留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MXene复合气凝胶在电化学储能领域的研究进展

李思琦 史纳蔓 卢道坤 干露露 张如全 罗磊

李思琦, 史纳蔓, 卢道坤, 等. MXene复合气凝胶在电化学储能领域的研究进展[J]. 复合材料学报, 2024, 41(1): 78-91. doi: 10.13801/j.cnki.fhclxb.20230731.003
引用本文: 李思琦, 史纳蔓, 卢道坤, 等. MXene复合气凝胶在电化学储能领域的研究进展[J]. 复合材料学报, 2024, 41(1): 78-91. doi: 10.13801/j.cnki.fhclxb.20230731.003
LI Siqi, SHI Naman, LU Daokun, et al. Research progress of MXene composite aerogels in the field of electrochemical energy storage[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 78-91. doi: 10.13801/j.cnki.fhclxb.20230731.003
Citation: LI Siqi, SHI Naman, LU Daokun, et al. Research progress of MXene composite aerogels in the field of electrochemical energy storage[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 78-91. doi: 10.13801/j.cnki.fhclxb.20230731.003

MXene复合气凝胶在电化学储能领域的研究进展

doi: 10.13801/j.cnki.fhclxb.20230731.003
基金项目: 湖北省重点研发计划项目(2020DGC003);湖北省自然科学基金项目(2021CFB478);武汉纺织大学大学生创新训练项目(S202310495013)
详细信息
    通讯作者:

    罗磊,博士,副教授,硕士生导师,研究方向为功能纤维材料 E-mail: leiluo@wtu.edu.cn

  • 中图分类号: TB332

Research progress of MXene composite aerogels in the field of electrochemical energy storage

Funds: Key R&D Program Projects of Hubei Province (2020DGC003); Natural Science Fundation of Hubei Province (2021CFB478); Innovation Training Program for College Students of Wuhan Textile University (S202310495013)
  • 摘要: MXene材料目前已在电磁屏蔽、传感、污水处理等多个领域具有广泛应用,其优异的电化学性能使得其在储能领域也展现出广阔的应用前景。然而,MXene的自堆叠与易氧化等特性,限制了其进一步发展。将MXene组装成三维(3D)结构复合材料是解决上述问题的有效途径之一。3D多孔结构能为离子传输/存储提供更多通道和活性位点,可有效提高电化学性能。本文主要回顾MXene复合气凝胶的最新研究进展,详细阐述MXene复合气凝胶的制备方法以及其在电池、超级电容器等储能方面的应用。最后,对其发展方向进行了展望。

     

  • 图  1  (a) 超轻多孔TiVC/还原氧化石墨烯(rGO)双金属气凝胶(TVGA)的合成及Li-CO2电池原理图(I)、TVGA气凝胶光学图(II)和具有良好柔韧性的TVGA阴极片的光学图(III)[24];(b) 制造Ti3C2Tx MXene-石墨烯复合气凝胶(MGA)材料的示意图(I)和在无约束条件下MGA材料的顶部(左)和侧视图的SEM图像(II)[27];(c) Mo-Ti/MXene (Mx)-rGO-纤维素纳米纤维(GN)气凝胶(Mo-Ti/Mx-GN)合成工艺示意图(I)和SEM图像(II)[29];(d) 3D多孔1T MoS2/Ti3C2Tx复合气凝胶 X-ZX-Y横截面SEM图像[30];(e) 3D打印V2CTx/rGO-碳纳米管(CNT)微栅气凝胶电极的制备过程示意图(I)和30%V2CTx/rGO-CNT微格栅气凝胶的SEM图像(II)[40];(f) 3D打印各种结构的模板[41];(g) Ti3C2Tx/碳纳米纤维(CNF)复合气凝胶制备工艺示意图(I)和Ti3C2Tx/CNF6-2的SEM图像(II)[43];(h) 具有褶皱结构的MXene平台器件(上)和Mg2+-MXene气凝胶的SEM图像(下) [45]

