Loading [MathJax]/jax/output/SVG/jax.js

钙钛矿结构出溶材料的研究进展

盛彬, 梅杰, 孟则达, 甘甜

盛彬, 梅杰, 孟则达, 等. 钙钛矿结构出溶材料的研究进展[J]. 复合材料学报, 2024, 41(1): 50-59. DOI: 10.13801/j.cnki.fhclxb.20230731.004
引用本文: 盛彬, 梅杰, 孟则达, 等. 钙钛矿结构出溶材料的研究进展[J]. 复合材料学报, 2024, 41(1): 50-59. DOI: 10.13801/j.cnki.fhclxb.20230731.004
SHENG Bin, MEI Jie, MENG Zeda, et al. Research progress for perovskite-structure exsolution materials[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 50-59. DOI: 10.13801/j.cnki.fhclxb.20230731.004
Citation: SHENG Bin, MEI Jie, MENG Zeda, et al. Research progress for perovskite-structure exsolution materials[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 50-59. DOI: 10.13801/j.cnki.fhclxb.20230731.004

钙钛矿结构出溶材料的研究进展

基金项目: 苏州科技大学科研启动经费(332114509)
详细信息
    通讯作者:

    甘甜,博士,讲师,研究方向为固体氧化物燃料电池、能量转换与储存 E-mail: gantiantg@usts.edu.cn

  • 中图分类号: TM911.4;TB333

Research progress for perovskite-structure exsolution materials

Funds: Start-up Fund of Suzhou University of Science and Technology (332114509)
  • 摘要: 纳米结构催化材料被认为是各种能量转换和存储系统的有利设计理念。负载在氧化物载体上的纳米金属催化剂已被应用于燃料电池、气体传感器和化学重整装置等众多领域。然而,纳米金属催化剂经常存在耐久性问题。尽管表面修饰的纳米金属催化剂可以提供足够的催化活性,但其在恶劣的操作环境中的耐久性问题仍然存在。最近,原位出溶产生的纳米催化剂已被证明可以克服传统纳米金属催化剂的应用局限。出溶被定义为钙钛矿氧化物中具有催化活性的掺杂剂作为高度分散的纳米金属催化剂在其表面上出溶的过程。特别地,嵌入钙钛矿氧化物的出溶纳米催化剂比传统的纳米金属催化剂表现出更高的纳米颗粒密度和更强的抗烧结能力。本文概述了用于能源应用中出溶材料的最新进展,包括基本机制、主体氧化物的设计策略和实际应用。还讨论了这些材料的未来前景和进一步优化的途径。

     

    Abstract: Nanostructured catalytic materials are considered to be a favorable design concept for various energy conversion and storage systems. Nanosized metal catalysts supported on oxide scaffolds have been adopted in numerous fields, including fuel cells, gas sensors, and chemical reforming devices. Nevertheless, nanometal catalysts often suffer from durability issues. Although surface-decorated nanometal catalysts can deliver sufficient catalytic activity, some of them still exhibit durability issues in severe operating environments. Recently, nanocatalysts produced by in situ exsolution have been demonstrated to overcome the practical limitations of conventional nanometal catalysts. The exsolution is defined as a process in which a catalytically active dopant in perovskite oxide is exsolved on its surface as highly dispersed nanometal catalysts. In particular, exsolution nanocatalysts embedded on perovskite oxides exhibit higher nanoparticle densities and greater resistance to particle agglomeration than conventional nanometal catalysts. This perspective presents an overview of recent advances in exsolution materials for energy applications including fundamental mechanisms, design strategies for host oxides, and practical applications. The future prospects of these materials and the scope for further optimization are also discussed.

     

  • 尽管镍钛记忆合金(55 NiTi)独特的形状记忆功能及超弹性得到广泛应用,但组织结构稳定性欠佳、硬度不高、刚性不足等因素限制了其在精密机械中承载构件的应用[1]。Ni含量为60wt%的镍钛合金(60 NiTi合金)类似于金属间化合物,具有高硬度和良好的韧性及突出的耐磨性、抗腐蚀性、无磁性和轻量化特性,在精密轴承和航空航天等领域被视为理想的材料而得到广泛关注[2-4]。NiTi合金直接加工零部件不仅成本高而且难以加工成型复杂结构[5-6]。近年来,激光选区熔化(Selective laser melting,SLM) 3D打印成型技术发展迅速,特别是利用激光熔覆技术进行表面改性,在金属基体材料表面制备合金涂层,涂层与基材界面可形成良好的冶金结合,大大提高了基材的表面性能。该技术因加工速度快、灵活性高、成本低等优势而得到广泛关注[7-9]

    研究表明,在镍钛合金涂层激光熔覆过程中,涂层中会熔入大量的基体合金元素,因此研究镍钛合金涂层中元素掺杂及其对涂层组织结构和性能的影响成为关注的问题之一[10-11]。有人利用基于密度泛函理论(Density functional theory,DFT)的第一性原理方法模拟计算了掺杂合金元素的相择优和点位择优[12-14]。如席蒙等[15]运用第一性原理研究了过渡族元素在NiTi (B2)相中的占位倾向,结果表明V、Cr、Mn、Fe、Co等掺杂元素倾向于占据Ni位。Yin等[16]对NiTiX (X = Cu、Fe)合金进行了研究,在B2结构的NiTi相中,Cu和Fe原子都倾向于占据晶体结构中Ni的位置,同时认为Fe原子对Ni原子的置换能够显著提高NiTi相的结构稳定性。由Ni-Ti二元合金相图[17]可知,室温下能够稳定存在的镍钛合金相除了NiTi相外,还有Ni3Ti、NiTi2两个相。目前大部分对于镍钛合金相中元素掺杂的研究都聚焦在B2结构的NiTi相,少有对于其他两相的研究。

    本文通过在316L不锈钢表面制备不同组分的镍钛合金熔覆涂层,对其微观组织结构和相组成进行了分析,同时运用第一性原理研究了基材主要成分Fe和Cr元素在NiTi和Ni3Ti相中的分配和占位情况,并结合实验分析模拟了固溶Fe和Cr元素的镍钛合金相结构。

    试验中采用的基底材料是尺寸为10 cm×10 cm×1 cm的316L不锈钢板,其化学成分如表1所示。用于激光熔覆的粉末为球形Ni单质粉末和等原子比的55 NiTi合金粉末,其化学成分见表2。按照镍钛元素质量比为3∶2配制55 NiTi+5 Ni的混合粉末用于60 NiTi合金涂层制备。另外,利用纯55 NiTi合金粉末制备55 NiTi涂层进行对比研究,理解镍含量对合金涂层组织结构的影响。

