留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于固废磷石膏制备胶凝材料的工艺与机制

郑玉龙 嵇帅 陆春华 孙玉涛 赵航

郑玉龙, 嵇帅, 陆春华, 等. 基于固废磷石膏制备胶凝材料的工艺与机制[J]. 复合材料学报, 2024, 41(3): 1436-1446. doi: 10.13801/j.cnki.fhclxb.20230731.001
引用本文: 郑玉龙, 嵇帅, 陆春华, 等. 基于固废磷石膏制备胶凝材料的工艺与机制[J]. 复合材料学报, 2024, 41(3): 1436-1446. doi: 10.13801/j.cnki.fhclxb.20230731.001
ZHENG Yulong, JI Shuai, LU Chunhua, et al. Preparation technology and mechanism of cementitious material based on solid waste phosphogypsum[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1436-1446. doi: 10.13801/j.cnki.fhclxb.20230731.001
Citation: ZHENG Yulong, JI Shuai, LU Chunhua, et al. Preparation technology and mechanism of cementitious material based on solid waste phosphogypsum[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1436-1446. doi: 10.13801/j.cnki.fhclxb.20230731.001

基于固废磷石膏制备胶凝材料的工艺与机制

doi: 10.13801/j.cnki.fhclxb.20230731.001
基金项目: 国家自然科学基金项目(52108147;51878319);江苏省博士后科研资助计划(2020Z350);江苏大学高级人才基金资助项目(20JDG19)
详细信息
    通讯作者:

    郑玉龙,博士,教授,博士生导师,研究方向为混凝土结构耐久性及工业废弃物再利用 E-mail: zylcivil@ujs.edu.cn

  • 中图分类号: X705;TU526;TB333

Preparation technology and mechanism of cementitious material based on solid waste phosphogypsum

Funds: National Natural Science Foundation of China (52108147; 51878319); Jiangsu Planned Projects for Postdoctoral Research Funds (2020Z350); Senior Talent Foundation of Jiangsu University (20JDG19)
  • 摘要: 大量堆积的工业固废磷石膏对环境造成了严重污染,同时,传统高能耗的水泥产业与实现“双碳”目标的矛盾日渐突出。已有研究表明,基于磷石膏制备的胶凝材料可以部分替代普通硅酸盐水泥,但使用未经处理的原材料时其工作与力学性能较差。本文主要利用原状磷石膏、矿渣、钢渣和石灰石等常见的工业固废材料,制备绿色高强的磷石膏基胶凝材料。研究结果表明,内掺0.5wt%植物蛋白与胶凝体系中的Ca2+生成螯合物,形成配位化合物覆盖在石膏晶核表面,不仅延缓了胶凝材料的凝结时间,增大了水化反应程度,也提高了其力学性能。通过微观及成分分析表明,磷石膏在胶凝材料中主要作为填充物质,矿渣在钢渣的碱激发作用下发生水化反应,且石灰石在促进水化反应的同时改善了浆体孔结构;基于原状固废磷石膏,采用m磷石膏m矿渣m钢渣m石灰石=0.45∶0.35∶0.1∶0.1配合比制备出的胶砂试件,其28天抗折强度为7.0 MPa、抗压强度为39.1 MPa,软化系数为0.91,接近P·O 42.5级别普通硅酸盐水泥性能。

     

  • 图  1  原状PG的分析

    Figure  1.  Analysis of undisturbed PG

    图  2  磷石膏基胶凝材料实验过程

    Figure  2.  Experimental process of phosphogypsum based cementitious materials

    AFt—Ettringite; C-S-H—Calcium silicate hydrate

    图  3  不同预处理方式下磷石膏基胶凝材料安定性测试结果

    Figure  3.  Test results of stability of phosphogypsum based cementitious material under different pretreatment methods

    图  4  不同预处理方式下磷石膏基胶凝材料的凝结时间

    Figure  4.  Setting time of phosphogypsum based cementitious materials under different pretreatment methods

    图  5  预处理对磷石膏基胶凝材料力学性能的影响

    Figure  5.  Effect of pretreatment on mechanical properties of phosphogypsum based cementitious materials

    图  6  配合比对磷石膏基胶凝材料力学性能的影响

    Figure  6.  Effect of mix ratio on mechanical properties of phosphogypsum based cementitious materials