    Figure  1.  (a) Synthesis of ultralight porous TiVC/reduced graphene oxide (rGO) aerogels (TVGA) and schematic diagram of Li-CO2 battery (I), optical photos of block TVGA (II) and TVGA cathode sheet with good flexibility (III)[24]; (b) Schematic illustration of fabricating Ti3C2Tx MXene and graphene aerogel (MGA) material (I), SEM images of top (left) and side views under unconstrained conditions for the MGA material (II)[27]; (c) Schematic diagram illustrating the synthesis process (I) and SEM images (II) of the metallic 1T MoS2 and rich oxygen vacancies TinO2n–1/MXene hierarchical bifunctional catalyst (Mo-Ti/Mx) anchored on a rGO-cellulose nanofiber (GN) host (Mo-Ti/Mx-GN) aerogel[29]; (d) X-Z and X-Y cross-sectional SEM images of 3D highly-porous 1T MoS2/Ti3C2Tx composite aerogel[30]; (e) Schematic diagram of the preparation process of a 3D-printed V2CTx/rGO-carbon nanotube (CNT) microgrid aerogel electrode (I), SEM image of the 30%V2CTx/rGO-CNT microgrid aerogel (II)[40]; (f) 3D printing templates for various structures[41]; (g) Schematic illustration of the fabrication process of ­Ti3C2Tx/carbon nanofiber (CNF) composite aerogel (I), SEM image of Ti3C2Tx/CNF6-2 (Ⅱ)[43]; (h) MXene platform device with folded structure (top), SEM image of a Mg2+-MXene aerogel (bottom)[45]

    GO—Graphene oxide; ΔT—Temperature

    图  2  (a) 氧化石墨烯(GO)辅助组装Ti3C2Tx MXene复合气凝胶经硫改性(SMGA)后的SEM图像[48];(b) SMGA电极在0.1~3 mV·s−1不同扫描速下的CV曲线[48];(c) 组装活性炭(AC)//SMGA SiC供电LED阵列和电子温度计的数码照片[48];(d) 锑单原子和量子点(~5 nm)共修饰Ti3C2Tx MXene气凝胶(Sb SQ@MA)的SEM图像[50];(e) Sb SQ@MA与钾离子电池(PIBs)中其他报道的Sb基阳极的倍率性能比较[50];(f) Sb SQ@MA长期循环性能[50]

    Figure  2.  (a) SEM image of graphene oxide (GO)-assisted assembly of ­Ti3C2Tx MXene aerogel after sulfur modified (SMGA)[48]; (b) CV curves of the SMGA electrode at different scan rates from 0.1-3 mV·s−1[48]; (c) Digital photos of LED arrays and electronic thermometer powered by the assembled activated carbon (AC)//SMGA SiC[48]; (d) SEM image of antimony single atoms and quantum dots (~5 nm) codecorated Ti3C2Tx MXene-based aerogels (Sb SQ@MA)[50]; (e) Comparison of the rate performance of the Sb SQ@MA with other reported Sb-based anodes in potassium-ion batteries (PIBs)[50]; (f) Long-term cycling performance of the Sb SQ@MA[50]

    NC—N-doped three-dimensional porous carbon

    图  3  (a) MXene涂层三维气凝胶(MCG-6)复合气凝胶在不同放大倍数的SEM图像[55];(b) MCG-6复合气凝胶电极提高锂硫电池动力学反应速率的示意图[55];(c) MCG-6电极在各种速率下的恒流充放电曲线[55];(d) MXene/C-CNF复合气凝胶(MC-6)的SEM图像[57];(e) MC-6复合气凝胶电极在不同速率下的恒流充放电曲线[57];(f) MXene/T-CNF复合气凝胶(MT-4)的SEM图像[57];(g) MT-4复合气凝胶电极在不同速率下的恒流充放电曲线[57];(h) 层状(PA) MXene-CNT-50复合气凝胶的SEM图:(I) 俯视图(插图是PA MXene/CNT-50整体的照片);(II) 侧视图; (III) 高放大率图[54]

    Figure  3.  (a) SEM images of MXene-coated three-dimensional aerogel (MCG-6) composite aerogel under different magnifications[55]; (b) Illustration of MCG-6 composite aerogel electrode enhancing the kinetic reaction rate of lithium-sulfur battery [55]; (c) Galvanostatic charge and discharge curves of MCG-6 electrodes at various rates[55]; (d) SEM image of MXene/C-CNF composite aerogel (MC-6)[57]; (e) Galvanostatic charge and discharge curves of MC-6 composite aerogel electrode at various rates[57]; (f) SEM image of MXene/T-CNF composite aerogel (MT-4)[57]; (g) Galvanostatic charge and discharge curves of MT-4 composite aerogel electrode at various rates[57]; (h) SEM images of the parallel-aligned (PA)-MXene/CNT-50 composite aerogel: (I) Top-view (Inset is a photo of the PA-MXene/CNT-50 monolith); (II) Side-view; (III) High magnification[54]

    T-CNF—TEMPO-oxidized cellulose nanofibers; C-CNF—Cation-CNF; TEMPO—2, 2, 6, 6-tetramethylpiperidoxyl

