Research progress of MXene composite aerogels in the field of electrochemical energy storage
-
摘要: MXene材料目前已在电磁屏蔽、传感、污水处理等多个领域具有广泛应用,其优异的电化学性能使得其在储能领域也展现出广阔的应用前景。然而,MXene的自堆叠与易氧化等特性,限制了其进一步发展。将MXene组装成三维(3D)结构复合材料是解决上述问题的有效途径之一。3D多孔结构能为离子传输/存储提供更多通道和活性位点,可有效提高电化学性能。本文主要回顾MXene复合气凝胶的最新研究进展,详细阐述MXene复合气凝胶的制备方法以及其在电池、超级电容器等储能方面的应用。最后,对其发展方向进行了展望。Abstract: MXene materials have been widely used in many fields, such as electromagnetic shielding, sensing, and wastewater treatment. The excellent electrochemical properties of MXene makes it demonstrate broad application prospects in the field of energy storage as well. However, the self-stacking and easy oxidation characteristics of MXene limit its further development. The assembly of MXene into three-dimensional (3D) structural composites is one of the effective way to solve the above problems. The 3D porous structure can provide more channels and active sites for ion transport or storage, which can effectively improve the electrochemical performance. This article reviews the recent researches of MXene composite aerogels. The preparation methods and applications of MXene composite aerogels in energy storage, such as batteries and supercapacitors, are discussed in detail. Finally, the prospects for its future development direction were also presented.
-
Key words:
- MXene /
- aerogel /
- composites /
- preparation processes /
- electrochemical energy storage /
- batteries /
- supercapacitors
-
图 1 (a) 超轻多孔TiVC/还原氧化石墨烯(rGO)双金属气凝胶(TVGA)的合成及Li-CO2电池原理图(I)、TVGA气凝胶光学图(II)和具有良好柔韧性的TVGA阴极片的光学图(III)[24];(b) 制造Ti3C2Tx MXene-石墨烯复合气凝胶(MGA)材料的示意图(I)和在无约束条件下MGA材料的顶部(左)和侧视图的SEM图像(II)[27];(c) Mo-Ti/MXene (Mx)-rGO-纤维素纳米纤维(GN)气凝胶(Mo-Ti/Mx-GN)合成工艺示意图(I)和SEM图像(II)[29];(d) 3D多孔1T MoS2/Ti3C2Tx复合气凝胶 X-Z和X-Y横截面SEM图像[30];(e) 3D打印V2CTx/rGO-碳纳米管(CNT)微栅气凝胶电极的制备过程示意图(I)和30%V2CTx/rGO-CNT微格栅气凝胶的SEM图像(II)[40];(f) 3D打印各种结构的模板[41];(g) Ti3C2Tx/碳纳米纤维(CNF)复合气凝胶制备工艺示意图(I)和Ti3C2Tx/CNF6-2的SEM图像(II)[43];(h) 具有褶皱结构的MXene平台器件(上)和Mg2+-MXene气凝胶的SEM图像(下) [45]
Figure 1. (a) Synthesis of ultralight porous TiVC/reduced graphene oxide (rGO) aerogels (TVGA) and schematic diagram of Li-CO2 battery (I), optical photos of block TVGA (II) and TVGA cathode sheet with good flexibility (III)[24]; (b) Schematic illustration of fabricating Ti3C2Tx MXene and graphene aerogel (MGA) material (I), SEM images of top (left) and side views under unconstrained conditions for the MGA material (II)[27]; (c) Schematic diagram illustrating the synthesis process (I) and SEM images (II) of the metallic 1T MoS2 and rich oxygen vacancies TinO2n–1/MXene hierarchical bifunctional catalyst (Mo-Ti/Mx) anchored on a rGO-cellulose nanofiber (GN) host (Mo-Ti/Mx-GN) aerogel[29]; (d) X-Z and X-Y cross-sectional SEM images of 3D highly-porous 1T MoS2/Ti3C2Tx composite aerogel[30]; (e) Schematic diagram of the preparation process of a 3D-printed V2CTx/rGO-carbon nanotube (CNT) microgrid aerogel electrode (I), SEM image of the 30%V2CTx/rGO-CNT microgrid aerogel (II)[40]; (f) 3D printing templates for various structures[41]; (g) Schematic illustration of the fabrication process of Ti3C2Tx/carbon nanofiber (CNF) composite aerogel (I), SEM image of Ti3C2Tx/CNF6-2 (Ⅱ)[43]; (h) MXene platform device with folded structure (top), SEM image of a Mg2+-MXene aerogel (bottom)[45]
GO—Graphene oxide; ΔT—Temperature