    表  1  基体材料316L不锈钢的化学成分
    Table  1.  Chemical composition of 316L stainless steel substrate
    ElementFeCrNiMoMnSiPCS
    Mass fraction/wt%Balance16.32010.1202.0400.9200.3400.0260.0160.015
    下载: 导出CSV 
    | 显示表格
    表  2  Ni粉末和55 NiTi合金粉末的化学成分
    Table  2.  Chemical composition of Ni and 55 NiTi powders
    ElementNiTiFeNbCoCSiO
    Mass fraction of
    Ni powder/wt%
    Balance0.0030.0200.0200.0030.006
    Mass fraction of 55 NiTi powder/wt%56.460Balance0.0050.0100.0050.0050.037
    下载: 导出CSV 
    | 显示表格

    图1是用来制备样品的激光熔覆设备及原理示意图。试验中使用美国IPG Photonics公司生产的YLS-10000型光纤激光器,制备过程参数见表3。激光器的运动由日本FANUC公司生产的 R-30 iA六轴联动机械手臂来实现,熔覆过程中采用99.9%纯度的氩气作为保护气体和送粉气体。为防止基板因热应力导致开裂,316L基板在熔覆前预热至200℃。

    对制备好的激光熔覆涂层试件,沿着垂直于激光扫描方向线切割金相试样,用于物相分析和微观结构观察。样品经镶嵌、打磨和抛光后,用体积配比为HF∶HNO3∶H2O = 1∶4∶5的溶剂进行表面腐蚀,采用OLYMPUS GX51显微镜观察涂层形貌。利用配备OXFORD Ultim Extreme能谱仪的扫描电子显微镜(COXEM EM-30)对涂层的微观组织结构和元素分布进行表征分析,并使用德国Bruker D8型X射线衍射仪(Cu靶,Kα射线,电压为40 kV,电流为40 mA)对涂层进行物相分析。

    图  1  IPG YLS-10000激光熔覆设备:(a) 设备全貌;(b) 激光熔覆过程示意图
    Figure  1.  IPG YLS-10000 laser equipment: (a) Overview of the equipment; (b) Schematic diagram of the laser cladding process
    表  3  激光熔覆工艺参数
    Table  3.  Process parameters for laser cladding
    ParameterValue
    Laser power/kW2.0
    Scan speed/(mm·s–1)2.0
    Laser beam spot diameter/mm7.2
    Working distance/mm10
    Overlap ratio/%55
    Powder feed rate/(r·min–1)50
    Carrier gas flow rate/(L·min–1)8
    Shielding gas flow rate/(L·min–1)5
    下载: 导出CSV 
    | 显示表格

    采用基于密度泛函理论第一性原理的软件包VASP (Vienna ab-initio simulation package)研究基材中的Fe和Cr原子在NiTi和Ni3Ti结构中的占位情况。在计算离子与价电子间的相互作用时使用平面波赝势法(Projector augmented-wave,PAW)来描述,电子与电子之间的交换能和关联能的表述采用广义梯度近似(Generalized gradient approximation,GGA)下的Perdew-Burke-Ernzerhof (PBE)方程,截断能取500 eV。对布里渊区K点取样时采用Monkhorst-Pack法,其中对NiTi相采用8×8×8网格法,对Ni3Ti相采用11 × 11 × 6网格法。为保证计算结果的准确性和可靠性,对所涉及的晶体结构都进行了充分的结构优化,结构优化时能量收敛精度为10−5 eV,力的收敛精度为0.2 eV/nm。研究Fe和Cr原子在Ni3Ti晶体结构中的占位倾向时,首先对1个Fe原子和1个Cr原子取代晶胞中的1个Ni原子和1个Ti原子的形成能进行计算,计算公式为

    EF=116(ETxENiyETiEFe/Cr) (1)

    其中:EF为单个Fe或者Cr原子置换后的结合能;ET为晶胞的总能量;ENiETiEFe/Cr分别指Ni、Ti、Fe或Cr单个原子的能量;xy指晶胞中Ni和Ti原子的数量。16是指Ni3Ti超胞中含有的原子总数量。需要指出的是,本文研究过程中未考虑周期性边界条件下的镜像力对计算结果的影响。

    图2是激光熔覆制备的两种镍钛合金涂层样品的外观形貌和涂层截面的金相组织。显示出熔覆轨迹清晰且表面无裂纹,截面金相组织中未发现显著的气孔或夹杂物等结构缺陷。熔覆层与基材的界面熔合线连续可见,显示熔覆层与基材之间形成了良好的冶金结合。熔合区主要是大尺寸的平面晶,上层的涂层主要为树枝晶结构。

    图  2  熔覆涂层表面形貌及截面金相图:(a) 55 NiTi涂层;(b) 60 NiTi涂层
    Figure  2.  Surface morphology and cross-section metallography of the coatings: (a) 55 NiTi coating; (b) 60 NiTi coating

    图3是两种熔覆涂层的XRD图谱,两种涂层中最强的特征峰衍射角度相近。对比PDF卡片可知,两种涂层主要由B2结构的NiTi相和密排六方结构的Ni3Ti相组成,此外涂层中都有少量Fe2Ti相。由Fe-Ti-Ni三元相图可知,当温度达到1000℃以上,Fe原子与涂层中的Ti原子结合,可形成Fe2Ti相,并且在快速冷却条件下能够在室温下稳定存在[18]。需要注意的是,XRD结果显示NiTi2相只存在于55 NiTi涂层中,在60 NiTi涂层中未发现其特征峰的存在。这是由于NiTi2相的形成需要富钛环境,在提高涂层中Ni含量后,涂层中绝大部分区域都是富镍环境,即使生成少量NiTi2相,也会与Ni进一步反应,最终以NiTi相或Ni3Ti相的形式存在,这表明提高Ni含量可抑制NiTi2析出。

    图  3  60 NiTi和55 NiTi两种熔覆涂层的XRD图谱
    Figure  3.  XRD patterns of the 60 NiTi and 55 NiTi coating

    图4是涂层中部区域的微观组织形貌。对该视场中不同形貌区域进行EDS点扫描,表4给出了这些特征点位EDS扫描分析结果。点1和点4镍钛原子比接近1,结合XRD分析结果可判断这两个位置是B2结构的NiTi相,具有树枝晶形貌。同时可以看出,NiTi相中含有一定量Fe元素和少量的Cr元素。树枝晶之间的片层状组织为典型的共晶组织,根据表4中点3和点6的EDS分析结果可判断共晶组织中浅色片层状组织为NiTi相;结合点2和点5的EDS分析结果可判断共晶组织中片状结构间的深色组织为Ni3Ti相。

