Organization and properties of the surface bionic gradient hardness high strength layer of 17-4PH stainless steel
-
摘要: 本文拟在17-4PH不锈钢表面制备高硬度耐磨层,为缓解高硬度堆焊层与基体间的开裂问题,提出制备仿生梯度硬度表面堆焊结构。采用手工电弧焊在17-4PH不锈钢表面制备仿生梯度硬度高强层,选用D322焊条和D707焊条分别做过渡层和高强层在17-4PH不锈钢表面进行仿生梯度硬度高强层的制备,采用光学显微镜、维氏硬度计、X射线衍射仪、冲击试验机对高强层的微观组织、显微硬度等性能进行了表征。结果表明:在17-4PH不锈钢表面所制备的仿生梯度硬度高强层组织均匀,界面冶金结合良好;仿生梯度硬度高强层组织主要为马氏体、奥氏体、WC及碳化物;仿生梯度硬度高强层相结构主要由Fe-Cr、WC、γ-Fe组成,平均硬度为HV0.5 726.5,较基板有明显的提高;17-4PH不锈钢表面仿生梯度硬度高强层平均冲击吸收功为12.90 J,其冲击吸收功降低的主要原因是由于各层之间的性能不同所导致。Abstract: In this paper, it is proposed to prepare a high hardness wear-resistant layer on the surface of 17-4PH stainless steel, and in order to alleviate the problem of cracking between the high hardness cladding layer and the substrate, it is proposed to prepare a bionic gradient hardness surface cladding structure. The use of manual electric arc welding in the 17-4PH stainless steel surface preparation of bionic gradient hardness high strength layer, the choice of D322 electrode and D707 electrode were used as a transition layer and high strength layer in the 17-4PH stainless steel surface for the preparation of the bionic gradient hardness high strength layer, the use of optical microscopy, Vickers hardness tester, X-ray diffractometer, impact testing machine on the high strength layer of the microstructure, microhardness and other properties were characterization. The results show that the bionic gradient hardness high-strength layer prepared on the surface of 17-4PH stainless steel has a uniform organization and good interfacial metallurgical bonding. The organization of the bionic gradient hardness high-strength layer mainly consists of martensite, austenite, WC and carbide. The bionic gradient hardness high-strength layer phase structure mainly consists of Fe-Cr, WC, γ-Fe, with an average hardness of HV0.5 726.5, which is a significant improvement compared with that of the substrate. The bionic gradient hardness high-strength layer on the surface of 17-4PH stainless steel is also a good example of a bionic gradient hardness layer. 17-4PH stainless steel surface bionic gradient hardness high-strength layer average impact absorption power is 12.90 J, the main reason for the reduction of its impact absorption power is due to the different properties between the layers.
-
图 3 17-4PH不锈钢表面仿生梯度硬度高强层显微组织:(a) 高强层(顶部);(b) 高强层(中部);(c) 高强层与过渡层界面;(d) 过渡层;(e) 过渡层与基板界面;(f) 基板
Figure 3. Microstructure of 17-4PH stainless steel surface bionic gradient hardness high strength layer: (a) High-strength layer (top); (b) High-strength layer (middle); (c) High-strength layer and transition layer interface; (d) Transition layer; (e) Interface between transition layer and substrate; (f) Substrate
表 1 17-4PH不锈钢化学成分
Table 1. Chemical composition of stainless steel 17-4PH
C/wt% Cr/wt% Mn/wt% Si/wt% S/wt% P/wt% Fe/wt% ≤0.07 15.5-17.5 ≤1.00 1.00 0.03 0.04 Bal. Note: Bal.—Balance. 表 2 堆焊焊条化学成分
Table 2. Chemical composition of surfacing electrode
Surfacing material C/wt% W/wt% Cr/wt% Mo/wt% V/wt% Mn/wt% Si/wt% S/wt% P/wt% Fe/wt% D322 ≤0.05 7.00-10.00 ≤5.00 ≤2.5 ≤1.00 — — ≤0.035 0.04 Bal. D707 1.50-3.00 40.00-50.00 — — — ≤2.00 ≤4.00 — — Bal. 表 3 17-4PH不锈钢表面仿生梯度高强层堆焊工艺参数
Table 3. 17-4PH stainless steel surface bionic gradient high strength layer overlay process parameters
Surfacing material Surfacing layer Welding current/A Thickness/mm D322 Transition layer 130 2 D707 High strength layer 155 5-6 表 4 17-4PH不锈钢表面仿生梯度硬度高强层硬度
Table 4. 17-4PH stainless steel surface bionic gradient hardness high tensile layer hardness