图 2 (a) 氧化石墨烯(GO)辅助组装Ti3C2Tx MXene复合气凝胶经硫改性(SMGA)后的SEM图像[48];(b) SMGA电极在0.1~3 mV·s−1不同扫描速下的CV曲线[48];(c) 组装活性炭(AC)//SMGA SiC供电LED阵列和电子温度计的数码照片[48];(d) 锑单原子和量子点(~5 nm)共修饰Ti3C2Tx MXene气凝胶(Sb SQ@MA)的SEM图像[50];(e) Sb SQ@MA与钾离子电池(PIBs)中其他报道的Sb基阳极的倍率性能比较[50];(f) Sb SQ@MA长期循环性能[50]
Figure 2. (a) SEM image of graphene oxide (GO)-assisted assembly of Ti3C2Tx MXene aerogel after sulfur modified (SMGA)[48]; (b) CV curves of the SMGA electrode at different scan rates from 0.1-3 mV·s−1[48]; (c) Digital photos of LED arrays and electronic thermometer powered by the assembled activated carbon (AC)//SMGA SiC[48]; (d) SEM image of antimony single atoms and quantum dots (~5 nm) codecorated Ti3C2Tx MXene-based aerogels (Sb SQ@MA)[50]; (e) Comparison of the rate performance of the Sb SQ@MA with other reported Sb-based anodes in potassium-ion batteries (PIBs)[50]; (f) Long-term cycling performance of the Sb SQ@MA[50]
NC—N-doped three-dimensional porous carbon
图 3 (a) MXene涂层三维气凝胶(MCG-6)复合气凝胶在不同放大倍数的SEM图像[55];(b) MCG-6复合气凝胶电极提高锂硫电池动力学反应速率的示意图[55];(c) MCG-6电极在各种速率下的恒流充放电曲线[55];(d) MXene/C-CNF复合气凝胶(MC-6)的SEM图像[57];(e) MC-6复合气凝胶电极在不同速率下的恒流充放电曲线[57];(f) MXene/T-CNF复合气凝胶(MT-4)的SEM图像[57];(g) MT-4复合气凝胶电极在不同速率下的恒流充放电曲线[57];(h) 层状(PA) MXene-CNT-50复合气凝胶的SEM图:(I) 俯视图(插图是PA MXene/CNT-50整体的照片);(II) 侧视图; (III) 高放大率图[54]
Figure 3. (a) SEM images of MXene-coated three-dimensional aerogel (MCG-6) composite aerogel under different magnifications[55]; (b) Illustration of MCG-6 composite aerogel electrode enhancing the kinetic reaction rate of lithium-sulfur battery [55]; (c) Galvanostatic charge and discharge curves of MCG-6 electrodes at various rates[55]; (d) SEM image of MXene/C-CNF composite aerogel (MC-6)[57]; (e) Galvanostatic charge and discharge curves of MC-6 composite aerogel electrode at various rates[57]; (f) SEM image of MXene/T-CNF composite aerogel (MT-4)[57]; (g) Galvanostatic charge and discharge curves of MT-4 composite aerogel electrode at various rates[57]; (h) SEM images of the parallel-aligned (PA)-MXene/CNT-50 composite aerogel: (I) Top-view (Inset is a photo of the PA-MXene/CNT-50 monolith); (II) Side-view; (III) High magnification[54]
T-CNF—TEMPO-oxidized cellulose nanofibers; C-CNF—Cation-CNF; TEMPO—2, 2, 6, 6-tetramethylpiperidoxyl
图 4 (a) 两个混合超级电容器(HSC)器件串联,为温度计供电超过8 min[32];(b) (I)自愈机制示意图和光学图;(II) 自愈后的聚氨酯(PU)展示:弯曲状态(左上),平坦状态(左下),支撑500 g质量(右),矩形表示伤口/愈合的位置;(III) MXene/rGO 复合气凝胶的SEM图像[60];(c) (I) MLSG-6复合气凝胶的SEM图像;(II) 显示LSG//MLSG-6不对称装置与其他最新超级电容器相比的面积能量和功率密度的Ragone图;(III) 由一个LSG//MLSG-6不对称超级电容器供电的小灯泡[61]
Figure 4. (a) Two hybrid supercapacitor (HSC) devices connected in series to power a thermometer more than 8 min[32]; (b) (I) Schematic diagrams and optical images of the self-healable mechanism; (II) Demonstration of after self-healing polyurethane (PU): Under bending state (top left), under flat state (bottom left), supporting a 500 g mass (right) (Rectangles indicate the wound/healing positions); (III) SEM image of MXene/rGO composite aerogel[60]; (c) (I) SEM images of MLSG-6 composite aerogel; (II) Ragone plot displaying areal energy and power densities of LSG//MLSG-6 asymmetric device in comparison to the other state-of-the-art supercapacitors; (III) A small bulb powered by one LSG//MLSG-6 asymmetric supercapacitor[61]