    图  4  (a) 两个混合超级电容器(HSC)器件串联,为温度计供电超过8 min[32];(b) (I)自愈机制示意图和光学图;(II) 自愈后的聚氨酯(PU)展示:弯曲状态(左上),平坦状态(左下),支撑500 g质量(右),矩形表示伤口/愈合的位置;(III) MXene/rGO 复合气凝胶的SEM图像[60];(c) (I) MLSG-6复合气凝胶的SEM图像;(II) 显示LSG//MLSG-6不对称装置与其他最新超级电容器相比的面积能量和功率密度的Ragone图;(III) 由一个LSG//MLSG-6不对称超级电容器供电的小灯泡[61]

    Figure  4.  (a) Two hybrid supercapacitor (HSC) devices connected in series to power a thermometer more than 8 min[32]; (b) (I) Schematic diagrams and optical images of the self-healable mechanism; (II) Demonstration of after self-healing polyurethane (PU): Under bending state (top left), under flat state (bottom left), supporting a 500 g mass (right) (Rectangles indicate the wound/healing positions); (III) SEM image of MXene/rGO composite aerogel[60]; (c) (I) SEM images of MLSG-6 composite aerogel; (II) Ragone plot displaying areal energy and power densities of LSG//MLSG-6 asymmetric device in comparison to the other state-of-the-art supercapacitors; (III) A small bulb powered by one LSG//MLSG-6 asymmetric supercapacitor[61]

    PANI—Polyaniline; ESCNF—Electrospinning carbon nanofiber; PEDOT—Poly(3, 4-ethylenedioxythiophene); PSS—Polystyrene sulfonate; MLSG—Lignosulfonate (LS) modified-MXene (Ti3C2Tx)-reduced graphene oxide; LSG—LS-functionalized reduced graphene oxide; CDC—Carbide-derived carbons

    图  5  (a) LiMn2O4 (LMO)//Ti3C2Tx MXene-石墨烯复合气凝胶(MGA)@Zn软包电池在不同折叠状态下的循环性能[27];(b) 分别在10、30、50次循环时软包电池的容量曲线[27]

    Figure  5.  (a) Cycling performance of the LiMn2O4 (LMO)//Ti3C2Tx MXene and graphene aerogel (MGA)@Zn pouch cells at various folding times[27]; (b) Capacity profiles of the pouch cells at 10, 30, 50 cycles, respectively[27]

    表  1  MXene复合气凝胶超级电容器电化学性能

    Table  1.   Electrochemical properties of supercapacitors assembled by MXene composite aerogels

