Research progress of biomass-based cellulose insulation aerogel for building
-
摘要: 建筑保温可以有效降低建筑材料的热损失,对于保持建筑内部的舒适度起着重要的作用。提高建筑材料的保温性能至关重要,特别是通过减少加热-冷却的热量损失来实现节能。因此,研究具有优良保温性能的建筑材料已成为当前保温领域研究的重点之一。与传统的保温建筑材料相比,生物质基纤维素保温气凝胶具有低导热系数、高比表面积、可再生性、成本效益和环境友好型等优越的物理和化学特性,是未来建筑节能技术的理想新型建筑材料。本文综述了近年来生物质基纤维素保温气凝胶的制备技术、研究现状、存在的问题及在建筑材料(屋顶、内外墙和玻璃等)中的应用。最后,简要讨论了生物质基纤维素气凝胶在保温材料应用中面临的挑战,并对其未来的发展方向进行了展望。Abstract: Thermal insulation of buildings plays an important role to reduce energy consumption for maintaining an optimal atmosphere inside the building. Hence, it is crucial to improve the thermal insulation performance of the building materials, especially to achieve energy savings through the reduction of energy losses for heating-cooling purposes. Therefore, the research on building materials with excellent thermal insulation properties has become one of the focuses of current thermal insulation research. Compared with traditional thermal insulation building materials, biomass-based cellulose thermal insulation aerogel has superior physical and chemical properties, such as low thermal conductivity, high specific surface area, renewable, cost-effective and environment-friendly. It is an ideal new building material for future building energy saving technology. In this paper, the preparation technology, research status, existing problems and application of biomass-based cellulose thermal insulation aerogel in building materials (roof, interior and exterior walls and glass, etc.) in recent years are reviewed. Finally, the challenges faced by biomass-based cellulose aerogel in the application of thermal insulation materials are briefly discussed, and its future development direction is prospected.
-
Key words:
- building materials /
- biomass /
- cellulose /
- aerogel /
- thermal insulation material /
- research progress
-
图 1 (a) 引起凝胶孔隙开裂或收缩的毛细管力;(b) 凝胶中溶剂的典型相图及3种干燥凝胶制备气凝胶的压力-温度变化;((c)~(e)) 3种干燥方式(冷冻、环境和超临界)的示意图[13]
Figure 1. (a) Capillary forces that cause gel pores to crack or shrink; (b) Typical phase diagrams of solvents in gels and pressure-temperature variations in the preparation of aerogels from three dried gels; ((c)-(e)) Schematic diagram of three drying methods (freezing, environmental and supercritical)[13]
图 2 (a) 环氧树脂/3D-C-氮化硼纳米片(BNNS)纳米复合材料制备工艺示意图[15];(b) 经十二烷基硫酸钠(SDS)发泡、排水、烘箱干燥制备微纤化化学热机械浆(MF-CTMP)泡沫[19];(c) 采用冷冻干燥(CFD)和喷雾冷冻干燥(SFD)制备生物气凝胶[21];(d) 三聚氰胺-植酸(MEL-PA)在纤维素纳米纤丝(CNF)气凝胶上的超分子组装示意图[24]
Figure 2. (a) Scheme illustrating the preparation process of epoxy/3D interconnected boron nitride nanosheet (3D-C-BNNS) nanocomposites[15]; (b) Preparation of micro-fibrillated chemi-thermomechanical pulp (MF-CTMP) foam via sodium dodecyl sulfate (SDS) foaming, drainage, and oven drying[19]; (c) Bioaerogels produced by conventional freeze-drying (CFD) and spray freeze-drying (SFD)[21]; (d) Schematic illustration of supramolecular assembly of melamine-phytic acid (MEL-PA) onto cellulose nanofiber (CNF) aerogel[24]
ECH—Epichlorohydrin; NFC—Nanofibrillated cellulose
图 3 使用生物质基纤维素气凝胶的概念性节能建筑:(a) 屋顶用制冷却木材,冷却功率为53 W·m−2[42];(b) 导热系数横向为0.03 W/(m·K),纵向为0.06 W/(m·K)的墙板用纳米木材[31];(c) 透光率为97%~99%的硅化纤维素气凝胶[40];(d) 导热系数为15 mW/(m·K)墙板用CNF、氧化石墨烯和海泡石各向异性复合气凝胶[45]