PANI—Polyaniline; ESCNF—Electrospinning carbon nanofiber; PEDOT—Poly(3, 4-ethylenedioxythiophene); PSS—Polystyrene sulfonate; MLSG—Lignosulfonate (LS) modified-MXene (Ti3C2Tx)-reduced graphene oxide; LSG—LS-functionalized reduced graphene oxide; CDC—Carbide-derived carbons
图 5 (a) LiMn2O4 (LMO)//Ti3C2Tx MXene-石墨烯复合气凝胶(MGA)@Zn软包电池在不同折叠状态下的循环性能[27];(b) 分别在10、30、50次循环时软包电池的容量曲线[27]
Figure 5. (a) Cycling performance of the LiMn2O4 (LMO)//Ti3C2Tx MXene and graphene aerogel (MGA)@Zn pouch cells at various folding times[27]; (b) Capacity profiles of the pouch cells at 10, 30, 50 cycles, respectively[27]
表 1 MXene复合气凝胶超级电容器电化学性能
Table 1. Electrochemical properties of supercapacitors assembled by MXene composite aerogels
Materials Key assembly method Electrochemical performance Ref. Ti3C2Tx/cellulose
nanocrystalWaterborne polyurethane (WPU) crosslinking Cycling stability: 86.7%, 4000 cycles; Energy density:
38.5 μW·h·cm−2 at power density of 1375 μW·cm−2[62] Ti3C2Tx Urea-assisted hydrothermal process for nitrogen doping Cycling stability: 85%, 5000 cycles; Energy density: 21.7 W·h·kg−1
at a power density of 600 W·kg−1[63] Ti3C2Tx/rGO Ascorbic acid reduction Specific capacitance: ~65 F·g−1 at 0.5 A·g−1; Cycling stability: 94.5%,
10000 cycles; Energy density: 3.81 W·h·kg−1 at a power density of 163 W·kg−1[64] Ti3C2Tx/rGO/MnO2 Ascorbic acid reduction Cycling stability: 90.5%, 5000 cycles; Energy density: 50.1 W·h·kg−1 at a power density of 2.1 kW·kg−1 [65] Ti3C2Tx/CoS Melamine foam loading Specific capacitance: 41.5 F·g−1 at 0.2 A·g−1; Cycling stability: 80.39%, 5000 cycles; Energy density: 10.66 W·h·kg−1 at a power density of 135.96 W·kg−1 [66] Ti3C2Tx/rGO/Co3O4 Hydrazine hydrate
reductionSpecific capacitance: 345 F·g−1 at 1 A·g−1; Cycling stability: 85%,
10000 cycles; Energy density: 8.25 W·h·kg−1 at a power density of 159.94 W·kg−1[67] Ti3C2/rGO Zn foil reduction Specific capacitance: 41 mF·cm−2, 1 mA·cm−2; Cycling stability: Almost no capacitance decay, 1000 cycles; Energy density:
~2.1 μW·h·cm−2 at a power density of ~301.2 μW·cm−2[68] MXene/zeolitic imida-
zolate framework-8
(ZIF-8)Metal-organic frameworks deposition Specific capacitance: 1176 F·g−1 at 0.5 A·g−1; Cycling stability: 90.88%, 10000 cycles; Energy density: 57.84 W·h·kg−1 at a power density of 628 W·kg−1 [69] Ti3C2Tx/rGO Ascorbic acid reduction Cycling stability: 80%, 4000 cycles; Energy density: 7.5 W·h·kg−1
at a power density of 500 W·kg−1[70] Ti3C2Tx/rGO/Fe3O4 Ethylenediamine (EDA) crosslinking Specific capacitance: 365 mF·cm−2, 1 mA·cm−2; Cycling stability: 84.5%, 30000 cycles; Energy density: 130 μW·h·cm−2 at a power density of 802 μW·cm−2 [71] Ti3C2Tx/rGO/NiCo2O4 Ascorbic acid reduction Specific capacitance: 87 F·g−1 at 1 A·g−1; Energy density: 40.5 W·h·kg−1 at the power density of 1125.1 W·kg−1 [72] Ti3C2Tx/CNT Ice template method Specific capacitance: 410.7 mF·cm−2, 0.8 mA·cm−2; Cycling
stability: 91.2%, 5000 cycles[73] Polypyrrole (PPy)@poly-
vinyl alcohol (PVA)/
bacterial cellulose (BC)/Ti3C2TxIce template method Specific capacitance: 3948 mF·cm−2, 0.47 mA·cm−2; Cycling stability: 120%, 10000 cycles; Energy density: 178 μW·h·cm−2
at a power density of 951 μW·cm−2[74] Ti3C2Tx/sodium
alginate (SA)Ice template method Specific capacitance: 284.5 F·g−1, 2 mV·s−1; Cycling stability:
Almost no capacitance decay, 20000 cycles[36] -