    图  4  熔覆涂层中部微观形貌图:(a) 55 NiTi涂层;(b) 60 NiTi涂层
    Figure  4.  Microstructure of the coating middle area: (a) 55 NiTi coating; (b) 60 NiTi coating
    表  4  图4中标出点位的EDS扫描结果
    Table  4.  EDS scanning results for positions marked in Fig.4
    CoatingPositionNi/at%Ti/at%Fe/at%Cr/at%Major phase
    55 NiTi 1 35.34 41.28 15.63 7.75 NiTi
    2 59.59 25.74 10.32 4.35 Ni3Ti
    3 45.10 34.77 14.52 5.61 Ni3Ti + NiTi
    60 NiTi 4 38.48 42.89 13.42 5.21 NiTi
    5 61.63 23.27 9.26 5.84 Ni3Ti
    6 50.08 30.34 16.33 3.25 Ni3Ti + NiTi
    下载: 导出CSV 
    | 显示表格

    表4给出的成分分析结果可以看出,基材中的Fe和Cr元素已经扩散到涂层中部,并固溶于涂层中NiTi相及Ni3Ti相结构中。鉴于Cr元素含量相对较低,先讨论Ni、Ti、Fe这3种元素的相对含量对涂层相组成的影响。由于激光熔覆过程中涂层会在极短的时间内冷却下来,在高温下形成的固溶体在涂层组织得以留存下来。参考铁镍钛三元合金系在1000℃时的等温截面相图[18],如图5所示,可以看出在镍钛含量近等原子比情况下,主要以(Ni, Fe)Ti相的形式存在,随着Ni含量的提高,Ni3Ti相析出,因此可以判断60 NiTi涂层中Ni3Ti相的含量高于55 NiTi涂层。另外,Fe元素在镍钛含量近等原子比条件下,会优先固溶到NiTi相中形成(Ni, Fe)Ti固溶体。图5中斜杠阴影三角形标出的区域是本文所制备的熔覆涂层成分范围,结合XRD分析可知,55 NiTi涂层位于斜杠阴影三角形偏上顶点的位置,而60 NiTi涂层占据相图中斜杠阴影三角形里偏右下顶点位置。

    图  5  铁镍钛三元合金系在1000℃的等温截面图
    Figure  5.  Isothermal section of the Fe-Ni-Ti ternary system phase diagram at 1000℃

    表4显示55 NiTi和60 NiTi涂层中都含有Fe元素和Cr元素。根据Fe-Ni-Ti三元相图,Fe元素在镍钛合金中只有当其含量超过40wt%且在富钛的条件才会形成Fe2Ti相。EDS分析结果表明,Fe元素在镍钛合金涂层中含量较低(10wt%~20wt%之间),因此Fe元素在熔覆涂层中主要以固溶的形式存在于NiTi和Ni3Ti相中,在靠近基板的Fe富集区有可能形成少量Fe2Ti相。

    图6是55 NiTi和60 NiTi涂层中NiTi和Ni3Ti相中Ni、Ti、Fe和Cr元素含量柱状图。可以看出,Fe元素在B2结构的NiTi相中的平均原子占比为14.5%,在密排六方结构的Ni3Ti相中的平均原子占比仅为9.8%。表明Fe元素在NiTi相中的固溶度要高于Ni3Ti相中的固溶度。而Cr元素在NiTi相和Ni3Ti相中的原子含量占比接近,说明Cr在两相中有着相近的固溶度。

    图  6  55 NiTi和60 NiTi熔覆层里NiTi相和Ni3Ti相中Ni、Ti、Fe和Cr原子占比
    Figure  6.  Atomic proportion of Ni, Ti, Fe and Cr in NiTi phase and Ni3Ti phase of 55 NiTi coating and 60 NiTi coating

    Fe和Cr原子在NiTi和Ni3Ti相中固溶度的差异和两相的不同晶体结构相关。表5列出了两相晶胞的晶格常数及晶胞中Ni原子和Ti原子的位置。根据各相的空间点阵及其对应原子位置,利用Materials Studio 8.0软件建立晶胞结构,以方便直观地研究元素占位情况。如图7(a)所示,室温下NiTi (B2)晶胞是CsCl型复杂立方结构,每个晶胞含有1个Ti原子和1个Ni原子。Ni3Ti晶胞是密排六方结构,每个晶胞包含4个Ti原子和12个Ni原子,其晶体结构如图7(b)所示。另外,表6中列出了Ni、Ti、Fe和Cr这4种元素的原子半径和电负性[19],根据表中数据可知,Fe或Cr原子固溶在NiTi (B2)和Ni3Ti相中都是以置换固溶的形式存在,由于溶质原子(Fe和Cr)与溶剂原子(Ni和Ti)有相近的原子半径和电负性。

    表  5  NiTi相和Ni3Ti相的晶胞结构和原子位置
    Table  5.  Crystal structure and atom position of the NiTi and Ni3Ti phase
    CompoundLattice categoryLattice parameterAtomPosition
    NiTiSP No.221a=b=c=0.3005 nmNi1a
    α=β=γ=90°Ti1b
    Ni3TiSP No.194a=b=0.5096 nmNi-16g
    c=0.8304 nmNi-26h
    α=β=90°Ti-12a
    γ=120°Ti-22c
    下载: 导出CSV 
    | 显示表格
    图  7  晶胞结构示意图:(a) NiTi体心立方结构;(b) Ni3Ti密排六方晶体结构
    Figure  7.  Schematic diagram of the crystal structure: (a) NiTi crystal with bcc structure; (b) Ni3Ti crystal with close-packed hexagonal structure
    表  6  Ni、Ti、Fe和Cr的原子半径及其电负性
    Table  6.  Atom radius and its electronegativity of Ni, Ti, Fe and Cr atom
    ElementAtomic radius/nmAtomic electronegativity/eV
    Ni0.1251.91
    Ti0.1451.54
    Fe0.1241.83
    Cr0.1251.66
    下载: 导出CSV 
    | 显示表格

    现有文献对Fe和Cr原子在NiTi (B2)相中的占位研究表明[15],Fe和Cr原子都会优先占据晶胞中Ni原子的位置,图8是Fe原子置换了晶胞中的Ni原子后的晶体结构示意图。这首先是基于相近原子半径和电负性的原子优先置换的原则,这样置换后引起的晶格畸变相对较小,同时固溶体中Fe原子周围的Ti原子有返回它们原来位置的作用力,由此引起的原子弛豫使形成的(Ni, Fe)Ti固溶体能够稳定存在[20]

    图  8  NiTi晶胞结构示意图:(a)置换前;(b)置换后
    Figure  8.  Schematic diagram of NiTi crystal structure: (a) Before substitution; (b) After substitution

    除此之外,Bozzolo等[21]从置换后结合能变化的角度研究了Fe原子在NiTi (B2)中的占位情况,也得出了相同的结论。如表5所示,NiTi (B2)体心立方结构相对简单,Ni原子和Ti原子在晶胞中都只有一种晶位,其位置分别是1a和1b,每个Fe原子替换1个Ni原子会造成原晶胞结合能的变化为−1.2497 eV,而替换1个Ti原子则会带来+3.8254 eV的变化,结合能越低的晶体结构越稳定,因此Fe原子优先置换出晶胞中的Ni原子[21-22]。同时研究表明[21],NiTi (B2)结构中的Ni原子被Fe原子取代后还会造成反位缺陷,替换过程损失的能量会通过形成Ni3Ti相来平衡,因此Fe原子置换后形成(Ni, Fe)Ti相的同时,还会进一步提高Ni3Ti相在涂层中的比例。