Figure 3. Conceptual energy-saving building using biomass based cellulose aerogel: (a) Cooling wood for roof with cooling power of 53 W·m−2[42]; (b) Nano-wood for wallboard with thermal conductivity of 0.03 W/(m·K) horizontally and 0.06 W/(m·K) longitudinally[31]; (c) Silanized cellulose aerogel with light transmitability of 97%-99%[40]; (d) Anisotropic composite aerogel of CNF, graphene oxide and sepiolite for wall panels with thermal conductivity of 15 mW/(m·K)[45]
-
[1] SEN S, SINGH A, BERA C, et al. Recent developments in biomass derived cellulose aerogel materials for thermal insulation application: A review[J]. Cellulose,2022,29(9):4805-4833. doi: 10.1007/s10570-022-04586-7 [2] BURATTI C, BELLONI E, MERLI F, et al. Aerogel glazing systems for building applications: A review[J]. Energy and Buildings,2021,231:110587. doi: 10.1016/j.enbuild.2020.110587 [3] ILLERA D, MERA J, GOMEZ H, et al. Cellulose aerogels for thermal insulation in buildings: Trends and challenges[J]. Coatings,2018,8(10):345. doi: 10.3390/coatings8100345 [4] ZHENG L, ZUO Y, LI X, et al. Biomimetic swallow nest structure: A lightweight and high-strength thermal insulation material[J]. ACS Nano,2022,16(5):8116-8127. doi: 10.1021/acsnano.2c01451 [5] ZHENG L, WU Y, LI P, et al. Construction of crystallization nucleation and network crosslinking structure in bamboo scrap/magnesium oxychloride composites via nano-SiO2[J]. Journal of Materials Research and Technology,2021,15:5496-5506. doi: 10.1016/j.jmrt.2021.11.041 [6] 张燕, 张铭涛, 沈晓飞, 等. 纳米纤维素的最新制备进展I. 化学法[J]. 纤维素科学与技术, 2020, 28(3):49-58.ZHANG Yan, ZHANG Mingtao, SHEN Xiaofei, et al. Recent progress in preparation of nanocellulose I. Chemical method[J]. Cellulose Science and Technology,2020,28(3):49-58(in Chinese). [7] KISTLER S S. Coherent expanded aerogels and jellies[J]. Nature,1931,127(3211):741. [8] SYEDA H I, YAP P S. A review on three-dimensional cellulose-based aerogels for the removal of heavy metals from water[J]. Science of the Total Environment,2022,807:150606. doi: 10.1016/j.scitotenv.2021.150606 [9] JOUBERT F, MUSA O M, HODGSON D R W, et al. The preparation of graft copolymers of cellulose and cellulose derivatives using ATRP under homogeneous reaction conditions[J]. Chemical Society Reviews,2014,43(20):7217-7235. doi: 10.1039/C4CS00053F [10] 张燕, 左盼盼, 王超君, 等. 纳米纤维素的最新制备研究II. 机械法[J]. 纤维素科学与技术, 2020, 28(4): 56-62.ZHANG Yan, ZUO Panpan, WANG Chaojun, et al. Recent research in preparation of nanocellulose II. Mechanical method[J]. Cellulose Science and Technology, 2020, 28(4): 56-62(in Chinese). [11] LONG L Y, WENG Y X, WANG Y Z. Cellulose aerogels: Synthesis, applications, and prospects[J]. Polymers,2018,10(6):623. doi: 10.3390/polym10060623 [12] TU H, ZHU M, DUAN B, et al. Recent progress in high-strength and robust regenerated cellulose materials[J]. Advanced Materials,2021,33(28):2000682. doi: 10.1002/adma.202000682 [13] FENG J, SU B L, XIA H, et al. Printed aerogels: Chemistry, processing, and applications[J]. Chemical Society Reviews,2021,50(6):3842-3888. doi: 10.1039/C9CS00757A [14] AHANKARI S, PALIWAL P, SUBHEDAR A, et al. Recent developments in nanocellulose-based aerogels in thermal applications: A review[J]. ACS Nano,2021,15(3):3849-3874. doi: 10.1021/acsnano.0c09678 [15] CHEN J, HUANG X, ZHU Y, et al. Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability[J]. Advanced Functional Materials,2017,27(5):1604754. doi: 10.1002/adfm.201604754 [16] LEI C, WU K, WU L, et al. Phase change material with anisotropically high thermal conductivity and excellent shape stability due to its robust cellulose/BNNSs skeleton[J]. Journal of Materials Chemistry A,2019,7(33):19364-19373. doi: 10.1039/C9TA05067A [17] CAI J, LIU S, FENG J, et al. Cellulose-silica nanocomposite aerogels by in situ formation of silica in cellulose gel[J]. Angewandte Chemie,2012,124(9):2118-2121. doi: 10.1002/ange.201105730 [18] LU Y, SUN Q, YANG D, et al. Fabrication of mesoporous lignocellulose aerogels from wood via cyclic liquid nitrogen freezing-thawing in ionic liquid solution[J]. Journal of Materials Chemistry,2012,22(27):13548-13557. doi: 10.1039/c2jm31310c [19] ZHU Y, ZHU J, YU Z, et al. Air drying scalable production of hydrophobic, mechanically stable, and thermally insulating lignocellulosic foam[J]. Chemical Engineering Journal,2022,450:138300. doi: 10.1016/j.cej.2022.138300 [20] ZHU J, ZHU Y, YE Y, et al. Superelastic and ultralight aerogel assembled from hemp microfibers[J]. Advanced Functional Materials,2023,33(22):2300893. doi: 10.1002/adfm.202300893 [21] JIMÉNEZ-SAELICES C, SEANTIER B, CATHALA B, et al. Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties[J]. Carbohydrate Polymers,2017,157:105-113. doi: 10.1016/j.carbpol.2016.09.068 [22] SEANTIER B, BENDAHOU D, BENDAHOU A, et al. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties[J]. Carbohydrate Polymers,2016,138:335-348. doi: 10.1016/j.carbpol.2015.11.032 [23] SONG M, JIANG J, QIN H, et al. Flexible and super thermal insulating cellulose nanofibril/emulsion composite aerogel with quasi-closed pores[J]. ACS Applied Materials & Interfaces,2020,12(40):45363-45372. [24] REN X, SONG M, JIANG J, et al. Fire-retardant and thermal-insulating cellulose nanofibril aerogel modified by in situ supramolecular assembly of melamine and phytic acid[J]. Advanced Engineering Materials,2022,24(8):2101534. doi: 10.1002/adem.202101534 [25] YANG L, MUKHOPADHYAY A, JIAO Y, et al. Ultralight, highly thermally insulating and fire resistant aerogel by encapsulating cellulose nanofibers with two-dimensional MoS2[J]. Nanoscale,2017,9(32):11452-11462. doi: 10.1039/C7NR02243C [26] GUO W, WANG X, ZHANG P, et al. Nano-fibrillated cellulose-hydroxyapatite based composite foams with excellent fire resistance[J]. Carbohydrate Polymers,2018,195:71-78. doi: 10.1016/j.carbpol.2018.04.063 [27] SAI H, XING L, XIANG J, et al. Flexible aerogels with interpenetrating network structure of bacterial cellulose-silica composite from sodium silicate precursor via freeze drying process[J]. RSC Advances,2014,4(57):30453-30461. doi: 10.1039/C4RA02752C [28] FU J, WANG S, HE C, et al. Facilitated fabrication of high strength silica aerogels using cellulose nanofibrils as scaffold[J]. Carbohydrate Polymers,2016,147:89-96. doi: 10.1016/j.carbpol.2016.03.048 [29] DEMILECAMPS A, BEAUGER C, HILDENBRAND C, et al. Cellulose-silica aerogels[J]. Carbohydrate Polymers,2015,122:293-300. doi: 10.1016/j.carbpol.2015.01.022 [30] CHEN B, ZHENG Q, ZHU J, et al. Mechanically strong fully biobased anisotropic cellulose aerogels[J]. RSC Advances,2016,6(99):96518-96526. doi: 10.1039/C6RA19280G [31] LI T, SONG J, ZHAO X, et al. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose[J]. Science Advances,2018,4(3):3724. doi: 10.1126/sciadv.aar3724 [32] GAREMARK J, PEREA-BUCETA J E, RICO DEL CERRO D, et al. Nanostructurally controllable strong wood aerogel toward efficient thermal insulation[J]. ACS Applied Materials & Interfaces,2022,14(21):24697-24707. [33] GAREMARK J, PEREA-BUCETA J E, FELHOFER M, et al. Strong, shape-memory lignocellulosic aerogel via wood cell wall nanoscale reassembly[J]. ACS Nano,2023,17(5):4775-4789. doi: 10.1021/acsnano.2c11220 [34] FAN Q, OU R, HAO X, et al. Water-induced self-assembly and in situ mineralization within plant phenolic glycol-gel toward ultrastrong and multifunctional thermal insulating aerogels[J]. ACS Nano,2022,16(6):9062-9076. doi: 10.1021/acsnano.2c00755 [35] RAHMANIAN V, PIRZADA T, WANG S, et al. Cellulose-based hybrid aerogels: Strategies toward design and functionality[J]. Advanced Materials,2021,33(51):2102892. doi: 10.1002/adma.202102892 [36] 李万景, 刘溧, 高相东. 耐高温气凝胶绝热材料在建筑行业中的应用[J]. 佛山陶瓷, 2022, 32(6):26-27, 36.LI Wanjing, LIU Li, GAO Xiangdong. Application of high temperature resistant aerogel insulation material in construction industry[J]. Foshan Ceramics,2022,32(6):26-27, 36(in Chinese). [37] LI T, ZHU M, YANG Z, et al. Wood composite as an energy efficient building material: Guided sunlight transmittance and effective thermal insulation[J]. Advanced Energy Materials,2016,6(22):1601122. doi: 10.1002/aenm.201601122 [38] MI R, LI T, DALGO D, et al. A clear, strong, and thermally insulated transparent wood for energy efficient windows[J]. Advanced Functional Materials,2020,30(1):1907511. doi: 10.1002/adfm.201907511 [39] MI Q, MA S, YU J, et al. Flexible and transparent cellulose aerogels with uniform nanoporous structure by a controlled regeneration process[J]. ACS Sustainable Chemistry & Engineering,2016,4(3):656-660. [40] ABRAHAM E, CHERPAK V, SENYUK B, et al. Highly transparent silanized cellulose aerogels for boosting energy efficiency of glazing in buildings[J]. Nature Energy,2023,8:381-396. doi: 10.1038/s41560-023-01226-7 [41] CUCE E, CUCE P M, WOOD C J, et al. Toward aerogel based thermal superinsulation in buildings: A comprehensive review[J]. Renewable and Sustainable Energy Reviews,2014,34:273-299. doi: 10.1016/j.rser.2014.03.017 [42] LI T, ZHAI Y, HE S, et al. A radiative cooling structural material[J]. Science,2019,364(6442):760-763. doi: 10.1126/science.aau9101 [43] CHEN Y, DANG B, FU J, et al. Cellulose-based hybrid structural material for radiative cooling[J]. Nano letters,2020,21(1):397-404. [44] ZHAO X, LIU Y, ZHAO L, et al. A scalable high-porosity wood for sound absorption and thermal insulation[J]. Nature Sustainability,2023,6(3):306-315. doi: 10.1038/s41893-022-01035-y [45] WICKLEIN B, KOCJAN A, SALAZAR-ALVAREZ G, et al. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide[J]. Nature Nanotechnology,2015,10(3):277-283. doi: 10.1038/nnano.2014.248