[1] TANG X, LIU H, GUO X, et al. A novel lithium-ion hybrid capacitor based on an aerogel-like MXene wrapped Fe2O3 nanosphere anode and a 3D nitrogen sulphur dual-doped porous carbon cathode[J]. Materials Chemistry Frontiers,2018,2(10):1811-1821. doi: 10.1039/C8QM00232K [2] 刘浩, 姚卫棠. Ti基MXene及其复合材料在金属离子电池中的进展[J]. 复合材料学报, 2020, 37(12):2984-3003. doi: 10.13801/j.cnki.fhclxb.20200717.001LIU Hao, YAO Weitang. Research progress of Ti-based MXene and its composites in metal-ion batteries[J]. Acta Materiae Compositae Sinica,2020,37(12):2984-3003(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200717.001 [3] FENG A H, YU Y, WANG Y, et al. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2[J]. Materials & Design,2017,114:161-166. [4] MOHAMMADI A V, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides (MXenes)[J]. Science,2021,372(6547):eabf1581. doi: 10.1126/science.abf1581 [5] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306 [6] TANG M R, LI J M, WANG Y, et al. Surface terminations of MXene: Synthesis, characterization, and properties[J]. Symmetry,2022,14(11):2232. doi: 10.3390/sym14112232 [7] GOGOTSI Y, ANASORI B. The rise of MXenes[J]. ACS Nano,2019,13(8):8491-8494. doi: 10.1021/acsnano.9b06394 [8] WEI Y, ZHANG P, SOOMRO R A, et al. Advances in the synthesis of 2D MXenes[J]. Advanced Materials,2021,33(39):2103148. doi: 10.1002/adma.202103148 [9] 罗大军, 高进, 田鑫, 等. Ti3C2Tx MXene材料的制备、组装及应用研究进展[J]. 复合材料学报, 2022, 39(2):467-477.LUO Dajun, GAO Jin, TIAN Xin, et al. Research and developing in preparation, assembly and applications of Ti3C2Tx MXene materials[J]. Acta Materiae Compositae Sinica,2022,39(2):467-477(in Chinese). [10] 刘超, 李茜, 郝丽芬, 等. MXene的功能化改性及其应用研究进展[J]. 复合材料学报, 2021, 38(4):1020-1028. doi: 10.13801/j.cnki.fhclxb.20201218.003LIU Chao, LI Xi, HAO Lifen, et al. Research progress of functional modification of MXene and its applications[J]. Acta Materiae Compositae Sinica,2021,38(4):1020-1028(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201218.003 [11] LI Q L, SONG T, WANG Z Z, et al. A general strategy toward metal sulfide nanoparticles confined in a sulfur-doped Ti3C2Tx MXene 3D porous aerogel for efficient ambient N2 electroreduction[J]. Small,2021,17(45):2103305. doi: 10.1002/smll.202103305 [12] BASHIR T, ZHOU S W, YANG S Q, et al. Progress in 3D-MXene electrodes for lithium/sodium/potassium/ magnesium/zinc/aluminum-ion batteries[J]. Electrochemical Energy Reviews,2023,6:5. doi: 10.1007/s41918-022-00174-2 [13] YU L Y, HU L F, ANASORI B, et al. MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors[J]. ACS Energy Letters,2018,3(7):1597-1603. doi: 10.1021/acsenergylett.8b00718 [14] SUN N, ZHU Q Z, ANASORI B, et al. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage[J]. Advanced Functional Materials,2019,29(51):1906282. doi: 10.1002/adfm.201906282 [15] CAO B, LIU H, ZHANG P, et al. Flexible MXene framework as a fast electron/potassium-ion dual-function conductor boosting stable potassium storage in graphite electrodes[J]. Advanced Functional Materials,2021,31(32):2102126. doi: 10.1002/adfm.202102126 [16] ZHAO Q, ZHU Q Z, MIAO J W, et al. Flexible 3D porous MXene foam for high-performance lithium-ion batteries[J]. Small,2019,15(51):1904293. doi: 10.1002/smll.201904293 [17] ZHUO H, HU Y J, CHEN Z H, et al. A carbon aerogel with super mechanical and sensing performances for wearable piezoresistive sensors[J]. Journal of Materials Chemistry A,2019,7(14):8092-8100. doi: 10.1039/C9TA00596J [18] WANG L, ZHANG M Y, YANG B, et al. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor[J]. ACS Nano,2020,14(8):10633-10647. doi: 10.1021/acsnano.0c04888 [19] YANG M L, YUAN Y, LI Y, et al. Anisotropic electromagnetic absorption of aligned Ti3C2Tx MXene/gelatin nanocomposite aerogels[J]. ACS Applied Materials & Interfaces,2020,12(29):33128-33138. [20] KANG J, WOOD J D, WELLS S A, et al. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus[J]. ACS Nano,2015,9(4):3596-3604. doi: 10.1021/acsnano.5b01143 [21] MING F W, LIANG H F, HUANG G, et al. MXenes for rechargeable batteries beyond the lithium-ion[J]. Advanced Materials,2021,33(1):2004039. doi: 10.1002/adma.202004039 [22] 杨开勋, 张吉振, 谭娅, 等. MXene与纤维基材料复合应用研究进展[J]. 复合材料学报, 2022, 39(2):460-466.YANG Kaixun, ZHANG Jizhen, TAN Ya, et al. Research progress of MXene/fibrous material composites[J]. Acta Materiae Compositae Sinica,2022,39(2):460-466(in Chinese). [23] 姚金辰, 王李波, 李浩楠, 等. MXene/聚合物复合材料的合成及其应用研究进展[J]. 复合材料学报, 2022, 39(4):1457-1468. doi: 10.13801/j.cnki.fhclxb.20210830.002YAO Jinchen, WANG Libo, LI Haonan, et al. Research progress in synthesis and application of MXene/polymer composites[J]. Acta Materiae Compositae Sinica,2022,39(4):1457-1468(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210830.002 [24] ZHAO W T, YANG Y, DENG Q H, et al. Toward an understanding of bimetallic MXene solid-solution in binder-free electrocatalyst cathode for advanced Li-CO2 batteries[J]. Advanced Functional Materials,2023,33(5):2210037. doi: 10.1002/adfm.202210037 [25] LIU X L, LU Z J, HUANG X N, et al. Self-assembled S, N co-doped reduced graphene oxide/MXene aerogel for both symmetric liquid- and all-solid-state supercapacitors[J]. Journal of Power Sources,2021,516:230682. doi: 10.1016/j.jpowsour.2021.230682 [26] SHAO L, XU J J, MA J Z, et al. MXene/RGO composite aerogels with light and high-strength for supercapacitor electrode materials[J]. Composites Communications,2020,19:108-113. doi: 10.1016/j.coco.2020.03.006 [27] ZHOU J H, XIE M, WU F, et al. Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries[J]. Advanced Materials,2022,34:2106897. doi: 10.1002/adma.202106897 [28] WANG Q, WANG S L, GUO X H, et al. MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life[J]. Advanced Electronic Materials,2019,5(12):1900537. doi: 10.1002/aelm.201900537 [29] XIA J, GAO R H, YANG Y, et al. TinO2n−1/MXene hierarchical bifunctional catalyst anchored on graphene aerogel toward flexible and high-energy Li-S batteries[J]. ACS Nano,2022,16(11):19133-19144. doi: 10.1021/acsnano.2c08246 [30] BO Z, LU X C, YANG H C, et al. Surface-dominant pseudocapacitive supercapacitors with high specific energy and power for energy storage[J]. Journal of Energy Storage,2021,42:103084. doi: 10.1016/j.est.2021.103084 [31] CHEN W M, YANG K, LUO M, et al. Carbonization-free wood electrode with MXene-reconstructed porous structure for all-wood eco-supercapacitors[J]. EcoMat,2023,5(1):e12271. doi: 10.1002/eom2.12271 [32] ZHENG J L, PAN X, HUANG X M, et al. Integrated NiCo2-LDHs@MXene/rGO aerogel: Componential and structural engineering towards enhanced performance stability of hybrid supercapacitor[J]. Chemical Engineering Journal,2020,396:125197. doi: 10.1016/j.cej.2020.125197 [33] LI L, ZHANG M Y, ZHANG X T, et al. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors[J]. Journal of Power Sources,2017,364:234-241. doi: 10.1016/j.jpowsour.2017.08.029 [34] WEI C, CAO H L, DENG W, et al. Graphene-mediated dense integration of Ti3C2Tx MXene monoliths for compact energy storage: Balancing kinetics and packing density[J]. Applied Surface Science,2022,604:154565. doi: 10.1016/j.apsusc.2022.154565 [35] TIAN S H, HUANG J J, YANG H C, et al. Self-supporting multicomponent hierarchical network aerogel as sulfur anchoring-catalytic medium for highly stable lithium-sulfur battery[J]. Small,2022,18(48):2205163. doi: 10.1002/smll.202205163 [36] WANG R, ZHANG T Z, CHENG X, et al. Ti3C2Tx aerogel with 1D unidirectional channels for high mass loading supercapacitor electrodes[J]. Ceramics International,2022,48(14):20324-20331. doi: 10.1016/j.ceramint.2022.03.315 [37] ZHANG H, QI Q, ZHANG P G, et al. Self-assembled 3D MnO2 nanosheets@delaminated-Ti3C2 aerogel as sulfur host for lithium-sulfur battery cathodes[J]. ACS Applied Energy Materials,2019,2(1):705-714. doi: 10.1021/acsaem.8b01765 [38] PEI Z Y, ZHOU J P, CHEN Q, et al. Rational design of three-dimensional MXene-based aerogel for high-performance lithium-sulfur batteries[J]. Journal of Materials Science,2022,57(39):18549-18560. doi: 10.1007/s10853-022-07762-z [39] YANG X, YAO Y W, WANG Q, et al. 3D macroporous oxidation-resistant Ti3C2Tx MXene hybrid hydrogels for enhanced supercapacitive performances with ultralong cycle life[J]. Advanced Functional Materials,2022,32(10):2109479. doi: 10.1002/adfm.202109479 [40] WANG Z X, HUANG Z X, WANG H, et al. 3D-printed sodiophilic V2CTx/rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity[J]. ACS Nano,2022,16(6):9105-9116. doi: 10.1021/acsnano.2c01186 [41] YANG C, WU X, XIA H Y, et al. 3D printed template-assisted assembly of additive-free Ti3C2Tx MXene microlattices with customized structures toward high areal capacitance[J]. ACS Nano,2022,16(2):2699-2710. doi: 10.1021/acsnano.1c09622 [42] ZHOU J P, PEI Z Y, SUI Z Y, et al. Hierarchical porous and three-dimensional MXene/SiO2 hybrid aerogel through a sol-gel approach for lithium-sulfur batteries[J]. Molecules,2022,27(20):7073. doi: 10.3390/molecules27207073 [43] LIU Y P, WANG D, ZHANG C, et al. Compressible and lightweight MXene/carbon nanofiber aerogel with "Layer-Strut" bracing microscopic architecture for efficient energy storage[J]. Advanced Fiber Materials,2022,4(4):820-831. doi: 10.1007/s42765-022-00140-z [44] 王康. 阳离子诱导纳米线自组装及三维纳米线气凝胶制备[D]. 合肥: 中国科学技术大学, 2020.WANG Kang. Cation-induced nanowire self-assembly and the fabrication of nanowire aerogel[D]. Hefei: University of Science and Technology of China, 2020(in Chinese). [45] DING M, LI S, GUO L, et al. Metal ion-induced assembly of MXene aerogels via biomimetic microtextures for electromagnetic interference shielding, capacitive deionization, and microsupercapacitors[J]. Advanced Energy Materials,2021,11(35):2101494. doi: 10.1002/aenm.202101494 [46] BUTT R, SIDDIQUE A H, BOKHARI S W, et al. Niobium carbide/reduced graphene oxide hybrid porous aerogel as high capacity and long-life anode material for Li-ion batteries[J]. International Journal of Energy Research,2019,43(9):4995-5003. doi: 10.1002/er.4598 [47] YAO L, GU Q F, YU X