    现有研究大部分聚焦于Fe和Cr原子在NiTi相中的占位情况,但是对Fe和Cr原子在Ni3Ti相中占位情况的研究相对较少。在NiTi (B2)体心立方结构中Ni和Ti原子都只有1个晶位,然而在Ni3Ti密排六方结构中的Ni原子和Ti原子各有2个不同的晶位,其在晶胞中的坐标位置如表7所示。图9是根据其原子坐标把不同晶位的Ni原子和Ti原子用不同颜色做了区分,不同的晶位对应着不同的杂阶,说明同一种原子在晶体结构中所处的化学环境不同,对应着不同的价电子结构。

    表8中列出的是通过VASP软件计算出的Fe和Cr原子置换Ni3Ti晶胞中不同晶位的Ni和Ti原子后的晶格常数。从表中可以看出,当置换不同晶位的同一种原子时(如Fe原子取代Ni-1晶位和Ni-2晶位的Ni原子),其晶格常数变化不大,但是同种元素取代Ti原子后的晶格常数总是比其取代Ni原子后要小,这是Ti的原子半径(0.145 nm)比Ni的原子半径(0.125 nm)大导致的。

    表  7  Ni3Ti相晶胞中原子坐标
    Table  7.  Atom coordinates in Ni3Ti crystal structure
    CompoundAtomxyz
    Ni3TiNi-10.500
    Ni-20.83330.66670.25
    Ti-1000
    Ti-20.33330.66670.25
    下载: 导出CSV 
    | 显示表格
    图  9  Ni3Ti晶胞中原子位置示意图:(a) 三维透视图;(b) 俯视图
    Figure  9.  Atom position in the Ni3Ti crystal structure: (a) 3D perspective view; (b) Vertical view
    表  8  Fe和Cr原子置换后Ni3Ti晶胞的晶格常数
    Table  8.  Lattice parameters of Ni3Ti crystal after substitution of Fe and Cr atom
    AtomReplaced positionCompositiona/nmb/nmc/nm
    Fe Ni-1 Ni11Ti4Fe 0.5118 0.4418 0.8316
    Ni-2 Ni11Ti4Fe 0.5116 0.4419 0.8317
    Ti-1 Ni12Ti3Fe 0.5068 0.4388 0.8286
    Ti-2 Ni12Ti3Fe 0.5060 0.4385 0.8281
    Cr Ni-1 Ni11Ti4Cr 0.5122 0.4434 0.8357
    Ni-2 Ni11Ti4Cr 0.5129 0.4443 0.8377
    Ti-1 Ni12Ti3Cr 0.5088 0.4407 0.8293
    Ti-2 Ni12Ti3Cr 0.5085 0.4404 0.8293
    下载: 导出CSV 
    | 显示表格

    图10是根据式(1)通过VASP计算出的单个Fe原子或Cr原子占据Ni3Ti结构中不同晶位的Ni和Ti原子所对应的结合能。首先置换后的形成能都小于0,说明Fe原子和Cr原子置换Ni3Ti晶格中任意晶位的Ni原子或者Ti原子都可能形成稳定结构;其次同种元素取代Ni原子和Ti原子时的形成能不同,表明其置换后的结构稳定性存在差异。通常情况下形成能越负,说明置换后的结构稳定性越好[21]。取代不同原子的形成能相差越大,则表明替换原子的占位倾向性越明显。从图10中可以看出Fe原子和Cr原子在Ni3Ti中都倾向于置换Ni原子,区别在于Fe原子优先置换位于Ni-1晶位的Ni原子,而Cr原子优先置换位于Ni-2晶位的Ni原子。

    图  10  单个Fe和Cr原子置换Ni3Ti中的Ni和Ti原子后形成能
    Figure  10.  Formation energy after substitution of single Fe and Cr atom to replace Ni and Ti atom in the Ni3Ti crystal

    结合2.4节中计算得出的Fe和Cr原子在Ni3Ti晶体结构中的占位倾向和图6中列出的Fe和Cr在55 NiTi和60 NiTi涂层中的EDS扫描结果,可以计算出Fe原子及Cr原子分别在NiTi (B2)和Ni3Ti相中的固溶度,如表9所示。

    表  9  Fe和Cr原子在NiTi和Ni3Ti结构中的原子占比
    Table  9.  Atomic proportion of Fe and Cr atom in NiTi and Ni3Ti crystal structure after substitution
    PhaseComposition after substitutionNi/at%Ti/at%Fe/at%Cr/at%
    NiTi (B2)Ni5Ti8Fe2Cr31.2550.0012.506.25
    Ni3TiNi9Ti4Fe2Cr56.2525.0012.506.25
    下载: 导出CSV 
    | 显示表格

    在B2结构的NiTi相晶胞中,2个Fe原子和1个Cr原子都替换了原晶胞中的Ni原子,固溶后的化学式为Ni5Ti8Fe2Cr。在Ni3Ti结构中,2个Fe原子替换Ni-1晶位的Ni原子,1个Cr原子替换Ni-2晶位的Ni原子,固溶后化学式为Ni9Ti4Fe2Cr。所有计算都是在相同的结构优化条件下进行的,收敛计算后得出的形成能和晶格常数列在表10中。计算得出固溶后NiTi晶胞和Ni3Ti晶胞的形成能分别为−0.3286 eV和−0.3050 eV,形成能均为负,从理论层面佐证了所制备的镍钛熔覆涂层有较稳定的结构。但是与单个原子固溶置换后的形成能相比,随着固溶原子数量的增加,其形成能也显著提高了,说明Fe和Cr固溶后原晶体结构的稳定性下降。此外,固溶后晶胞的晶格常数也变大了。图11是按照涂层中的固溶度构建的NiTi和Ni3Ti晶胞结构示意图。

    表  10  Fe和Cr原子置换后的形成能及晶格常数
    Table  10.  Formation energy and lattice parameters after substitution of Fe and Cr atoms
    CrystalCompositionFormation
    energy/eV
    a/nmb/nmc/nm
    NiTi (B2)Ni5Ti8Fe2Cr−0.32860.59620.59620.6007
    Ni3TiNi9Ti4Fe2Cr−0.30500.51280.44320.8362
    下载: 导出CSV 
    | 显示表格
    图  11  置换后晶胞示意图:(a) Ni5Ti8Fe2Cr;(b) Ni9Ti4Fe2Cr
    Figure  11.  Schematic diagram of crystal structure after substitution: (a) Ni5Ti8Fe2Cr; (b) Ni9Ti4Fe2Cr