    图  7  最优配比下磷石膏基胶凝材料吸水率和软化系数随时间的变化

    Figure  7.  Changes of water absorption and softening coefficient of phosphogypsum based cementing material with time under optimal ratio

    图  8  不同VP用量的磷石膏基胶凝材料水化产物SEM图像

    Figure  8.  SEM images of hydration products for phosphogypsum based cementitious materials with different VP dosages

    图  9  磷石膏基胶凝体系水化反应示意图:((a)~(c)) 不掺VP的水化反应过程;((d), (e)) 掺VP的水化反应过程

    Figure  9.  Schematic diagram of hydration reaction of phosphogypsum based cementitious system: ((a)-(c)) Hydration reaction process without VP mixing; ((d), (e)) Hydration reaction process with VP mixing

    SS—Steel slag; LS—Limestone

    图  10  不同龄期下磷石膏基胶凝材料水化产物的SEM图像((a)~(c))和EDS能谱((d)~(f))

    Figure  10.  SEM images ((a)-(c)) and EDS spectra ((d)-(f)) of hydration products for phosphogypsum based cementitious materials at different ages

    表  1  原材料化学成分

    Table  1.   Chemical composition of raw materials

    MaterialLOICaO
    /wt%
    SiO2
    /wt%
    Al2O3
    /wt%
    SO3
    /wt%
    Fe2O3
    /wt%
    MgO
    /wt%
    P2O5
    /wt%
    F
    /wt%
    Others
    /wt%
    PG 11.97 34.52 3.21 1.09 47.30 0.31 0.06 1.10 0.20 0.24
    Slag 3.36 34.00 34.50 17.70 1.64 1.03 6.01 1.76
    Steel slag 5.05 29.12 14.32 3.80 6.05 31.24 9.30 1.12
    Limestone 40.91 51.36 4.10 1.24 0.30 0.72 1.37
    Notes:PG—Phosphogypsum; LOI—Loss on ignition.
    下载: 导出CSV

    表  2  磷石膏基胶凝材料试验参数设计

    Table  2.   Design of experimental parameters of phosphogypsum based cementitious material

    No.Mass composition/wt%
    Anhydrous sodium citrateSteel slag (solution)PGSlagSteel slagLimestoneVPPurpose
    BG-P4545351010Effect of pretreatment method
    SL-P45245351010
    AC-P45445351010
    VP-P45453510100.25
    VP-P45453510100.5
    VP+-P45453510101
    VP-P35354510100.5Effect of mix ratio
    VP-P55552510100.5
    Notes: For example, BG-P45 stands for the benchmark group without pretreatment and PG accounts for 45% the quality of the cementitious material; AC—Anhydrous sodium citrate; SL—Steel slag; VP+, VP and VP represents different dosage of vegetable protein as 1wt%, 0.5wt% and 0.25wt%, respectively.
    下载: 导出CSV

    表  3  磷石膏预处理方式对胶凝材料性能的影响

    Table  3.   Effect of phosphogypsum pretreatment methods on properties of cementitious materials

    GroupStabilityInitial setting
    time/min
    Final setting
    time/min
    Compressive
    strength/MPa
    Flexural strength/MPa
    3 d7 d28 d3 d7 d28 d
    BG-P45 Qualified 164 202 1.9 7.7 18.5 0.9 2.1 4.4
    SL-P45 Qualified 95 132 3.4 8.6 25.5 2.2 3.5 5.5
    AC-P45 Qualified 195 260 3.5 8.2 27.2 2.5 3.7 6.9
    VP-P45 Qualified 243 307 5.4 8.5 27.3 1.8 2.3 5.2
    VP-P45 Qualified 295 366 7.6 14.1 39.1 2.3 3.3 7.0
    VP+-P45 Qualified 319 390 6.7 10.8 32.4 2.1 2.7 6.0
    下载: 导出CSV
  • [1] CAO Y M, CUI Y, YU X K, et al. Bibliometric analysis of phosphogypsum research from 1990 to 2020 based on lite-ratures and patents[J]. Environmental Science and Pollution Research,2021,28(47):66845-66857. doi: 10.1007/s11356-021-15237-y
    [2] ZHANG S Y, ZHAO Y L, DING H X, et al. Recycling flue gas desulfurisation gypsum and phosphogypsum for cement-ed paste backfill and its acid resistance[J]. Construction and Building Materials,2021,275:122170. doi: 10.1016/j.conbuildmat.2020.122170
    [3] RASHAD A M. Phosphogypsum as a construction material[J]. Journal of Cleaner Production,2017,166:732-743. doi: 10.1016/j.jclepro.2017.08.049
    [4] 兰文涛, 吴爱祥, 王贻明. 凝水膨胀充填复合材料的配比优化与形成机制[J]. 复合材料学报, 2019, 36(6):1536-1545.