B. Three-dimensional MOFs@MXene aerogel composite derived MXene threaded hollow carbon confined CoS nanoparticles toward advanced alkali-ion batteries[J]. ACS Nano,2021,15(2):3228-3240. doi: 10.1021/acsnano.0c09898 [48] SONG F, HU J, LI G H, et al. Room-temperature assembled MXene-based aerogels for high mass-loading sodium-ion storage[J]. Nano-Micro Letters,2022,14:37. doi: 10.1007/s40820-021-00781-6 [49] LIU C, FANG Z T, LI X G, et al. Rational design of 3D porous niobium carbide MXene/rGO hybrid aerogels as promising anode for potassium-ion batteries with ultrahigh rate capability[J]. Nano Research,2023,16(2):2463-2473. doi: 10.1007/s12274-022-4994-y [50] GUO X, GAO H, WANG S J, et al. MXene-based aerogel anchored with antimony single atoms and quantum dots for high-performance potassium-ion batteries[J]. Nano Letters,2022,22(3):1225-1232. doi: 10.1021/acs.nanolett.1c04389 [51] SONG J J, GUO X, ZHANG J Q, et al. Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2019,7(11):6507-6513. doi: 10.1039/C9TA00212J [52] MORI R. Cathode materials for lithium-sulfur battery: A review[J]. Journal of Solid State Electrochemistry,2023,27(4):813-839. doi: 10.1007/s10008-023-05387-z [53] ZHANG X Y, LV R J, WANG A X, et al. MXene aerogel scaffolds for high-rate lithium metal anodes[J]. Angewandte Chemie-International Edition,2018,57(46):15028-15033. doi: 10.1002/anie.201808714 [54] ZHANG B, LUO C, ZHOU G M, et al. Lamellar MXene composite aerogels with sandwiched carbon nanotubes enable stable lithium-sulfur batteries with a high sulfur loading[J]. Advanced Functional Materials,2021,31(26):2100793. doi: 10.1002/adfm.202100793 [55] LIU Y E, ZHANG M G, GAO Y N, et al. Regulate the reaction kinetic rate of lithium-sulfur battery by rational designing of TEMPO-oxidized cellulose nanofibers/rGO porous aerogel with monolayer MXene coating[J]. Journal of Alloys and Compounds,2022,898:162821. doi: 10.1016/j.jallcom.2021.162821 [56] LIU Y N, ZHANG M G, GUO J. High-performance lithium-sulfur battery based on carbonized 3D MXene/T-CNF aerogel composite membrane[J]. Ionics,2022,28(2):647-655. doi: 10.1007/s11581-021-04343-z [57] LIU Y E, ZHANG M G. Investigation of the effect of anion/cation-modified cellulose nanofibers/MXene composite aerogels on the high-performance lithium-sulfur batteries[J]. Ionics,2022,28(6):2805-2815. doi: 10.1007/s11581-022-04498-3 [58] LI P X, GUAN G Z, SHI X, et al. Bidirectionally aligned MXene hybrid aerogels assembled with MXene nanosheets and microgels for supercapacitors[J]. Rare Metals,2023,42(4):1249-1260. doi: 10.1007/s12598-022-02189-6 [59] 张亚林, 王梦倩, 陈兴刚, 等. Ti3C2Tx MXenes材料在超级电容器中的应用研究进展[J]. 复合材料学报, 2023, 40(2):678-687.ZHANG Yalin, WANG Mengqian, CHEN Xinggang, et al. Research progress of application of Ti3C2Tx MXenes materials in supercapacitors[J]. Acta Materiae Compositae Sinica,2023,40(2):678-687(in Chinese). [60] YUE Y, LIU N, MA Y A, et al. Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel[J]. ACS Nano,2018,12(5):4224-4232. doi: 10.1021/acsnano.7b07528 [61] MA L, ZHAO T C, XU F, et al. A dual utilization strategy of lignosulfonate for MXene asymmetric supercapacitor with high area energy density[J]. Chemical Engineering Journal,2021,405:126694. doi: 10.1016/j.cej.2020.126694 [62] CAI C Y, WEI Z C, DENG L X, et al. Temperature-invariant superelastic multifunctional MXene aerogels for high-performance photoresponsive supercapacitors and wearable strain sensors[J]. ACS Applied Materials & Interfaces,2021,13(45):54170-54184. [63] LIU X D, LIU Y, DONG S L, et al. Synthesis of ultra-high specific surface area aerogels with nitrogen-enriched Ti3C2Tx nanosheets as high-performance supercapacitor electrodes[J]. Journal of Materials Chemistry C,2022,10(40):14929-14938. doi: 10.1039/D2TC01987F [64] JIANG D G, ZHANG J Z, QIN S, et al. Superelastic Ti3C2Tx MXene-based hybrid aerogels for compression-resilient devices[J]. ACS Nano,2021,15(3):5000-5010. doi: 10.1021/acsnano.0c09959 [65] BO Z, YI K X, YANG H C, et al. More from less but precise: Industry-relevant pseudocapacitance by atomically-precise mass-loading MnO2 within multifunctional MXene aerogel[J]. Journal of Power Sources,2021,492:229639. doi: 10.1016/j.jpowsour.2021.229639 [66] LIAO L P, ZHANG A T, ZHENG K, et al. Fabrication of cobaltous sulfide nanoparticle-modified 3D MXene/carbon foam hybrid aerogels for all-solid-state supercapacitors[J]. ACS Applied Materials & Interfaces,2021,13(24):28222-28230. [67] LIU R, ZHANG A T, TANG J G, et al. Fabrication of cobaltosic oxide nanoparticle-doped 3D MXene/graphene hybrid porous aerogels for all-solid-state supercapacitors[J]. Chemistry A European Journal,2019,25(21):5547-5554. doi: 10.1002/chem.201806342 [68] RADHA N, KANAKARAJ A, MANOHAR H M, et al. Binder free self-standing high performance supercapacitive electrode based on graphene/titanium carbide composite aerogel[J]. Applied Surface Science,2019,481:892-899. doi: 10.1016/j.apsusc.2019.03.086 [69] LI Y, KAMDEM P, JIN X J. A freeze-and-thaw-assisted approach to fabricate MXene/ZIF-8 composites for high-performance supercapacitors and methylene blue adsorption[J]. Journal of the Electrochemical Society,2020,167:110562. doi: 10.1149/1945-7111/aba934 [70] GUO B Y, TIAN J, YIN X L, et al. A binder-free electrode based on Ti3C2Tx-rGO aerogel for supercapacitors[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,595:124683. doi: 10.1016/j.colsurfa.2020.124683 [71] ZHANG L, YU K, LI Y Y, et al. Nanoparticles of Fe3O4 anchored on Ti3C2Tx MXene/rGO aerogels as negative electrodes for advanced supercapacitors[J]. ACS Applied Nano Materials,2023,6(1):482-491. doi: 10.1021/acsanm.2c04589 [72] ZHANG M Z, JIANG D G, JIN F H, et al. Compression-tolerant supercapacitor based on NiCo2O4/Ti3C2Tx MXene/reduced graphene oxide composite aerogel with insights from density functional theory simulations[J]. Journal of Colloid and Interface Science,2023,636:204-215. doi: 10.1016/j.jcis.2022.12.159 [73] XU T, WANG Y X, LIU K, et al. Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor[J]. Advanced Composites and Hybrid Materials,2023,6:108. doi: 10.1007/s42114-023-00675-8 [74] ZHENG W F, YANG Y, FAN L L, et al. Ultralight PPy@PVA/BC/MXene composite aerogels for high-performance supercapacitor eltrodes and pressure sensors[J]. Applied Surface Science,2023,624:157138. doi: 10.1016/j.apsusc.2023.157138 [75] FARAJI M, PARSAEE F, KHEIRMAND M. Facile fabrication of N-doped graphene/Ti3C2Tx (MXene) aerogel with excellent electrocatalytic activity toward oxygen reduction reaction in fuel cells and metal-air batteries[J]. Journal of Solid State Chemistry,2021,303:122529. doi: 10.1016/j.jssc.2021.122529