Research progress for perovskite-structure exsolution materials
-
摘要: 纳米结构催化材料被认为是各种能量转换和存储系统的有利设计理念。负载在氧化物载体上的纳米金属催化剂已被应用于燃料电池、气体传感器和化学重整装置等众多领域。然而,纳米金属催化剂经常存在耐久性问题。尽管表面修饰的纳米金属催化剂可以提供足够的催化活性,但其在恶劣的操作环境中的耐久性问题仍然存在。最近,原位出溶产生的纳米催化剂已被证明可以克服传统纳米金属催化剂的应用局限。出溶被定义为钙钛矿氧化物中具有催化活性的掺杂剂作为高度分散的纳米金属催化剂在其表面上出溶的过程。特别地,嵌入钙钛矿氧化物的出溶纳米催化剂比传统的纳米金属催化剂表现出更高的纳米颗粒密度和更强的抗烧结能力。本文概述了用于能源应用中出溶材料的最新进展,包括基本机制、主体氧化物的设计策略和实际应用。还讨论了这些材料的未来前景和进一步优化的途径。Abstract: Nanostructured catalytic materials are considered to be a favorable design concept for various energy conversion and storage systems. Nanosized metal catalysts supported on oxide scaffolds have been adopted in numerous fields, including fuel cells, gas sensors, and chemical reforming devices. Nevertheless, nanometal catalysts often suffer from durability issues. Although surface-decorated nanometal catalysts can deliver sufficient catalytic activity, some of them still exhibit durability issues in severe operating environments. Recently, nanocatalysts produced by in situ exsolution have been demonstrated to overcome the practical limitations of conventional nanometal catalysts. The exsolution is defined as a process in which a catalytically active dopant in perovskite oxide is exsolved on its surface as highly dispersed nanometal catalysts. In particular, exsolution nanocatalysts embedded on perovskite oxides exhibit higher nanoparticle densities and greater resistance to particle agglomeration than conventional nanometal catalysts. This perspective presents an overview of recent advances in exsolution materials for energy applications including fundamental mechanisms, design strategies for host oxides, and practical applications. The future prospects of these materials and the scope for further optimization are also discussed.
-
Key words:
- perovskite /
- metal nanoparticles /
- energy devices /
- electrocatalyst /
- ex-solution
-
图 1 促进钙钛矿氧化物B位阳离子出溶的各种效应及其多功能应用示意图[1]
Figure 1. Schematic of various effects in facilitating the exsolution of B-site cations for perovskite oxides and its multifunctional applications[1]
SOFC—Solid oxide fuel cells; SOEC—Solid oxide electrolysis cells; CB—Conduction band; VB—Valence band; hv—Photon energy; HER—Hydrogen evolution reaction; OER—Oxygen evolution reaction; PO2—Oxygen partial pressure
图 5 (a) 在纯H2 (左)和20% H2 (右)中还原5、10、15、20和30 h颗粒的SEM图像;(b) 不同氧分压(PO2)下平均粒径和还原时间之间的关系[34]
Figure 5. (a) SEM images of the particles reduced in pure H2 (left) and 20% H2 (right) for 5, 10, 15, 20, and 30 h; (b) Relationship between average particle size and reduction time under different oxygen partial pressure (PO2) conditions[34]
图 7 电化学转换和触发效应:(a) 电化学转换方法的示意图;(b) TGA曲线和施加电势下的电池电流;(c) 气体还原和电化学转换的特性[39]
Figure 7. Electrochemical switching and triggering effects: (a) Schematic illustration of the electrochemical swit ching method; (b) TGA curve and cell current under an applied potential; (c) Properties of gas reduction and electrochemical switching[39]
表 1 还原气氛处理的出溶钙钛矿在电催化领域的应用
Table 1. Summary on the exsolution on perovskites under reducing gas for electrocatalysis
Catalysts Atmosphere Exsolved metal Application Ref. La0.43Sr0.37Cu0.12Ti0.88O3–δ Pure H2 at 400-700℃ Cu SOFC [41] La0.65Sr0.3Cr0.85Ni0.15O3−δ 5% H2-Ar at 1200℃ Ni SOFC [45] Sm0.80-xSr0.20Fe0.80Ti0.15Ru0·05O3−δ 5% H2/Ar at 900℃ Ru SOFC [46] La0.4Sr0.6Co0.2Fe0.7Mo0.1O3–δ 5% H2/Ar at 700℃ Co-Fe SOEC [47] Pr0.8Sr1.2(Fe, Ni)0.8Nb0.2O4–δ 20% H2/Ar at 850℃ Ni-Fe SOEC [48] La0.43Ca0.37Ni0.06Ti0.94O3–δ 10% H2/N2 at 900℃ Ni SOEC [49] Sr2Fe1.3Ni0.2Mo0.5O6–δ H2 (3% H2O) at 800℃ Ni-Fe SOFC/SOEC [50] La0.9Mn0.6Ni0.4O3−δ 5% H2/Ar at 650℃ Ni Li-O2 batteries [51] LaMn0.75Co0.25O3−δ 5% H2/Ar at 830℃ Co Zi-air batteries [52] -