    MaterialsKey assembly methodElectrochemical performanceRef.
    Ti3C2Tx/cellulose
    nanocrystal
    Waterborne polyurethane (WPU) crosslinkingCycling stability: 86.7%, 4000 cycles; Energy density:
    38.5 μW·h·cm−2 at power density of 1375 μW·cm−2
    [62]
    Ti3C2TxUrea-assisted hydrothermal process for nitrogen dopingCycling stability: 85%, 5000 cycles; Energy density: 21.7 W·h·kg−1
    at a power density of 600 W·kg−1
    [63]
    Ti3C2Tx/rGOAscorbic acid reductionSpecific capacitance: ~65 F·g−1 at 0.5 A·g−1; Cycling stability: 94.5%,
    10000 cycles; Energy density: 3.81 W·h·kg−1 at a power density of 163 W·kg−1
    [64]
    Ti3C2Tx/rGO/MnO2Ascorbic acid reductionCycling stability: 90.5%, 5000 cycles; Energy density: 50.1 W·h·kg−1 at a power density of 2.1 kW·kg−1[65]
    Ti3C2Tx/CoSMelamine foam loadingSpecific capacitance: 41.5 F·g−1 at 0.2 A·g−1; Cycling stability: 80.39%, 5000 cycles; Energy density: 10.66 W·h·kg−1 at a power density of 135.96 W·kg−1[66]
    Ti3C2Tx/rGO/Co3O4Hydrazine hydrate
    reduction
    Specific capacitance: 345 F·g−1 at 1 A·g−1; Cycling stability: 85%,
    10000 cycles; Energy density: 8.25 W·h·kg−1 at a power density of 159.94 W·kg−1
    [67]
    Ti3C2/rGOZn foil reductionSpecific capacitance: 41 mF·cm−2, 1 mA·cm−2; Cycling stability: Almost no capacitance decay, 1000 cycles; Energy density:
    ~2.1 μW·h·cm−2 at a power density of ~301.2 μW·cm−2
    [68]
    MXene/zeolitic imida-
    zolate framework-8
    (ZIF-8)
    Metal-organic frameworks depositionSpecific capacitance: 1176 F·g−1 at 0.5 A·g−1; Cycling stability: 90.88%, 10000 cycles; Energy density: 57.84 W·h·kg−1 at a power density of 628 W·kg−1[69]
    Ti3C2Tx/rGOAscorbic acid reductionCycling stability: 80%, 4000 cycles; Energy density: 7.5 W·h·kg−1
    at a power density of 500 W·kg−1
    [70]
    Ti3C2Tx/rGO/Fe3O4Ethylenediamine (EDA) crosslinkingSpecific capacitance: 365 mF·cm−2, 1 mA·cm−2; Cycling stability: 84.5%, 30000 cycles; Energy density: 130 μW·h·cm−2 at a power density of 802 μW·cm−2[71]
    Ti3C2Tx/rGO/NiCo2O4Ascorbic acid reductionSpecific capacitance: 87 F·g−1 at 1 A·g−1; Energy density: 40.5 W·h·kg−1 at the power density of 1125.1 W·kg−1[72]
    Ti3C2Tx/CNTIce template methodSpecific capacitance: 410.7 mF·cm−2, 0.8 mA·cm−2; Cycling
    stability: 91.2%, 5000 cycles
    [73]
    Polypyrrole (PPy)@poly-
    vinyl alcohol (PVA)/
    bacterial cellulose (BC)/Ti3C2Tx
    Ice template methodSpecific capacitance: 3948 mF·cm−2, 0.47 mA·cm−2; Cycling stability: 120%, 10000 cycles; Energy density: 178 μW·h·cm−2
    at a power density of 951 μW·cm−2
    [74]
    Ti3C2Tx/sodium
    alginate (SA)
    Ice template methodSpecific capacitance: 284.5 F·g−1, 2 mV·s−1; Cycling stability:
    Almost no capacitance decay, 20000 cycles
    [36]
    下载: 导出CSV
  • [1] TANG X, LIU H, GUO X, et al. A novel lithium-ion hybrid capacitor based on an aerogel-like MXene wrapped Fe2O3 nanosphere anode and a 3D nitrogen sulphur dual-doped porous carbon cathode[J]. Materials Chemistry Frontiers,2018,2(10):1811-1821. doi: 10.1039/C8QM00232K
    [2] 刘浩, 姚卫棠. Ti基MXene及其复合材料在金属离子电池中的进展[J]. 复合材料学报, 2020, 37(12):2984-3003. doi: 10.13801/j.cnki.fhclxb.20200717.001

    LIU Hao, YAO Weitang. Research progress of Ti-based MXene and its composites in metal-ion batteries[J]. Acta Materiae Compositae Sinica,2020,37(12):2984-3003(in Chinese). doi: 10.13801/j.cnki.fhclxb.20200717.001
    [3] FENG A H, YU Y, WANG Y, et al. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2[J]. Materials & Design,2017,114:161-166.
    [4] MOHAMMADI A V, ROSEN J, GOGOTSI Y. The world of two-dimensional carbides and nitrides (MXenes)[J]. Science,2021,372(6547):eabf1581. doi: 10.1126/science.abf1581
    [5] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [6] TANG M R, LI J M, WANG Y, et al. Surface terminations of MXene: Synthesis, characterization, and properties[J]. Symmetry,2022,14(11):2232. doi: 10.3390/sym14112232
    [7] GOGOTSI Y, ANASORI B. The rise of MXenes[J]. ACS Nano,2019,13(8):8491-8494. doi: 10.1021/acsnano.9b06394
    [8] WEI Y, ZHANG P, SOOMRO R A, et al. Advances in the synthesis of 2D MXenes[J]. Advanced Materials,2021,33(39):2103148. doi: 10.1002/adma.202103148
    [9] 罗大军, 高进, 田鑫, 等. Ti3C2Tx MXene材料的制备、组装及应用研究进展[J]. 复合材料学报, 2022, 39(2):467-477.

    LUO Dajun, GAO Jin, TIAN Xin, et al. Research and developing in preparation, assembly and applications of Ti3C2Tx MXene materials[J]. Acta Materiae Compositae Sinica,2022,39(2):467-477(in Chinese).
    [10] 刘超, 李茜, 郝丽芬, 等. MXene的功能化改性及其应用研究进展[J]. 复合材料学报, 2021, 38(4):1020-1028. doi: 10.13801/j.cnki.fhclxb.20201218.003