    LAN Wentao, WU Aixiang, WANG Yiming. Formulation optimization and formation mechanism of condensate expansion and filling composites[J]. Acta Materiae Compositae Sinica,2019,36(6):1536-1545(in Chinese).
    [5] 兰玉书, 石梏岐, 杨刚, 等. 磷石膏堆场周边水稻土重金属污染特征及稻米的人体健康风险分析[J]. 地球环境学报, 2021, 12(2):224-231.

    LAN Yushu, SHI Xiaoqi, YANG Gang, et al. Status of heavy metal pollution in paddy soil and human health risk assessment of rice around phosphogypsum yard[J]. Journal of Earth Environment,2021,12(2):224-231(in Chinese).
    [6] 张峻, 解维闵, 董雄波, 等. 磷石膏材料化综合利用研究进展[J]. 材料导报, 2023, 37(16): 22010110-12.

    ZHANG Jun, XIE Weimin, DONG Xiongbo, et al. Research progress on comprehensive utilization of phosphogypsum for materials: A review[J]. Materials Reports, 2023, 37(16): 22010110-12(in Chinese).
    [7] WU F H, REN Y, QU G F, et al. Utilization path of bulk industrial solid waste: A review on the multi-directional resource utilization path of phosphogypsum[J]. Journal of Environmental Management,2022,313:114957. doi: 10.1016/j.jenvman.2022.114957
    [8] 张智, 蔡自伟, 李凌志, 等. 再生砂超高性能混凝土力学性能[J]. 复合材料学报, 2022, 39(11):5158-5169.

    ZHANG Zhi, CAI Ziwei, LI Lingzhi, et al. Mechanical properties of recycled sand ultra-high performance concrete[J]. Acta Materiae Compositae Sinica,2022,39(11):5158-5169(in Chinese).
    [9] 李佳璇, 王平, 万斯, 等. 高孔隙率生物炭研制及其处理废水中磷酸盐[J]. 复合材料学报, 2023, 40(11):6395-6406. doi: 10.13801/j.cnki.fhclxb.20230131.001

    LI Jiaxuan, WANG Ping, WAN Si, et al. High porosity biochar and its treatment of phosphate in wastewater[J]. Acta Materiae Compositae Sinica,2023,40(11):6395-6406(in Chinese). doi: 10.13801/j.cnki.fhclxb.20230131.001
    [10] 高乙博, 罗健林, 李治庆, 等. 正交优化纤维聚合物修补防护砂浆配比及其综合性能实现机制[J]. 复合材料学报, 2023, 40(9):5258-5275.

    GAO Yibo, LUO Jianlin, LI Zhiqing, et al. Orthogonal optimi-zation mix ratio of fiber polymer repair protect mortar and its comprehensive performance realization mechanism[J]. Acta Materiae Compositae Sinica,2023,40(9):5258-5275(in Chinese).
    [11] IGLIŃSKI B, BUCZKOWSKI R. Development of cement industry in Poland-History, current state, ecological aspects. A review[J]. Journal of Cleaner Production,2017,141:702-720. doi: 10.1016/j.jclepro.2016.09.139
    [12] PLIAKA M, GAIDAJIS G. Potential uses of phosphogypsum: A review[J]. Journal of Environmental Science and Health, Part A,2022,57(9):746-763. doi: 10.1080/10934529.2022.2105632
    [13] 徐方, 李恒, 孙涛, 等. 基于分子动力学模拟的过硫磷石膏矿渣水泥组成设计[J]. 复合材料学报, 2022, 39(6):2821-2828.