Sample position Average hardness value (HV0.5) Substrate 409.8 Transition layer 460.5 High strength layer 726.5 表 5 17-4PH不锈钢表面仿生梯度硬度高强层冲击吸收功
Table 5. Impact absorption function of 17-4PH stainless steel surface bionic gradient hardness high strength layer
Impact absorption function/J Average value/J 15.92 12.90 11.50 10.30 14.06 12.75 -
[1] PENG S X, ZHOU J, ZHANG M M, et al. Fundamental research and numerical simulation of new hot stamping tool manufactured by surfacing technology[J]. The International Journal of Advanced Manufacturing Technology,2020,107:3527-3541. doi: 10.1007/s00170-020-05274-1 [2] 黄智泉. 堆焊制造与再制造技术发展综述[J]. 金属加工(热加工), 2021(6):23-28.HUANG Zhiquan. A review of the development of surfacing manufacturing and remanufacturing technology[J]. Metal Processing (Thermal Processing),2021(6):23-28(in Chinese). [3] HAEMERS T A M, RICKERBY D G, LANZA F, et al. Laser cladding of stainless steel with Hastelloy[J]. Advanced Engineering Materials,2001,3(4):242-245. [4] 孟媛媛, 任瑞晨, 张乾伟, 等. 耐磨堆焊合金材料的研究进展[J]. 材料保护, 2016, 49(2):55-57, 61. doi: 10.16577/j.cnki.42-1215/tb.2016.02.015MENG Yuanyuan, REN Ruichen, ZHANG Qianwei, et al. Research progress of wear-resistant overlay alloy materials[J]. Materials Protection,2016,49(2):55-57, 61(in Chinese). doi: 10.16577/j.cnki.42-1215/tb.2016.02.015 [5] 黄智泉, 贺定勇, 刘仁培, 等. 堆焊技术发展及应用综述[J]. 电焊机, 2023, 53(4):56-62.HUANG Zhiquan, HE Dingyong, LIU Renpei, et al. Review of the development and application of surfacing technology[J]. Electric Welding Machine,2023,53(4):56-62(in Chinese). [6] 卢静, 李勇, 欧阳航, 等. 我国堆焊复合技术的应用与发展[J]. 世界有色金属, 2018(10):195-197. doi: 10.3969/j.issn.1002-5065.2018.10.111LU Jing, LI Yong, OUYANG Hang, et al. Application and development of overlay welding composite technology in China[J]. World Non-ferrous Metals,2018(10):195-197(in Chinese). doi: 10.3969/j.issn.1002-5065.2018.10.111 [7] 任艳艳, 张国赏, 魏世忠, 等. 我国堆焊技术的发展及展望[J]. 焊接技术, 2012, 41(6):1-4. doi: 10.3969/j.issn.1002-025X.2012.06.001REN Yanyan, ZHANG Guoshang, WEI Shizhong, et al. Development and prospects of overlay welding technology in China[J]. Welding Technology,2012,41(6):1-4(in Chinese). doi: 10.3969/j.issn.1002-025X.2012.06.001 [8] 王海霖, 赵占勇, 白培康, 等. SLM成形17-4PH高强钢组织与性能研究[J]. 特种铸造及有色合金, 2021, 41(12):1559-1563.WANG Hailin, ZHAO Zhanyong, BAI Peikang, et al. Study on the organization and properties of SLM-formed 17-4PH high-strength steel[J]. Special Casting and Non-ferrous Alloys,2021,41(12):1559-1563(in Chinese). [9] 王岩, 魏钢, 魏瑛康, 等. 热处理对选区激光熔化制备17-4PH空蚀性能影响[J]. 钢铁, 2023, 58(10): 140-150.WANG Yan, WEI Gang, WEI Yingkang, et al. Effect of heat treatment on the performance of 17-4PH cavitation prepared by selected area laser melting[J]. Steel, 2023, 58(10): 140-150(in Chinese). [10] SARMA I K, SELVARAJ N, KUMAR A. Parametric study and characterization of selective laser melting of 17-4PH stainless steel parts[J]. Journal of Central South University, 2023, 30(3): 855-870. [11] 杨瑞林, 李力军. 影响碳化物硬质颗粒堆焊材料耐磨性的冶金因素[J]. 清华大学学报(自然科学版), 1992(5):86-94. doi: 10.16511/j.cnki.qhdxxb.1992.05.012YANG Ruilin, LI Lijun. Metallurgical factors affecting the wear resistance of carbide hard grained surfacing materials[J]. Journal of Tsinghua University (Natural Science Edition),1992(5):86-94(in Chinese). doi: 10.16511/j.cnki.qhdxxb.1992.05.012 [12] 刘畅, 饶嘉威, 蒋凤琦, 等. 等离子弧熔覆Fe-C-B-V系耐磨堆焊层的组织及性能研究[J]. 热加工工艺, 2024(2):145-148.LIU Chang, RAO Jiawei, JIANG Fengqi, et al. Study on the organization and properties of Fe-C-B-V system wear-resistant overlays by plasma arc welding[J]. Hot Working Technology,2024(2):145-148(in Chinese). [13] 邓德伟, 葛言柳, 田鑫, 等. 等离子堆焊球形碳化钨颗粒增强镍基合金堆焊层的组织与性能[J]. 