    在316L不锈钢表面通过激光熔覆的方式制备了不同组分的镍钛合金涂层,进行了涂层的微观组织观察和相分析,并通过第一性原理技术探讨了Fe和Cr原子在涂层中的固溶现象,结果表明:

    (1) 涂层主要由NiTi相和Ni3Ti相构成,60 NiTi合金中没有发现NiTi2相,表明提高Ni含量可抑制NiTi2相析出;

    (2) 由于B2结构的NiTi主要体现为金属键属性,原子间的键合力比密排六方结构的Ni3Ti晶胞弱,Fe和Cr元素倾向于固溶在NiTi相中,且都倾向于置换NiTi晶胞中的Ni原子形成固溶体;

    (3) 在Ni3Ti晶胞中,Ni原子和Ti原子都有2个不同的晶位。模拟结果表明,Fe原子倾向于替换Ni3Ti晶胞中Ni-1晶位的Ni原子,而Cr原子倾向于替换Ni3Ti晶胞中Ni-2晶位的Ni原子;

    (4) 结合涂层元素分析,模拟计算出了涂层中NiTi相和Ni3Ti两相的晶体结构常数,并得出经过Fe和Cr元素固溶置换后,这两相的化学式分别为Ni5Ti8Fe2Cr和Ni9Ti4Fe2Cr。

  • 图  1   促进钙钛矿氧化物B位阳离子出溶的各种效应及其多功能应用示意图[1]

    Figure  1.   Schematic of various effects in facilitating the exsolution of B-site cations for perovskite oxides and its multifunctional applications[1]

    SOFC—Solid oxide fuel cells; SOEC—Solid oxide electrolysis cells; CB—Conduction band; VB—Valence band; hv—Photon energy; HER—Hydrogen evolution reaction; OER—Oxygen evolution reaction; PO2—Oxygen partial pressure

    图  2   (a) 在还原-煅烧条件下,A位缺陷钙钛矿氧化物的B位出溶过程示意图[14];(b) 非化学计量在出溶中的作用[20]

    Figure  2.   (a) Schematic of the B-site ex-solution process from A-site-deficient perovskite oxides under a reducing-annealing condition[14]; (b) Role of nonstoichiometry in exsolution[20]

    图  3   在出溶过程中同时形成B位金属相和Ruddlesden-Popper相的示意图[31]

    Figure  3.   Illustration of the simultaneous formation of B-site metal phase and a Ruddlesden-Popper phase during the exsolution process[31]

    图  4   压缩应变和拉伸应变薄膜中还原过程的示意图[33]

    Figure  4.   Schematic representation of the reduction process in compressive- and tensile-strained thin films[33]

    c/a—Tetragonality

    图  5   (a) 在纯H2 (左)和20% H2 (右)中还原5、10、15、20和30 h颗粒的SEM图像;(b) 不同氧分压(PO2)下平均粒径和还原时间之间的关系[34]

    Figure  5.   (a) SEM images of the particles reduced in pure H2 (left) and 20% H2 (right) for 5, 10, 15, 20, and 30 h; (b) Relationship between average particle size and reduction time under different oxygen partial pressure (PO2) conditions[34]

    图  6   Srx(Ti, Fe, Ni)O3−δ在氧化还原循环期间气-固界面和深度方向的示意图[37]

    Figure  6.   Schematic depiction of the suggested Srx(Ti, Fe, Ni)O3−δ surface reorganization during the atmospheric redox cycle at the solid-gas interface and in depth[37]

    图  7   电化学转换和触发效应:(a) 电化学转换方法的示意图;(b) TGA曲线和施加电势下的电池电流;(c) 气体还原和电化学转换的特性[39]

    Figure  7.   Electrochemical switching and triggering effects: (a) Schematic illustration of the electrochemical swit ching method; (b) TGA curve and cell current under an applied potential; (c) Properties of gas reduction and electrochemical switching[39]

    表  1   还原气氛处理的出溶钙钛矿在电催化领域的应用

    Table  1   Summary on the exsolution on perovskites under reducing gas for electrocatalysis

    CatalystsAtmosphereExsolved metalApplicationRef.
    La0.43Sr0.37Cu0.12Ti0.88O3–δPure H2 at 400-700℃CuSOFC[41]
    La0.65Sr0.3Cr0.85Ni0.15O3−δ5% H2-Ar at 1200℃NiSOFC[45]
    Sm0.80-xSr0.20Fe0.80Ti0.15Ru0·05O3−δ5% H2/Ar at 900℃RuSOFC[46]
    La0.4Sr0.6Co0.2Fe0.7Mo0.1O3–δ5% H2/Ar at 700℃Co-FeSOEC[47]
    Pr0.8Sr1.2(Fe, Ni)0.8Nb0.2O4–δ20% H2/Ar at 850℃Ni-FeSOEC[48]
    La0.43Ca0.37Ni0.06Ti0.94O3–δ10% H2/N2 at 900℃NiSOEC[49]
    Sr2Fe1.3Ni0.2Mo0.5O6–δH2 (3% H2O) at 800℃Ni-FeSOFC/SOEC[50]
    La0.9Mn0.6Ni0.4O3−δ5% H2/Ar at 650℃NiLi-O2 batteries[51]
    LaMn0.75Co0.25O3−δ5% H2/Ar at 830℃CoZi-air batteries[52]
    下载: 导出CSV
  • [1]

    JEONG H, KIM Y H, WON B R, et al. Emerging exsolution materials for diverse energy applications: Design, mechanism, and future prospects[J]. Chemistry of Materials,2023,35(10):3745-3764. DOI: 10.1021/acs.chemmater.3c00004

    [2]

    YANG Y, LI J, SUN Y. The metal/oxide heterointerface delivered by solid-based exsolution strategy: A review[J]. Chemical Engineering Journal,2022,440:135868. DOI: 10.1016/j.cej.2022.135868

    [3]

    MEI J, LIAO T, SUN Z. Metal exsolution engineering on perovskites for electrocatalysis: A perspective[J]. Materials Today Energy,2023,31:101216. DOI: 10.1016/j.mtener.2022.101216

    [4]

    WANG J, KALAEV D, YANG J, et al. Fast surface oxygen release kinetics accelerate nanoparticle exsolution in perovskite oxides[J]. Journal of the American Chemical Society,2023,145(3):1714-1727. DOI: 10.1021/jacs.2c10256

    [5]

    ZHU T, TROIANI H E, MOGNI L V, et al. Ni-substituted Sr(Ti, Fe)O3 SOFC anodes: Achieving high performance via metal alloy nanoparticle exsolution[J]. Joule,2018,2(3):478-496. DOI: 10.1016/j.joule.2018.02.006