[1] JEONG H, KIM Y H, WON B R, et al. Emerging exsolution materials for diverse energy applications: Design, mechanism, and future prospects[J]. Chemistry of Materials,2023,35(10):3745-3764. doi: 10.1021/acs.chemmater.3c00004 [2] YANG Y, LI J, SUN Y. The metal/oxide heterointerface delivered by solid-based exsolution strategy: A review[J]. Chemical Engineering Journal,2022,440:135868. doi: 10.1016/j.cej.2022.135868 [3] MEI J, LIAO T, SUN Z. Metal exsolution engineering on perovskites for electrocatalysis: A perspective[J]. Materials Today Energy,2023,31:101216. doi: 10.1016/j.mtener.2022.101216 [4] WANG J, KALAEV D, YANG J, et al. Fast surface oxygen release kinetics accelerate nanoparticle exsolution in perovskite oxides[J]. Journal of the American Chemical Society,2023,145(3):1714-1727. doi: 10.1021/jacs.2c10256 [5] ZHU T, TROIANI H E, MOGNI L V, et al. Ni-substituted Sr(Ti, Fe)O3 SOFC anodes: Achieving high performance via metal alloy nanoparticle exsolution[J]. Joule,2018,2(3):478-496. doi: 10.1016/j.joule.2018.02.006 [6] SUN Z, FAN W, BAI Y. A flexible method to fabricate exsolution-based nanoparticle-decorated materials in seconds[J]. Advanced Science,2022,9(12):2200250. doi: 10.1002/advs.202200250 [7] WANG J, KUMAR A, WARDINI J L, et al. Exsolution-driven surface transformation in the host oxide[J]. Nano Letters,2022,22(13):5401-5408. doi: 10.1021/acs.nanolett.2c01439 [8] SHIOZAKI R, ANDERSEN A G, HAYAKAWA T, et al. Partial oxidation of methane over a Ni/BaTiO3 catalyst prepared by solid phase crystallization[J]. Journal of the Chemical Society, Faraday Transactions,1997,93(17):3235-3242. doi: 10.1039/a701383c [9] ISLAM Q A, PAYDAR S, AKBAR N, et al. Nanoparticle exsolution in perovskite oxide and its sustainable electrochemical energy systems[J]. Journal of Power Sources,2021,492:229626. doi: 10.1016/j.jpowsour.2021.229626 [10] IRVINE J T S, NEAGU D, VERBRAEKEN M C, et al. Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers[J]. Nature Energy,2016,1(1):15014. doi: 10.1038/nenergy.2015.14 [11] LEE W, HAN J W, CHEN Y, et al. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites[J]. Journal of the American Chemical Society,2013,135(21):7909-7925. doi: 10.1021/ja3125349 [12] LI Y, ZHANG W, ZHENG Y, et al. Controlling cation segregation in perovskite-based electrodes for high electro-catalytic activity and durability[J]. Chemical Society Reviews,2017,46(20):6345-6378. doi: 10.1039/C7CS00120G [13] KOO B, KIM K, KIM J K, et al. Sr segregation in perovskite oxides: Why it happens and how it exists[J]. Joule,2018,2(8):1476-1499. doi: 10.1016/j.joule.2018.07.016 [14] KIM J H, KIM J K, LIU J, et al. Nanoparticle exsolution for supported catalysts: Materials design, mechanism and future perspectives[J]. ACS Nano,2021,15(1):81-110. doi: 10.1021/acsnano.0c07105 [15] ZHU J, ZHANG W, LI Y, et al. Enhancing CO2 catalytic activation and direct electroreduction on in-situ exsolved Fe/MnOx nanoparticles from (Pr, Ba)2Mn2–yFeyO5+δ layered perovskites for SOEC cathodes[J]. Applied Catalysis B: Environmental,2020,268:118389. doi: 10.1016/j.apcatb.2019.118389 [16] NEAGU D, OH T S, MILLER D N, et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution[J]. Nature Communications,2015,6(1):8120. doi: 10.1038/ncomms9120 [17] HU