] SUN M, ZOU C Y, XIN D B. Pore structure evolution mechanism of cement mortar containing diatomite subjected to freeze-thaw cycles by multifractal analysis[J]. Cement and Concrete Composites,2020,114:103731-103747. doi: 10.1016/j.cemconcomp.2020.103731
    [40] WANG Q, LI S Y, PAN S, et al. Effect of graphene oxide on the hydration and microstructure of fly ash-cement system[J]. Construction and Building Materials,2019,198:106-119. doi: 10.1016/j.conbuildmat.2018.11.199
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  540
  • HTML全文浏览量:  203
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-08
  • 修回日期:  2023-07-20
  • 录用日期:  2023-07-27
  • 网络出版日期:  2023-08-10
  • 刊出日期:  2024-04-01

目录

    /

    返回文章
    返回