    [6]

    SUN Z, FAN W, BAI Y. A flexible method to fabricate exsolution-based nanoparticle-decorated materials in seconds[J]. Advanced Science,2022,9(12):2200250. DOI: 10.1002/advs.202200250

    [7]

    WANG J, KUMAR A, WARDINI J L, et al. Exsolution-driven surface transformation in the host oxide[J]. Nano Letters,2022,22(13):5401-5408. DOI: 10.1021/acs.nanolett.2c01439

    [8]

    SHIOZAKI R, ANDERSEN A G, HAYAKAWA T, et al. Partial oxidation of methane over a Ni/BaTiO3 catalyst prepared by solid phase crystallization[J]. Journal of the Chemical Society, Faraday Transactions,1997,93(17):3235-3242. DOI: 10.1039/a701383c

    [9]

    ISLAM Q A, PAYDAR S, AKBAR N, et al. Nanoparticle exsolution in perovskite oxide and its sustainable electrochemical energy systems[J]. Journal of Power Sources,2021,492:229626. DOI: 10.1016/j.jpowsour.2021.229626

    [10]

    IRVINE J T S, NEAGU D, VERBRAEKEN M C, et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers[J]. Nature Energy,2016,1(1):15014. DOI: 10.1038/nenergy.2015.14

    [11]

    LEE W, HAN J W, CHEN Y, et al. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites[J]. Journal of the American Chemical Society,2013,135(21):7909-7925. DOI: 10.1021/ja3125349

    [12]

    LI Y, ZHANG W, ZHENG Y, et al. Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability[J]. Chemical Society Reviews,2017,46(20):6345-6378. DOI: 10.1039/C7CS00120G

    [13]

    KOO B, KIM K, KIM J K, et al. Sr segregation in perovskite oxides: Why it happens and how it exists[J]. Joule,2018,2(8):1476-1499. DOI: 10.1016/j.joule.2018.07.016

    [14]

    KIM J H, KIM J K, LIU J, et al. Nanoparticle exsolution for supported catalysts: Materials design, mechanism and future perspectives[J]. ACS Nano,2021,15(1):81-110. DOI: 10.1021/acsnano.0c07105

    [15]

    ZHU J, ZHANG W, LI Y, et al. Enhancing CO2 catalytic activation and direct electroreduction on in-situ exsolved Fe/MnOx nanoparticles from (Pr, Ba)2Mn2–yFeyO5+δ layered perovskites for SOEC cathodes[J]. Applied Catalysis B: Environmental,2020,268:118389. DOI: 10.1016/j.apcatb.2019.118389

    [16]

    NEAGU D, OH T S, MILLER D N, et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution[J]. Nature Communications,2015,6(1):8120. DOI: 10.1038/ncomms9120

    [17]

    HU H, LI M, MIN H, et al. Enhancing the catalytic activity and coking tolerance of the perovskite anode for solid oxide fuel cells through in situ exsolution of Co-Fe nanoparticles[J]. ACS Catalysis,2022,12(1):828-836. DOI: 10.1021/acscatal.1c04807

    [18]

    ZHANG P, GUAN G, KHAERUDINI D S, et al. Evaluation of performances of solid oxide fuel cells with symmetrical electrode material[J]. Journal of Power Sources,2014,266:241-249. DOI: 10.1016/j.jpowsour.2014.05.013

    [19]

    BOTH K G, REINERTSEN V M, AARHOLT T M, et al. Ni-doped A-site excess SrTiO3 thin films modified with Au nanoparticles by a thermodynamically-driven restructuring for plasmonic activity[J]. Catalysis Today,2023,413-415:113950. DOI: 10.1016/j.cattod.2022.11.011

    [20]

    NEAGU D, TSEKOURAS G, MILLER D N, et al. In situ growth of nanoparticles through control of non-stoichiometry[J]. Nature Chemistry,2013,5(11):916-923. DOI: 10.1038/nchem.1773

    [21]

    GAO Y, LU Z, YOU T L, et al. Energetics of nanoparticle exsolution from perovskite oxides[J]. The Journal of Physical Chemistry Letters,2018,9(13):3772-3778. DOI: 10.1021/acs.jpclett.8b01380

    [22]

    HAMADA I, UOZUMI A, MORIKAWA Y, et al. A density functional theory study of self-regenerating catalysts LaFe(1–x)M(x)O(3–y) (M=Pd, Rh, Pt)[J]. Journal of the American Chemical Society,2011,133(46):18506-18509. DOI: 10.1021/ja110302t

    [23]

    ZHANG B W, ZHU M N, GAO M R, et al. Boosting the stability of perovskites with exsolved nanoparticles by B-site supplement mechanism[J]. Nature Communications,2022,13(1):4618. DOI: 10.1038/s41467-022-32393-y

    [24]

    JO Y R, KOO B, SEO M J, et al. Growth kinetics of individual Co particles ex-solved on SrTi(0.75)Co(0.25)O(3–δ) polycrystalline perovskite thin films[J]. Journal of the American Chemical Society,2019,141(16):6690-6697. DOI: 10.1021/jacs.9b01882

    [25]

    PAPARGYRIOU D, MILLER D N, SIRR IRVINE J T. Exsolution of Fe-Ni alloy nanoparticles from (La, Sr)(Cr, Fe, Ni)O3 perovskites as potential oxygen transport membrane catalysts for methane reforming[J]. Journal of Materials Chemistry A,2019,7(26):15812-15822. DOI: 10.1039/C9TA03711J

    [26]

    TSEKOURAS G, NEAGU D, IRVINE J T S. Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants[J]. Energy & Environmental Science,2013,6(1):256-266.

    [27]

    KWON O, SENGODAN S, KIM K, et al. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites[J]. Nature Communications,2017,8:15967. DOI: 10.1038/ncomms15967

    [28]

    DING S, LI M, PANG W, et al. A-site deficient perovskite with nano-socketed Ni-Fe alloy particles as highly active and durable catalyst for high-temperature CO2 electrolysis[J]. Electrochimica Acta,2020,335:135683. DOI: 10.1016/j.electacta.2020.135683

    [29]

    FOSSDAL A, MENON M, WÆRNHUS I, et al. Crystal structure and thermal expansion of La1−xSrxFeO3−δ materials[J]. Journal of the American Ceramic Society,2004,87(10):1952-1958. DOI: 10.1111/j.1151-2916.2004.tb06346.x

    [30]

    SUN Y F, ZHANG Y Q, CHEN J, et al. New opportunity for in situ exsolution of metallic nanoparticles on perovskite parent[J]. Nano Letters,2016,16(8):5303-5309. DOI: 10.1021/acs.nanolett.6b02757

    [31]