H, LI M, MIN H, et al. Enhancing the catalytic activity and coking tolerance of the perovskite anode for solid oxide fuel cells through in situ exsolution of Co-Fe nanoparticles[J]. ACS Catalysis,2022,12(1):828-836. doi: 10.1021/acscatal.1c04807 [18] ZHANG P, GUAN G, KHAERUDINI D S, et al. Evaluation of performances of solid oxide fuel cells with symmetrical electrode material[J]. Journal of Power Sources,2014,266:241-249. doi: 10.1016/j.jpowsour.2014.05.013 [19] BOTH K G, REINERTSEN V M, AARHOLT T M, et al. Ni-doped A-site excess SrTiO3 thin films modified with Au nanoparticles by a thermodynamically-driven restructuring for plasmonic activity[J]. Catalysis Today,2023,413-415:113950. doi: 10.1016/j.cattod.2022.11.011 [20] NEAGU D, TSEKOURAS G, MILLER D N, et al. In situ growth of nanoparticles through control of non-stoichiometry[J]. Nature Chemistry,2013,5(11):916-923. doi: 10.1038/nchem.1773 [21] GAO Y, LU Z, YOU T L, et al. Energetics of nanoparticle exsolution from perovskite oxides[J]. The Journal of Physical Chemistry Letters,2018,9(13):3772-3778. doi: 10.1021/acs.jpclett.8b01380 [22] HAMADA I, UOZUMI A, MORIKAWA Y, et al. A density functional theory study of self-regenerating catalysts LaFe(1–x)M(x)O(3–y) (M=Pd, Rh, Pt)[J]. Journal of the American Chemical Society,2011,133(46):18506-18509. doi: 10.1021/ja110302t [23] ZHANG B W, ZHU M N, GAO M R, et al. Boosting the stability of perovskites with exsolved nanoparticles by B-site supplement mechanism[J]. Nature Communications,2022,13(1):4618. doi: 10.1038/s41467-022-32393-y [24] JO Y R, KOO B, SEO M J, et al. Growth kinetics of individual Co particles ex-solved on SrTi(0.75)Co(0.25)O(3–δ) polycrystalline perovskite thin films[J]. Journal of the American Chemical Society,2019,141(16):6690-6697. doi: 10.1021/jacs.9b01882 [25] PAPARGYRIOU D, MILLER D N, SIRR IRVINE J T. Exsolution of Fe-Ni alloy nanoparticles from (La, Sr)(Cr, Fe, Ni)O3 perovskites as potential oxygen transport membrane catalysts for methane reforming[J]. Journal of Materials Chemistry A,2019,7(26):15812-15822. doi: 10.1039/C9TA03711J [26] TSEKOURAS G, NEAGU D, IRVINE J T S. Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants[J]. Energy & Environmental Science,2013,6(1):256-266. [27] KWON O, SENGODAN S, KIM K, et al. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites[J]. Nature Communications,2017,8:15967. doi: 10.1038/ncomms15967 [28] DING S, LI M, PANG W, et al. A-site deficient perovskite with nano-socketed Ni-Fe alloy particles as highly active and durable catalyst for high-temperature CO2 electrolysis[J]. Electrochimica Acta,2020,335:135683. doi: 10.1016/j.electacta.2020.135683 [29] FOSSDAL A, MENON M, WÆRNHUS I, et al. Crystal structure and thermal expansion of La1−xSrxFeO3−δ materials[J]. Journal of the American Ceramic Society,2004,87(10):1952-1958. doi: 10.1111/j.1151-2916.2004.tb06346.x [30] SUN Y F, ZHANG Y Q, CHEN J, et al. New opportunity for in situ exsolution of metallic nanoparticles on perovskite parent[J]. Nano Letters,2016,16(8):5303-5309. doi: 10.1021/acs.nanolett.6b02757 [31] DEKA D J, KIM J, GUNDUZ S, et al. Investigation of hetero-phases grown via in-situ exsolution on a Ni-doped (La, Sr)FeO3 cathode and the resultant activity enhancement in CO2 reduction[J]. Applied Catalysis B: Environmental,2021,286:119917. doi: 10.1016/j.apcatb.2021.119917 [32] WANG J, YANG J, OPITZ A K, et al. Tuning point defects by elastic strain modulates nanoparticle exsolution on perovskite