    LIU Chao, LI Xi, HAO Lifen, et al. Research progress of functional modification of MXene and its applications[J]. Acta Materiae Compositae Sinica,2021,38(4):1020-1028(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201218.003
    [11] LI Q L, SONG T, WANG Z Z, et al. A general strategy toward metal sulfide nanoparticles confined in a sulfur-doped Ti3C2Tx MXene 3D porous aerogel for efficient ambient N2 electroreduction[J]. Small,2021,17(45):2103305. doi: 10.1002/smll.202103305
    [12] BASHIR T, ZHOU S W, YANG S Q, et al. Progress in 3D-MXene electrodes for lithium/sodium/potassium/ magnesium/zinc/aluminum-ion batteries[J]. Electrochemical Energy Reviews,2023,6:5. doi: 10.1007/s41918-022-00174-2
    [13] YU L Y, HU L F, ANASORI B, et al. MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors[J]. ACS Energy Letters,2018,3(7):1597-1603. doi: 10.1021/acsenergylett.8b00718
    [14] SUN N, ZHU Q Z, ANASORI B, et al. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage[J]. Advanced Functional Materials,2019,29(51):1906282. doi: 10.1002/adfm.201906282
    [15] CAO B, LIU H, ZHANG P, et al. Flexible MXene framework as a fast electron/potassium-ion dual-function conductor boosting stable potassium storage in graphite electrodes[J]. Advanced Functional Materials,2021,31(32):2102126. doi: 10.1002/adfm.202102126
    [16] ZHAO Q, ZHU Q Z, MIAO J W, et al. Flexible 3D porous MXene foam for high-performance lithium-ion batteries[J]. Small,2019,15(51):1904293. doi: 10.1002/smll.201904293
    [17] ZHUO H, HU Y J, CHEN Z H, et al. A carbon aerogel with super mechanical and sensing performances for wearable piezoresistive sensors[J]. Journal of Materials Chemistry A,2019,7(14):8092-8100. doi: 10.1039/C9TA00596J
    [18] WANG L, ZHANG M Y, YANG B, et al. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor[J]. ACS Nano,2020,14(8):10633-10647. doi: 10.1021/acsnano.0c04888
    [19] YANG M L, YUAN Y, LI Y, et al. Anisotropic electromagnetic absorption of aligned Ti3C2Tx MXene/gelatin nanocomposite aerogels[J]. ACS Applied Materials & Interfaces,2020,12(29):33128-33138.
    [20] KANG J, WOOD J D, WELLS S A, et al. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus[J]. ACS Nano,2015,9(4):3596-3604. doi: 10.1021/acsnano.5b01143
    [21] MING F W, LIANG H F, HUANG G, et al. MXenes for rechargeable batteries beyond the lithium-ion[J]. Advanced Materials,2021,33(1):2004039. doi: 10.1002/adma.202004039
    [22] 杨开勋, 张吉振, 谭娅, 等. MXene与纤维基材料复合应用研究进展[J]. 复合材料学报, 2022, 39(2):460-466.

    YANG Kaixun, ZHANG Jizhen, TAN Ya, et al. Research progress of MXene/fibrous material composites[J]. Acta Materiae Compositae Sinica,2022,39(2):460-466(in Chinese).
    [23] 姚金辰, 王李波, 李浩楠, 等. MXene/聚合物复合材料的合成及其应用研究进展[J]. 复合材料学报, 2022, 39(4):1457-1468. doi: 10.13801/j.cnki.fhclxb.20210830.002