    XU Fang, LI Heng, SUN Tao, et al. Composition design of excess-sulfate phosphogypsum slag cement based on molecular dynamics simulation[J]. Acta Materiae Compositae Sinica,2022,39(6):2821-2828(in Chinese).
    [14] SINGH M, GARG M. Cementitious binder from fly ash and other industrial wastes[J]. Cement and Concrete Research,1999,29(3):309-314. doi: 10.1016/S0008-8846(98)00210-5
    [15] DEĞIRMENCI N. Utilization of phosphogypsum as raw and calcined material in manufacturing of building products[J]. Construction and Building Materials,2008,22(8):1857-1862. doi: 10.1016/j.conbuildmat.2007.04.024
    [16] 林宗寿, 黄赟. 磷石膏基免煅烧水泥的开发研究[J]. 武汉理工大学学报, 2009, 31(4):53-55.

    LIN Zongshou, HUANG Yun. Investigation on phosphogypsum-base non-calcined cement[J]. Journal of Wuhan University of Technology,2009,31(4):53-55(in Chinese).
    [17] GONG X Q, LIU J S, SUN Z G, et al. Effects of phosphogypsum and calcined phosphogypsum content on the basic physical and mechanical properties of Portland cement mortar[J]. Journal of Testing and Evaluation,2020,48(5):3539-3549.
    [18] ZHANG Y Y, YANG J S, CAO X Y. Effects of several retarders on setting time and strength of building gypsum[J]. Construction and Building Materials,2020,240:117927. doi: 10.1016/j.conbuildmat.2019.117927
    [19] 张立, 胡修权, 张晋, 等. 工业固废耦合磷石膏制备胶凝材料试验[J]. 非金属矿, 2022, 45(2):33-37. doi: 10.3969/j.issn.1000-8098.2022.02.008

    ZHANG Li, HU Xiuquan, ZHANG Jin, et al. Experiment on preparation of phosphogypsum cementitious materials with industrial waste[J]. Non-Metallic Mines,2022,45(2):33-37(in Chinese). doi: 10.3969/j.issn.1000-8098.2022.02.008
    [20] SUN C Y, ZHANG J, YAN C W, et al. Hydration characteristics of low carbon cementitious materials with multiple solid wastes[J]. Construction and Building Materials,2022,322:126-136.
    [21] YANG J, ZENG J Y, HE X Y, et al. Sustainable clinker-free solid waste binder produced from wet-ground granulated blast-furnace slag, phosphogypsum and carbide slag[J]. Construction and Building Materials,2022,330:127218. doi: 10.1016/j.conbuildmat.2022.127218
    [22] 马保国, 邬磊, 陈偏, 等. 缓凝剂对磷建筑石膏-普通硅酸盐水泥复合体系性能的影响及其机理研究[J]. 硅酸盐通报, 2022, 41(7): 2411-2420.

    MA Baoguo, WU Lei, CHEN Bian, et al. Effect of retarder on properties of β-hemihydrate phosphogypsum-ordinary portland cement composite system and its mechanism[J]. Bulletin of the Chinese Ceramic Society , 2022, 41(7): 2411-2420(in Chinese).
    [23] SINGH M. Treating waste phosphogypsum for cement and plaster manufacture[J]. Cement and Concrete Research,2002,32(7):1033-1038. doi: 10.1016/S0008-8846(02)00723-8
    [24] ZHANG L C, ZHANG A L, LI K, et al. Research on the pretreatment and mechanical performance of undisturbed phosphogypsum[J]. Case Studies in Construction Materials,2020,13:e00400. doi: 10.1016/j.cscm.2020.e00400
    [25] AVERITT D W, GLIKSMAN J E. Free water in phosphogypsum[J]. Fertilizer Research,1990,24(1):57-62. doi: 10.1007/BF01073147
    [26] 中国国家标准化管理委员会. 水泥砂浆强度试验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021.