oxides[J]. Chemistry of Materials,2021,33(13):5021-5034. doi: 10.1021/acs.chemmater.1c00821 [33] HAN H, PARK J, NAM S Y, et al. Lattice strain-enhanced exsolution of nanoparticles in thin films[J]. Nature Communications,2019,10(1):1471. doi: 10.1038/s41467-019-09395-4 [34] GAO Y, CHEN D, SACCOCCIO M, et al. From material design to mechanism study: Nanoscale Ni exsolution on a highly active A-site deficient anode material for solid oxide fuel cells[J]. Nano Energy,2016,27:499-508. doi: 10.1016/j.nanoen.2016.07.013 [35] THALINGER R, GOCYLA M, HEGGEN M, et al. Exsolution of Fe and SrO nanorods and nanoparticles from lanthanum strontium ferrite La0.6Sr0.4FeO3−δ materials by hydrogen reduction[J]. The Journal of Physical Chemistry C,2015,119(38):22050-22056. doi: 10.1021/acs.jpcc.5b06014 [36] NEAGU D, KYRIAKOU V, ROIBAN I L, et al. In situ observation of nanoparticle exsolution from perovskite oxides: From atomic scale mechanistic insight to nanostructure tailoring[J]. ACS Nano,2019,13(11):12996-13005. doi: 10.1021/acsnano.9b05652 [37] SANTAYA M, JIMÉNEZ C E, TROIANI H E, et al. Tracking the nanoparticle exsolution/reoxidation processes of Ni-doped SrTi0.3Fe0.7O3−δ electrodes for intermediate temperature symmetric solid oxide fuel cells[J]. Journal of Materials Chemistry A,2022,10(29):15554-15568. doi: 10.1039/D2TA02959F [38] LYU H, LIN L, ZHANG X, et al. Promoting exsolution of RuFe alloy nanoparticles on Sr2Fe1.4Ru0.1Mo0.5O6−δ via repeated redox manipulations for CO2 electrolysis[J]. Nature Communications,2021,12(1):5665. doi: 10.1038/s41467-021-26001-8 [39] MYUNG J H, NEAGU D, MILLER D N, et al. Switching on electrocatalytic activity in solid oxide cells[J]. Nature,2016,537(7621):528-531. doi: 10.1038/nature19090 [40] JO S, HAN KIM Y, JEONG H, et al. Exsolution of phase-separated nanoparticles via trigger effect toward reversible solid oxide cell[J]. Applied Energy,2022,323:119615. doi: 10.1016/j.apenergy.2022.119615 [41] JO S, JEONG H G, KIM Y H, et al. Stability and activity controls of Cu nanoparticles for high-performance solid oxide fuel cells[J]. Applied Catalysis B: Environmental,2021,285:119828. doi: 10.1016/j.apcatb.2020.119828 [42] HE S, LI M, HUI J, et al. In-situ construction of ceria-metal/titanate heterostructure with controllable architectures for efficient fuel electrochemical conversion[J]. Applied Catalysis B: Environmental,2021,298:120588. doi: 10.1016/j.apcatb.2021.120588 [43] ZHANG W, WANG H, CHEN X, et al. Manipulation of rare earth on voltage-driven in-situ exsolution process of perovskite cathodes for low-temperature solid oxide fuel cells[J]. Chemical Engineering Journal,2022,446:136934. doi: 10.1016/j.cej.2022.136934 [44] CHUNG Y S, KIM T, SHIN T H, et al. In situ preparation of a La1.2Sr0.8Mn0.4Fe0.6O4 Ruddlesden-Popper phase with exsolved Fe nanoparticles as an anode for SOFCs[J]. Journal of Materials Chemistry A,2017,5(14):6437-6446. doi: 10.1039/C6TA09692A [45] AMAYA-DUEÑAS D M, CHEN G, WEIDENKAFF A, et al. A-site deficient chromite with in situ Ni exsolution as a fuel electrode for solid oxide cells (SOCs)[J]. Journal of Materials Chemistry A,2021,9(9):5685-5701. doi: 10.1039/D0TA07090D [46] FAN W, SUN Z, BAI Y, et al. In situ growth of nanoparticles in A-site deficient ferrite perovskite as an advanced electrode for symmetrical solid oxide fuel cells[J]. Journal of Power Sources,2020,456:228000. doi: 10.1016/j.jpowsour.2020.228000 [47] LYU H, LIU T, ZHANG X, et al. Atomic-scale insight