    YAO Jinchen, WANG Libo, LI Haonan, et al. Research progress in synthesis and application of MXene/polymer composites[J]. Acta Materiae Compositae Sinica,2022,39(4):1457-1468(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210830.002
    [24] ZHAO W T, YANG Y, DENG Q H, et al. Toward an understanding of bimetallic MXene solid-solution in binder-free electrocatalyst cathode for advanced Li-CO2 batteries[J]. Advanced Functional Materials,2023,33(5):2210037. doi: 10.1002/adfm.202210037
    [25] LIU X L, LU Z J, HUANG X N, et al. Self-assembled S, N co-doped reduced graphene oxide/MXene aerogel for both symmetric liquid- and all-solid-state supercapacitors[J]. Journal of Power Sources,2021,516:230682. doi: 10.1016/j.jpowsour.2021.230682
    [26] SHAO L, XU J J, MA J Z, et al. MXene/RGO composite aerogels with light and high-strength for supercapacitor electrode materials[J]. Composites Communications,2020,19:108-113. doi: 10.1016/j.coco.2020.03.006
    [27] ZHOU J H, XIE M, WU F, et al. Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries[J]. Advanced Materials,2022,34:2106897. doi: 10.1002/adma.202106897
    [28] WANG Q, WANG S L, GUO X H, et al. MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life[J]. Advanced Electronic Materials,2019,5(12):1900537. doi: 10.1002/aelm.201900537
    [29] XIA J, GAO R H, YANG Y, et al. TinO2n−1/MXene hierarchical bifunctional catalyst anchored on graphene aerogel toward flexible and high-energy Li-S batteries[J]. ACS Nano,2022,16(11):19133-19144. doi: 10.1021/acsnano.2c08246
    [30] BO Z, LU X C, YANG H C, et al. Surface-dominant pseudocapacitive supercapacitors with high specific energy and power for energy storage[J]. Journal of Energy Storage,2021,42:103084. doi: 10.1016/j.est.2021.103084
    [31] CHEN W M, YANG K, LUO M, et al. Carbonization-free wood electrode with MXene-reconstructed porous structure for all-wood eco-supercapacitors[J]. EcoMat,2023,5(1):e12271. doi: 10.1002/eom2.12271
    [32] ZHENG J L, PAN X, HUANG X M, et al. Integrated NiCo2-LDHs@MXene/rGO aerogel: Componential and structural engineering towards enhanced performance stability of hybrid supercapacitor[J]. Chemical Engineering Journal,2020,396:125197. doi: 10.1016/j.cej.2020.125197
    [33] LI L, ZHANG M Y, ZHANG X T, et al. New Ti3C2 aerogel as promising negative electrode materials for asymmetric supercapacitors[J]. Journal of Power Sources,2017,364:234-241. doi: 10.1016/j.jpowsour.2017.08.029
    [34] WEI C, CAO H L, DENG W, et al. Graphene-mediated dense integration of Ti3C2Tx MXene monoliths for compact energy storage: Balancing kinetics and packing density[J]. Applied Surface Science,2022,604:154565. doi: 10.1016/j.apsusc.2022.154565
    [35] TIAN S H, HUANG J J, YANG H C, et al. Self-supporting multicomponent hierarchical network aerogel as sulfur anchoring-catalytic medium for highly stable lithium-sulfur battery[J]. Small,2022,18(48):2205163. doi: 10.1002/smll.202205163
    [36] WANG R, ZHANG T Z, CHENG X, et al. Ti3C2Tx aerogel with 1D unidirectional channels for high mass loading supercapacitor electrodes[J]. Ceramics International,2022,48(14):20324-20331. doi: 10.1016/j.ceramint.2022.03.315
    [37] ZHANG H, QI Q, ZHANG P G, et al. Self-assembled 3D MnO2 nanosheets@delaminated-Ti3C2 aerogel as sulfur host for lithium-sulfur battery cathodes[J]. ACS Applied Energy Materials,2019,2(1):705-714. doi: 10.1021/acsaem.8b01765
    [38] PEI Z Y, ZHOU J P, CHEN Q, et al. Rational design of three-dimensional MXene-based aerogel for high-performance lithium-sulfur batteries[J]. Journal of Materials Science,2022,57(39):18549-18560. doi: 10.1007/s10853-022-07762-z
    [39] YANG X, YAO Y W, WANG Q, et al. 3D macroporous oxidation-resistant Ti3C2Tx MXene hybrid hydrogels for enhanced supercapacitive performances with ultralong cycle life[J]. Advanced Functional Materials,2022,32(10):2109479. doi: 10.1002/adfm.202109479
    [40] WANG Z X, HUANG Z X, WANG H, et al. 3D-printed sodiophilic V2CTx/rGO-CNT MXene microgrid aerogel for stable Na metal anode with high areal capacity[J]. ACS Nano,2022,16(6):9105-9116. doi: 10.1021/acsnano.2c01186
    [41] YANG C, WU X, XIA H Y, et al. 3D printed template-assisted assembly of additive-free Ti3C2Tx MXene microlattices with customized structures toward high areal capacitance[J]. ACS Nano,2022,16(2):2699-2710. doi: 10.1021/acsnano.1c09622
    [42] ZHOU J P, PEI Z Y, SUI Z Y, et al. Hierarchical porous and three-dimensional MXene/SiO2 hybrid aerogel through a sol-gel approach for lithium-sulfur batteries[J]. Molecules,2022,27(20):7073. doi: 10.3390/molecules27207073
    [43] LIU Y P, WANG D, ZHANG C, et al. Compressible and lightweight MXene/carbon nanofiber aerogel with "Layer-Strut" bracing microscopic architecture for efficient energy storage[J]. Advanced Fiber Materials,2022,4(4):820-831. doi: 10.1007/s42765-022-00140-z
    [44] 王康. 阳离子诱导纳米线自组装及三维纳米线气凝胶制备[D]. 合肥: 中国科学技术大学, 2020.