    Standardization Administration of the People's Republic of China. Test method for the strength of cement mortar (ISO method): GB/T 17671—2021[S]. Beijing: Standards Press of China, 2021(in Chinese).
    [27] 中华人民共和国国家质量监督检验检疫总局. 水泥标准稠度用水量、凝结时间、安定性检验方法: GB/T 1346—2011[S]. 北京: 中国标准出版社, 2011.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Test method for water consumption, setting time and stability of cement standard consistency: GB/T 1346—2011[S]. Beijing: Standards Press of China, 2011(in Chinese).
    [28] 国家质量技术监督局. 建筑石膏力学性能的测定: GB/T 17669.3—1999[S]. 北京: 中国标准出版社, 1999.

    The State Bureau of Quality and Technical Supervision. Determination of mechanical properties of building gypsum: GB/T 17669.3—1999[S]. Beijing: Standards Press of China, 1999(in Chinese).
    [29] 王紫嫣, 水中和, 孙涛, 等. 高铁钢渣作碱激发剂对过硫磷石膏矿渣凝结硬化性能的影响[J]. 材料导报, 2023(S1):277-283.

    WANG Ziyan, SHUI Zhonghe, SUN Tao, et al. Steel slag with high iron phase activates excess-sulphate slag cement: Effect on the coagulation and strength development[J]. Materials Reports,2023(S1):277-283(in Chinese).
    [30] MUN K J, HYOUNG W K, LEE C W, et al. Basic properties of non-sintering cement using phosphogypsum and waste lime as activator[J]. Construction and Building Materials,2007,21(6):1342-1350. doi: 10.1016/j.conbuildmat.2005.12.022
    [31] 黄滔, 彭小芹, 王淑萍, 等. 蛋白类缓凝剂对建筑石膏的适应性[J]. 建筑材料学报, 2018, 21(4):608-613. doi: 10.3969/j.issn.1007-9629.2018.04.013

    HUANG Tao, PENG Xiaoqin, WANG Shuping, et al. Adaptability of protein retarder for calcined gypsum[J]. Journal of Building Materials,2018,21(4):608-613(in Chinese). doi: 10.3969/j.issn.1007-9629.2018.04.013
    [32] DING X L, WEI B Q, DENG M G, et al. Effect of protein peptides with different molecular weights on the setting and hydration process of gypsum[J]. Construction and Building Materials,2022,318:126185. doi: 10.1016/j.conbuildmat.2021.126185
    [33] ELIWA A A, MUBARK A E, ABDELFATTAH N A, et al. Maximizing the exploitation of phosphogypsum wastes using soaking technique with citric acid, recovering rare-earth and residual phosphate contents[J]. Journal of Central South University,2022,29(12):3896-3911. doi: 10.1007/s11771-022-5209-0
    [34] 陈迁好, 蒋正武. 化学预处理对磷石膏基复合胶凝材料性能的影响[J]. 建筑材料学报, 2022, 23(1):200-209.

    CHEN Qianhao, JIANG Zhengwu. Effect of chemical pretreatment on the properties of phosphogypsum-based composite cementitious materials[J]. Journal of Building Materials,2022,23(1):200-209(in Chinese).
    [35] 中华人民共和国国家质量监督检验检疫总局. 通用硅酸盐水泥: GB175—2007/XG3—2018[S]. 北京: 中国标准出版社, 2018.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. General purpose portland cement: GB175—2007/XG3—2018[S]. Beijing: Standards Press of China, 2018(in Chinese).
    [36] 黄赟. 磷石膏基水泥的开发研究[D]. 武汉: 武汉理工大学, 2010.

    HUANG Yun. Research and development of phosphogypsum based cement[D]. Wuhan: Wuhan University of Technology, 2010(in Chinese).
    [37] CHEN P, MA B G, TAN H B, et al. Improving the mechani-cal property and water resistance of β-hemihydrate phosphogypsum by incorporating ground blast-furnace slag and steel slag[J]. Construction and Building Materials,2022,344:128265. doi: 10.1016/j.conbuildmat.2022.128265
    [38] 中华人民共和国住房和城乡建设部. 砌体结构通用规范: GB 55007—2021[S]. 北京: 中国建筑工业出版社, 2021.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. General code for masonry structure: GB 55007—2021[S]. Beijing: China Building and Construction Press, 2021(in Chinese) .
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  951
  • HTML全文浏览量:  300
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-25
  • 修回日期:  2023-06-29
  • 录用日期:  2023-07-14
  • 网络出版日期:  2023-07-31
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回