    DEKA D J, KIM J, GUNDUZ S, et al. Investigation of hetero-phases grown via in-situ exsolution on a Ni-doped (La, Sr)FeO3 cathode and the resultant activity enhancement in CO2 reduction[J]. Applied Catalysis B: Environmental,2021,286:119917. DOI: 10.1016/j.apcatb.2021.119917

    [32]

    WANG J, YANG J, OPITZ A K, et al. Tuning point defects by elastic strain modulates nanoparticle exsolution on perovskite oxides[J]. Chemistry of Materials,2021,33(13):5021-5034. DOI: 10.1021/acs.chemmater.1c00821

    [33]

    HAN H, PARK J, NAM S Y, et al. Lattice strain-enhanced exsolution of nanoparticles in thin films[J]. Nature Communications,2019,10(1):1471. DOI: 10.1038/s41467-019-09395-4

    [34]

    GAO Y, CHEN D, SACCOCCIO M, et al. From material design to mechanism study: Nanoscale Ni exsolution on a highly active A-site deficient anode material for solid oxide fuel cells[J]. Nano Energy,2016,27:499-508. DOI: 10.1016/j.nanoen.2016.07.013

    [35]

    THALINGER R, GOCYLA M, HEGGEN M, et al. Exsolution of Fe and SrO nanorods and nanoparticles from lanthanum strontium ferrite La0.6Sr0.4FeO3−δ materials by hydrogen reduction[J]. The Journal of Physical Chemistry C,2015,119(38):22050-22056. DOI: 10.1021/acs.jpcc.5b06014

    [36]

    NEAGU D, KYRIAKOU V, ROIBAN I L, et al. In situ observation of nanoparticle exsolution from perovskite oxides: From atomic scale mechanistic insight to nanostructure tailoring[J]. ACS Nano,2019,13(11):12996-13005. DOI: 10.1021/acsnano.9b05652

    [37]

    SANTAYA M, JIMÉNEZ C E, TROIANI H E, et al. Tracking the nanoparticle exsolution/reoxidation processes of Ni-doped SrTi0.3Fe0.7O3−δ electrodes for intermediate temperature symmetric solid oxide fuel cells[J]. Journal of Materials Chemistry A,2022,10(29):15554-15568. DOI: 10.1039/D2TA02959F

    [38]

    LYU H, LIN L, ZHANG X, et al. Promoting exsolution of RuFe alloy nanoparticles on Sr2Fe1.4Ru0.1Mo0.5O6−δ via repeated redox manipulations for CO2 electrolysis[J]. Nature Communications,2021,12(1):5665. DOI: 10.1038/s41467-021-26001-8

    [39]

    MYUNG J H, NEAGU D, MILLER D N, et al. Switching on electrocatalytic activity in solid oxide cells[J]. Nature,2016,537(7621):528-531. DOI: 10.1038/nature19090

    [40]

    JO S, HAN KIM Y, JEONG H, et al. Exsolution of phase-separated nanoparticles via trigger effect toward reversible solid oxide cell[J]. Applied Energy,2022,323:119615. DOI: 10.1016/j.apenergy.2022.119615

    [41]

    JO S, JEONG H G, KIM Y H, et al. Stability and activity controls of Cu nanoparticles for high-performance solid oxide fuel cells[J]. Applied Catalysis B: Environmental,2021,285:119828. DOI: 10.1016/j.apcatb.2020.119828

    [42]

    HE S, LI M, HUI J, et al. In-situ construction of ceria-metal/titanate heterostructure with controllable architectures for efficient fuel electrochemical conversion[J]. Applied Catalysis B: Environmental,2021,298:120588. DOI: 10.1016/j.apcatb.2021.120588

    [43]

    ZHANG W, WANG H, CHEN X, et al. Manipulation of rare earth on voltage-driven in-situ exsolution process of perovskite cathodes for low-temperature solid oxide fuel cells[J]. Chemical Engineering Journal,2022,446:136934. DOI: 10.1016/j.cej.2022.136934

    [44]

    CHUNG Y S, KIM T, SHIN T H, et al. In situ preparation of a La1.2Sr0.8Mn0.4Fe0.6O4 Ruddlesden-Popper phase with exsolved Fe nanoparticles as an anode for SOFCs[J]. Journal of Materials Chemistry A,2017,5(14):6437-6446. DOI: 10.1039/C6TA09692A

    [45]

    AMAYA-DUEÑAS D M, CHEN G, WEIDENKAFF A, et al. A-site deficient chromite with in situ Ni exsolution as a fuel electrode for solid oxide cells (SOCs)[J]. Journal of Materials Chemistry A,2021,9(9):5685-5701. DOI: 10.1039/D0TA07090D

    [46]

    FAN W, SUN Z, BAI Y, et al. In situ growth of nanoparticles in A-site deficient ferrite perovskite as an advanced electrode for symmetrical solid oxide fuel cells[J]. Journal of Power Sources,2020,456:228000. DOI: 10.1016/j.jpowsour.2020.228000

    [47]

    LYU H, LIU T, ZHANG X, et al. Atomic-scale insight into exsolution of CoFe alloy nanoparticles in La0.4Sr0.6Co0.2Fe0.7Mo0.1O3−δ with efficient CO2 electrolysis[J]. Angewandte Chemie International Edition,2020,59(37):15968-15973. DOI: 10.1002/anie.202006536

    [48]

    CHOI J, KIM M, KANG S K, et al. A highly efficient bifunctional electrode fashioned with in situ exsolved NiFe alloys for reversible solid oxide cells[J]. ACS Sustainable Chemistry & Engineering,2022,10(23):7595-7602.

    [49]

    KYRIAKOU V, NEAGU D, PAPAIOANNOU E I, et al. Co-electrolysis of H2O and CO2 on exsolved Ni nanoparticles for efficient syngas generation at controllable H2/CO ratios[J]. Applied Catalysis B: Environmental,2019,258:117950. DOI: 10.1016/j.apcatb.2019.117950

    [50]

    LIU T, ZHAO Y, ZHANG X, et al. Robust redox-reversible perovskite type steam electrolyser electrode decorated with in situ exsolved metallic nanoparticles[J]. Journal of Materials Chemistry A,2020,8(2):582-591. DOI: 10.1039/C9TA06309A

    [51]

    AGYEMAN D A, ZHENG Y, LEE T H, et al. Synergistic catalysis of the lattice oxygen and transition metal facilitating ORR and OER in perovskite catalysts for Li-O2 batteries[J]. ACS Catalysis,2021,11(1):424-434. DOI: 10.1021/acscatal.0c02608

    [52]

    BIAN J, LI Z, LI N, et al. Oxygen deficient LaMn0.75Co0.25O3−δ nanofibers as an efficient electrocatalyst for oxygen evolution reaction and zinc-air batteries[J]. Inorganic Chemistry,2019,58(12):8208-8214. DOI: 10.1021/acs.inorgchem.9b01034

    [53]

    LU F, XIA T, LI Q, et al. Heterostructured simple perovskite nanorod-decorated double perovskite cathode for solid oxide fuel cells: Highly catalytic activity, stability and CO2-durability for oxygen reduction reaction[J]. Applied Catalysis B: Environmental,2019,249:19-31. DOI: 10.1016/j.apcatb.2019.02.056

    [54]

    CHEN Y, CHEN Y, DING D, et al. A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells[J]. Energy & Environmental Science,2017,10(4):964-971.