    WANG Kang. Cation-induced nanowire self-assembly and the fabrication of nanowire aerogel[D]. Hefei: University of Science and Technology of China, 2020(in Chinese).
    [45] DING M, LI S, GUO L, et al. Metal ion-induced assembly of MXene aerogels via biomimetic microtextures for electromagnetic interference shielding, capacitive deionization, and microsupercapacitors[J]. Advanced Energy Materials,2021,11(35):2101494. doi: 10.1002/aenm.202101494
    [46] BUTT R, SIDDIQUE A H, BOKHARI S W, et al. Niobium carbide/reduced graphene oxide hybrid porous aerogel as high capacity and long-life anode material for Li-ion batteries[J]. International Journal of Energy Research,2019,43(9):4995-5003. doi: 10.1002/er.4598
    [47] YAO L, GU Q F, YU X B. Three-dimensional MOFs@MXene aerogel composite derived MXene threaded hollow carbon confined CoS nanoparticles toward advanced alkali-ion batteries[J]. ACS Nano,2021,15(2):3228-3240. doi: 10.1021/acsnano.0c09898
    [48] SONG F, HU J, LI G H, et al. Room-temperature assembled MXene-based aerogels for high mass-loading sodium-ion storage[J]. Nano-Micro Letters,2022,14:37. doi: 10.1007/s40820-021-00781-6
    [49] LIU C, FANG Z T, LI X G, et al. Rational design of 3D porous niobium carbide MXene/rGO hybrid aerogels as promising anode for potassium-ion batteries with ultrahigh rate capability[J]. Nano Research,2023,16(2):2463-2473. doi: 10.1007/s12274-022-4994-y
    [50] GUO X, GAO H, WANG S J, et al. MXene-based aerogel anchored with antimony single atoms and quantum dots for high-performance potassium-ion batteries[J]. Nano Letters,2022,22(3):1225-1232. doi: 10.1021/acs.nanolett.1c04389
    [51] SONG J J, GUO X, ZHANG J Q, et al. Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries[J]. Journal of Materials Chemistry A,2019,7(11):6507-6513. doi: 10.1039/C9TA00212J
    [52] MORI R. Cathode materials for lithium-sulfur battery: A review[J]. Journal of Solid State Electrochemistry,2023,27(4):813-839. doi: 10.1007/s10008-023-05387-z
    [53] ZHANG X Y, LV R J, WANG A X, et al. MXene aerogel scaffolds for high-rate lithium metal anodes[J]. Angewandte Chemie-International Edition,2018,57(46):15028-15033. doi: 10.1002/anie.201808714
    [54] ZHANG B, LUO C, ZHOU G M, et al. Lamellar MXene composite aerogels with sandwiched carbon nanotubes enable stable lithium-sulfur batteries with a high sulfur loading[J]. Advanced Functional Materials,2021,31(26):2100793. doi: 10.1002/adfm.202100793
    [55] LIU Y E, ZHANG M G, GAO Y N, et al. Regulate the reaction kinetic rate of lithium-sulfur battery by rational designing of TEMPO-oxidized cellulose nanofibers/rGO porous aerogel with monolayer MXene coating[J]. Journal of Alloys and Compounds,2022,898:162821. doi: 10.1016/j.jallcom.2021.162821
    [56] LIU Y N, ZHANG M G, GUO J. High-performance lithium-sulfur battery based on carbonized 3D MXene/T-CNF aerogel composite membrane[J]. Ionics,2022,28(2):647-655. doi: 10.1007/s11581-021-04343-z
    [57] LIU Y E, ZHANG M G. Investigation of the effect of anion/cation-modified cellulose nanofibers/MXene composite aerogels on the high-performance lithium-sulfur batteries[J]. Ionics,2022,28(6):2805-2815. doi: 10.1007/s11581-022-04498-3
    [58] LI P X, GUAN G Z, SHI X, et al. Bidirectionally aligned MXene hybrid aerogels assembled with MXene nanosheets and microgels for supercapacitors[J]. Rare Metals,2023,42(4):1249-1260. doi: 10.1007/s12598-022-02189-6
    [59] 张亚林, 王梦倩, 陈兴刚, 等. Ti3C2Tx MXenes材料在超级电容器中的应用研究进展[J]. 复合材料学报, 2023, 40(2):678-687.