金属热处理, 2012, 37(11):64-68. doi: 10.13251/j.issn.0254-6051.2012.11.018DENG Dewei, GE Yanliu, TIAN Xin, et al. Organization and properties of nickel-based alloy overlay layers reinforced by plasma overlay spherical tungsten carbide particles[J]. Metal Heat Treatment,2012,37(11):64-68(in Chinese). doi: 10.13251/j.issn.0254-6051.2012.11.018 [14] 赵昆, 王红英, 程志国, 等. 利用等离子弧堆焊获得铁基合金+碳化钨硬质合金的复合堆焊层[J]. 焊接学报, 2002, 23(3):56-58. doi: 10.3321/j.issn:0253-360X.2002.03.015ZHAO Kun, WANG Hongying, CHENG Zhiguo, et al. Composite overlay layer of iron-based alloy + tungsten carbide using plasma arc overlay welding[J]. Transactions of the China Welding Institution,2002,23(3):56-58(in Chinese). doi: 10.3321/j.issn:0253-360X.2002.03.015 [15] 陈娟, 董丽君, 吴安如. 堆焊层数对D707堆焊层组织性能的影响[J]. 湖南工程学院学报(自然科学版), 2017, 27(1):45-48. doi: 10.15987/j.cnki.hgbjbz.2017.01.010CHEN Juan, DONG Lijun, WU Anru. Effect of the number of cladding layers on the tissue properties of D707 cladding layer[J]. Journal of Hunan Engineering College (Natural Science Edition),2017,27(1):45-48(in Chinese). doi: 10.15987/j.cnki.hgbjbz.2017.01.010 [16] 陈红. 碳化钨焊条堆焊层组织与性能[J]. 焊接技术, 2016, 45(3):11-14. doi: 10.13846/j.cnki.cn12-1070/tg.2016.03.005CHEN Hong. Organization and properties of tungsten carbide electrode overlay layer[J]. Welding Technology,2016,45(3):11-14(in Chinese). doi: 10.13846/j.cnki.cn12-1070/tg.2016.03.005 [17] 刘勇, 王顺兴, 田保红. 硬质合金堆焊层经热处理后的耐磨性研究[J]. 中国表面工程, 2002(3):17-19. doi: 10.3321/j.issn:1007-9289.2002.03.005LIU Yong, WANG Shunxing, TIAN Baohong. Study on the wear resistance of cemented carbide overlay layer after heat treatment[J]. China Surface Engineering,2002(3):17-19(in Chinese). doi: 10.3321/j.issn:1007-9289.2002.03.005 [18] 吴志生, 云晖, 刘翠荣, 等. Q235钢表面堆焊不锈钢的组织与性能[J]. 焊接技术, 2014, 43(3):13-15. doi: 10.13846/j.cnki.cn12-1070/tg.2014.03.005WU Zhisheng, YUN Hui, LIU Cuirong, et al. Organization and properties of Q235 steel surface overlay stainless steel[J]. Welding Technology,2014,43(3):13-15(in Chinese). doi: 10.13846/j.cnki.cn12-1070/tg.2014.03.005 [19] 张宇鹏, 王永东, 王金宇, 等. Q235钢表面CO2堆焊药芯焊丝组织与性能研究[J]. 电焊机, 2022, 52(4):82-88.ZHANG Yupeng, WANG Yongdong, WANG Jinyu, et al. Study on the organization and properties of Q235 steel surface CO2 overlay flux cored wire[J]. Electric Welding Machine,2022,52(4):82-88(in Chinese). [20] 禹东, 刘奋成, 高健, 等. Q235钢表面CMT电弧熔覆镍基合金复合板的组织与性能研究[J]. 南昌航空大学学报(自然科学版), 2021, 35(3):59-64.YU dong, LIU Fencheng, GAO Jian, et al. Study on the organization and properties of nickel-based alloy composite plates with CMT arc cladding on the surface of Q235 steel[J]. Journal of Nanchang University of Aeronautics (Natural Science Edition),2021,35(3):59-64(in Chinese). [21] 邓德伟, 陈蕊, 王冬颖. 热处理对PH17-4表面堆焊钴基合金后组织及性能的影响[J]. 焊接, 2012(10):65-69, 72. doi: 10.3969/j.issn.1001-1382.2012.10.013DENG Dewei, CHEN Rui, WANG Dongying. Effect of heat treatment on the organization and properties of cobalt-based alloy after surface overlay welding of PH17-4[J]. Welding,2012(10):65-69, 72(in Chinese). doi: 10.3969/j.issn.1001-1382.2012.10.013 [22] 王芝玲, 于跟喜. 低合金表面奥氏体不锈钢堆焊层组织与性能研究[J]. 铸造技术, 2016, 37(4):771-773. doi: 10.16410/j.issn1000-8365.2016.04.042WANG Zhiling, YU Genxi. Study on the organization and properties of low-alloy surface austenitic stainless steel overlay layer[J]. Casting Technology,2016,37(4):771-773(in Chinese). doi: 10.16410/j.issn1000-8365.2016.04.042 [23] 中国钢铁工业协会. 金属材料 夏比摆锤冲击试验方法: GB/T 229—2020[S]. 北京: 中国标准出版社, 2020.China Iron and Steel Association. Charpy pendulum impact test method for metallic materials: GB/T 229—2020[S]. Beijing: China Standard Press, 2020(in Chinese).