into exsolution of CoFe alloy nanoparticles in La0.4Sr0.6Co0.2Fe0.7Mo0.1O3−δ with efficient CO2 electrolysis[J]. Angewandte Chemie International Edition,2020,59(37):15968-15973. doi: 10.1002/anie.202006536 [48] CHOI J, KIM M, KANG S K, et al. A highly efficient bifunctional electrode fashioned with in situ exsolved NiFe alloys for reversible solid oxide cells[J]. ACS Sustainable Chemistry & Engineering,2022,10(23):7595-7602. [49] KYRIAKOU V, NEAGU D, PAPAIOANNOU E I, et al. Co-electrolysis of H2O and CO2 on exsolved Ni nanoparticles for efficient syngas generation at controllable H2/CO ratios[J]. Applied Catalysis B: Environmental,2019,258:117950. doi: 10.1016/j.apcatb.2019.117950 [50] LIU T, ZHAO Y, ZHANG X, et al. Robust redox-reversible perovskite type steam electrolyser electrode decorated with in situ exsolved metallic nanoparticles[J]. Journal of Materials Chemistry A,2020,8(2):582-591. doi: 10.1039/C9TA06309A [51] AGYEMAN D A, ZHENG Y, LEE T H, et al. Synergistic catalysis of the lattice oxygen and transition metal facilitating ORR and OER in perovskite catalysts for Li-O2 batteries[J]. ACS Catalysis,2021,11(1):424-434. doi: 10.1021/acscatal.0c02608 [52] BIAN J, LI Z, LI N, et al. Oxygen deficient LaMn0.75Co0.25O3−δ nanofibers as an efficient electrocatalyst for oxygen evolution reaction and zinc-air batteries[J]. Inorganic Chemistry,2019,58(12):8208-8214. doi: 10.1021/acs.inorgchem.9b01034 [53] LU F, XIA T, LI Q, et al. Heterostructured simple perovskite nanorod-decorated double perovskite cathode for solid oxide fuel cells: Highly catalytic activity, stability and CO2-durability for oxygen reduction reaction[J]. Applied Catalysis B: Environmental,2019,249:19-31. doi: 10.1016/j.apcatb.2019.02.056 [54] CHEN Y, CHEN Y, DING D, et al. A robust and active hybrid catalyst for facile oxygen reduction in solid oxide fuel cells[J]. Energy & Environmental Science,2017,10(4):964-971. [55] YANG Y, XIAO W, FENG X, et al. Golden palladium zinc ordered intermetallics as oxygen reduction electrocatalysts[J]. ACS Nano,2019,13(5):5968-5974. doi: 10.1021/acsnano.9b01961 [56] CHATENET M, POLLET B G, DEKEL D R, et al. Water electrolysis: From textbook knowledge to the latest scientific strategies and industrial developments[J]. Chemical Society Reviews,2022,51(11):4583-4762. doi: 10.1039/D0CS01079K [57] BU Y, KIM S, KWON O, et al. A composite catalyst based on perovskites for overall water splitting in alkaline conditions[J]. ChemElectroChem,2019,6(5):1520-1524. doi: 10.1002/celc.201801775 [58] WANG Y, WANG Z, JIN C, et al. Enhanced overall water electrolysis on a bifunctional perovskite oxide through interfacial engineering[J]. Electrochimica Acta,2019,318:120-129. doi: 10.1016/j.electacta.2019.06.073 [59] TANG L, CHEN Z, ZUO F, et al. Enhancing perovskite electrocatalysis through synergistic functionalization of B-site cation for efficient water splitting[J]. Chemical Engineering Journal,2020,401:126082. doi: 10.1016/j.cej.2020.126082 [60] KIM S, JUNG J W, SONG D, et al. Exceptionally durable CoFe-exsolved Sr0.95Nb0.1Co0.7Fe0.2O3–δ catalyst for rechargeable Zn-air batteries[J]. Applied Catalysis B: Environmental,2022,315:121553. doi: 10.1016/j.apcatb.2022.121553 [61] GUO S, ZOU L, SUN M, et al. Enhancing the bifunctional catalytic performance of porous La0.9Mn0.6Ni0.4O3−δ nanofibers for Li-O2 batteries through exsolution of Ni nanoparticles[J]. ACS Applied Energy Materials,2020,3(10):10015-10022. doi: 10.1021/acsaem.0c01691