    ZHANG Yalin, WANG Mengqian, CHEN Xinggang, et al. Research progress of application of Ti3C2Tx MXenes materials in supercapacitors[J]. Acta Materiae Compositae Sinica,2023,40(2):678-687(in Chinese).
    [60] YUE Y, LIU N, MA Y A, et al. Highly self-healable 3D microsupercapacitor with MXene-graphene composite aerogel[J]. ACS Nano,2018,12(5):4224-4232. doi: 10.1021/acsnano.7b07528
    [61] MA L, ZHAO T C, XU F, et al. A dual utilization strategy of lignosulfonate for MXene asymmetric supercapacitor with high area energy density[J]. Chemical Engineering Journal,2021,405:126694. doi: 10.1016/j.cej.2020.126694
    [62] CAI C Y, WEI Z C, DENG L X, et al. Temperature-invariant superelastic multifunctional MXene aerogels for high-performance photoresponsive supercapacitors and wearable strain sensors[J]. ACS Applied Materials & Interfaces,2021,13(45):54170-54184.
    [63] LIU X D, LIU Y, DONG S L, et al. Synthesis of ultra-high specific surface area aerogels with nitrogen-enriched Ti3C2Tx nanosheets as high-performance supercapacitor electrodes[J]. Journal of Materials Chemistry C,2022,10(40):14929-14938. doi: 10.1039/D2TC01987F
    [64] JIANG D G, ZHANG J Z, QIN S, et al. Superelastic Ti3C2Tx MXene-based hybrid aerogels for compression-resilient devices[J]. ACS Nano,2021,15(3):5000-5010. doi: 10.1021/acsnano.0c09959
    [65] BO Z, YI K X, YANG H C, et al. More from less but precise: Industry-relevant pseudocapacitance by atomically-precise mass-loading MnO2 within multifunctional MXene aerogel[J]. Journal of Power Sources,2021,492:229639. doi: 10.1016/j.jpowsour.2021.229639
    [66] LIAO L P, ZHANG A T, ZHENG K, et al. Fabrication of cobaltous sulfide nanoparticle-modified 3D MXene/carbon foam hybrid aerogels for all-solid-state supercapacitors[J]. ACS Applied Materials & Interfaces,2021,13(24):28222-28230.
    [67] LIU R, ZHANG A T, TANG J G, et al. Fabrication of cobaltosic oxide nanoparticle-doped 3D MXene/graphene hybrid porous aerogels for all-solid-state supercapacitors[J]. Chemistry A European Journal,2019,25(21):5547-5554. doi: 10.1002/chem.201806342
    [68] RADHA N, KANAKARAJ A, MANOHAR H M, et al. Binder free self-standing high performance supercapacitive electrode based on graphene/titanium carbide composite aerogel[J]. Applied Surface Science,2019,481:892-899. doi: 10.1016/j.apsusc.2019.03.086
    [69] LI Y, KAMDEM P, JIN X J. A freeze-and-thaw-assisted approach to fabricate MXene/ZIF-8 composites for high-performance supercapacitors and methylene blue adsorption[J]. Journal of the Electrochemical Society,2020,167:110562. doi: 10.1149/1945-7111/aba934
    [70] GUO B Y, TIAN J, YIN X L, et al. A binder-free electrode based on Ti3C2Tx-rGO aerogel for supercapacitors[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,595:124683. doi: 10.1016/j.colsurfa.2020.124683
    [71] ZHANG L, YU K, LI Y Y, et al. Nanoparticles of Fe3O4 anchored on Ti3C2Tx MXene/rGO aerogels as negative electrodes for advanced supercapacitors[J]. ACS Applied Nano Materials,2023,6(1):482-491. doi: 10.1021/acsanm.2c04589
    [72] ZHANG M Z, JIANG D G, JIN F H, et al. Compression-tolerant supercapacitor based on NiCo2O4/Ti3C2Tx MXene/reduced graphene oxide composite aerogel with insights from density functional theory simulations[J]. Journal of Colloid and Interface Science,2023,636:204-215. doi: 10.1016/j.jcis.2022.12.159
    [73] XU T, WANG Y X, LIU K, et al. Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor[J]. Advanced Composites and Hybrid Materials,2023,6:108. doi: 10.1007/s42114-023-00675-8
    [74] ZHENG W F, YANG Y, FAN L L, et al. Ultralight PPy@PVA/BC/MXene composite aerogels for high-performance supercapacitor eltrodes and pressure sensors[J]. Applied Surface Science,2023,624:157138. doi: 10.1016/j.apsusc.2023.157138
    [75] FARAJI M, PARSAEE F, KHEIRMAND M. Facile fabrication of N-doped graphene/Ti3C2Tx (MXene) aerogel with excellent electrocatalytic activity toward oxygen reduction reaction in fuel cells and metal-air batteries[J]. Journal of Solid State Chemistry,2021,303:122529. doi: 10.1016/j.jssc.2021.122529
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  809
  • HTML全文浏览量:  667
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-08
  • 修回日期:  2023-07-06
  • 录用日期:  2023-07-23
  • 网络出版日期:  2023-07-31
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回