    [55]

    YANG Y, XIAO W, FENG X, et al. Golden palladium zinc ordered intermetallics as oxygen reduction electrocatalysts[J]. ACS Nano,2019,13(5):5968-5974. DOI: 10.1021/acsnano.9b01961

    [56]

    CHATENET M, POLLET B G, DEKEL D R, et al. Water electrolysis: From textbook knowledge to the latest scientific strategies and industrial developments[J]. Chemical Society Reviews,2022,51(11):4583-4762. DOI: 10.1039/D0CS01079K

    [57]

    BU Y, KIM S, KWON O, et al. A composite catalyst based on perovskites for overall water splitting in alkaline conditions[J]. ChemElectroChem,2019,6(5):1520-1524. DOI: 10.1002/celc.201801775

    [58]

    WANG Y, WANG Z, JIN C, et al. Enhanced overall water electrolysis on a bifunctional perovskite oxide through interfacial engineering[J]. Electrochimica Acta,2019,318:120-129. DOI: 10.1016/j.electacta.2019.06.073

    [59]

    TANG L, CHEN Z, ZUO F, et al. Enhancing perovskite electrocatalysis through synergistic functionalization of B-site cation for efficient water splitting[J]. Chemical Engineering Journal,2020,401:126082. DOI: 10.1016/j.cej.2020.126082

    [60]

    KIM S, JUNG J W, SONG D, et al. Exceptionally durable CoFe-exsolved Sr0.95Nb0.1Co0.7Fe0.2O3–δ catalyst for rechargeable Zn-air batteries[J]. Applied Catalysis B: Environmental,2022,315:121553. DOI: 10.1016/j.apcatb.2022.121553

    [61]

    GUO S, ZOU L, SUN M, et al. Enhancing the bifunctional catalytic performance of porous La0.9Mn0.6Ni0.4O3−δ nanofibers for Li-O2 batteries through exsolution of Ni nanoparticles[J]. ACS Applied Energy Materials,2020,3(10):10015-10022. DOI: 10.1021/acsaem.0c01691

  • 期刊类型引用(4)

    1. 赵肖娟,王亚楠,邓璐,于嫚,孟志新. 创新创业背景下高分子物理的课堂设计——以BC/GO/PVA复合膜的制备及力学性能研究为例. 广东化工. 2024(13): 155-157 . 百度学术
    2. 韩定,范晓天,姜瑾,刘辉辉,王梦瑶,王智. 聚苯并噁嗪/纤维素纳米晶复合材料的制备及性能. 工程塑料应用. 2022(04): 7-13 . 百度学术
    3. 刘新路,罗立君,罗静,张茂盛,党新栋,刘首岐,倪书振. 壳聚糖-多巴胺/蒙脱土复合膜的制备和抗水性能研究. 纤维素科学与技术. 2022(02): 28-34 . 百度学术
    4. 杨亮,李韦霖,宋鑫钥,王梦菲,李文全. 基于聚乙烯醇复合膜的改性研究进展. 印染助剂. 2022(11): 5-11 . 百度学术

    其他类型引用(2)

  • 目的 

    近年来,纳米金属催化剂因其活性表面积的增加和催化性能的大幅提高,在开发高效能量转换和存储技术方面受到了广泛关注,包括燃料电池、水电解和催化重整。通过原位出溶方法制备的纳米催化剂已被证明可以克服传统纳米金属催化剂的应用局限,表现出更高的纳米颗粒密度和更强的抗烧结能力,本文总结了应用于能源领域中的出溶材料的最新研究进展。

    方法 

    综述有关原位出溶催化剂的相关研究,重点从实验和理论研究中介绍出溶机理和相关驱动力。基于对研究最多的ABO钙钛矿氧化物中纳米颗粒出溶的一般生长机制的讨论,我们对目前的合成策略进行分类,讨论了它们在其中的热力学作用。并通过几个典型的催化应用证明了其在提高催化性能方面的结构优势,对未来应用于燃料电池、电池、超级电容器和光催化剂等领域的高性能出溶催化剂进行展望。

    结果 

    目前,原位出溶策略受到了越来越多的关注,因为它使一些优秀的催化剂具有显著增强的物理化学性质。嵌入的界面结构可以产生独特且高活性的位点,并可以极大地防止它们中毒和粗化。同时,它们可以通过氧化还原处理再生。掺杂 A 位和 B 位阳离子为材料设计方法开辟了道路,该方法允许根据应用对特定属性进行微调。钙钛矿的一个主要优点是能够在特定条件下通过“出溶”过程在表面形成纳米粒子。出溶导致材料表面形成均匀分散的纳米颗粒(可以是金属或金属氧化物),这些纳米颗粒由钙钛矿晶格的 B 位阳离子构成。各种潜在的催化剂已经通过不同的反应进行了测试,氧化物母体材料和出溶的纳米颗粒已经用多种不同的方法进行了研究。尽管已经取得了很大的成功,但仍然需要注意以下领域。(1) 迄今为止,出溶主要在高温下进行。然而,高温可能导致纳米颗粒的快速不受控制的生长和粗化问题。因此,有必要开发一种可行、有效的低温出溶策略。由于掺杂剂和母体氧化物之间的强烈相互作用,应谨慎选择A位和B位元素。由于出溶通常发生在表面下约几十纳米处,控制母氧化物的晶粒尺寸和边界可能是促进出溶的另一种操作方法。(2)仍然难以精确地调整出溶金属的组成。在实验上,为了获得特定的组成,应该考虑仔细选择具有适当偏析能量的掺杂剂并调整掺杂水平。

    结论 

    基于热力学分析,本文全面概述了从母体氧化物载体原位生长金属纳米颗粒作为一种有前途的催化应用技术。基于热力学分析和一些实际例子,提出了合成出溶金属纳米颗粒的一般思路,能够启发科研人员开发更简单的方法来获得独特的负载型催化剂,并在其实际应用中保持活性和稳定性之间进行良好的平衡。

图(7)  /  表(1)
计量
  • 文章访问数:  1132
  • HTML全文浏览量:  552
  • PDF下载量:  77
  • 被引次数: 6
出版历程
  • 收稿日期:  2023-05-14
  • 修回日期:  2023-06-27
  • 录用日期:  2023-07-06
  • 网络出版日期:  2023-07-31
  • 刊出日期:  2023-12-31

目录

/

返回文章
返回