Preparation technology and mechanism of cementitious material based on solid waste phosphogypsum
-
摘要: 大量堆积的工业固废磷石膏对环境造成了严重污染,同时,传统高能耗的水泥产业与实现“双碳”目标的矛盾日渐突出。已有研究表明,基于磷石膏制备的胶凝材料可以部分替代普通硅酸盐水泥,但使用未经处理的原材料时其工作与力学性能较差。本文主要利用原状磷石膏、矿渣、钢渣和石灰石等常见的工业固废材料,制备绿色高强的磷石膏基胶凝材料。研究结果表明,内掺0.5wt%植物蛋白与胶凝体系中的Ca2+生成螯合物,形成配位化合物覆盖在石膏晶核表面,不仅延缓了胶凝材料的凝结时间,增大了水化反应程度,也提高了其力学性能。通过微观及成分分析表明,磷石膏在胶凝材料中主要作为填充物质,矿渣在钢渣的碱激发作用下发生水化反应,且石灰石在促进水化反应的同时改善了浆体孔结构;基于原状固废磷石膏,采用m磷石膏∶m矿渣∶m钢渣∶m石灰石=0.45∶0.35∶0.1∶0.1配合比制备出的胶砂试件,其28天抗折强度为7.0 MPa、抗压强度为39.1 MPa,软化系数为0.91,接近P·O 42.5级别普通硅酸盐水泥性能。Abstract: A large amount of industrial solid waste phosphogypsum has caused serious pollution to the environment. At the same time, the contradiction between the traditional cement industry with high energy consumption and the realization of the "double carbon" target has become increasingly prominent. Some studies have shown that the cementitious material based on phosphogypsum can replace part of ordinary Portland cement, but its working and mechanical properties are poor when using raw materials without treatment. In this paper, the green and high strength phosphogypsum based cementitious materials were prepared by using common industrial solid wastes such as original phosphogypsum, slag, steel slag and limestone. The results show that chelates are formed by mixing 0.5wt% plant protein with Ca2+ in the gelling system to produce a coordination compound covering the surface of gypsum nucleus, which not only delays the setting time of the gelling material, promotes the hydration reaction degree, but also improves its mechanical properties. The microstructure and composition analysis show that phosphogypsum is mainly used as a filler in the cementitious material, the slag is activated by the alkali of steel slag, and the limestone promotes the hydration reaction while providing Ca2+. Based on the original solid waste phosphogypsum, using the mixture ratio of mphosphogypsum∶mslag∶msteel slag∶mlimestone = 0.45∶0.35∶0.1∶0.1, 28 days flexural strength of mortar specimen is 7.0 MPa, compressive strength is 39.1 MPa, and softening coefficient is 0.91, which is very close to the performance of P·O 42.5 grade ordinary Portland cement.
-
表 1 原材料化学成分
Table 1. Chemical composition of raw materials
Material LOI CaO
/wt%SiO2
/wt%Al2O3
/wt%SO3
/wt%Fe2O3
/wt%MgO
/wt%P2O5
/wt%F
/wt%Others
/wt%PG 11.97 34.52 3.21 1.09 47.30 0.31 0.06 1.10 0.20 0.24 Slag 3.36 34.00 34.50 17.70 1.64 1.03 6.01 — — 1.76 Steel slag 5.05 29.12 14.32 3.80 6.05 31.24 9.30 — — 1.12 Limestone 40.91 51.36 4.10 1.24 — 0.30 0.72 — — 1.37 Notes:PG—Phosphogypsum; LOI—Loss on ignition. 表 2 磷石膏基胶凝材料试验参数设计
Table 2. Design of experimental parameters of phosphogypsum based cementitious material
No. Mass composition/wt% Anhydrous sodium citrate Steel slag (solution) PG Slag Steel slag Limestone VP Purpose BG-P45 — — 45 35 10 10 — Effect of pretreatment method SL-P45 — 2 45 35 10 10 — AC-P45 4 — 45 35 10 10 — VP−-P45 — — 45 35 10 10 0.25 VP-P45 — — 45 35 10 10 0.5 VP+-P45 — — 45 35 10 10 1 VP-P35 — — 35 45 10 10 0.5 Effect of mix ratio VP-P55 — — 55 25 10 10 0.5 Notes: For example, BG-P45 stands for the benchmark group without pretreatment and PG accounts for 45% the quality of the cementitious material; AC—Anhydrous sodium citrate; SL—Steel slag; VP+, VP and VP− represents different dosage of vegetable protein as 1wt%, 0.5wt% and 0.25wt%, respectively. 表 3 磷石膏预处理方式对胶凝材料性能的影响
Table 3. Effect of phosphogypsum pretreatment methods on properties of cementitious materials
Group Stability Initial setting
time/minFinal setting
time/minCompressive
strength/MPaFlexural strength/MPa 3 d 7 d 28 d 3 d 7 d 28 d BG-P45 Qualified 164 202 1.9 7.7 18.5 0.9 2.1 4.4 SL-P45 Qualified 95 132 3.4 8.6 25.5 2.2 3.5 5.5 AC-P45 Qualified 195 260 3.5 8.2 27.2 2.5 3.7 6.9 VP−-P45 Qualified 243 307 5.4 8.5 27.3 1.8 2.3 5.2 VP-P45 Qualified 295 366 7.6 14.1 39.1 2.3 3.3 7.0 VP+-P45 Qualified 319 390 6.7 10.8 32.4 2.1 2.7 6.0 -
[1] CAO Y M, CUI Y, YU X K, et al. Bibliometric analysis of phosphogypsum research from 1990 to 2020 based on lite-ratures and patents[J]. Environmental Science and Pollution Research,2021,28(47):66845-66857. doi: 10.1007/s11356-021-15237-y [2] ZHANG S Y, ZHAO Y L, DING H X, et al. Recycling flue gas desulfurisation gypsum and phosphogypsum for cement-ed paste backfill and its acid resistance[J]. Construction and Building Materials,2021,275:122170. doi: 10.1016/j.conbuildmat.2020.122170 [3] RASHAD A M. Phosphogypsum as a construction material[J]. Journal of Cleaner Production,2017,166:732-743. doi: 10.1016/j.jclepro.2017.08.049 [4] 兰文涛, 吴爱祥, 王贻明. 凝水膨胀充填复合材料的配比优化与形成机制[J]. 复合材料学报, 2019, 36(6):1536-1545.LAN Wentao, WU Aixiang, WANG Yiming. Formulation optimization and formation mechanism of condensate expansion and filling composites[J]. Acta Materiae Compositae Sinica,2019,36(6):1536-1545(in Chinese). [5] 兰玉书, 石梏岐, 杨刚, 等. 磷石膏堆场周边水稻土重金属污染特征及稻米的人体健康风险分析[J]. 地球环境学报, 2021, 12(2):224-231.LAN Yushu, SHI Xiaoqi, YANG Gang, et al. Status of heavy metal pollution in paddy soil and human health risk assessment of rice around phosphogypsum yard[J]. Journal of Earth Environment,2021,12(2):224-231(in Chinese). [6] 张峻, 解维闵, 董雄波, 等. 磷石膏材料化综合利用研究进展[J]. 材料导报, 2023, 37(16): 22010110-12.ZHANG Jun, XIE Weimin, DONG Xiongbo, et al. Research progress on comprehensive utilization of phosphogypsum for materials: A review[J]. Materials Reports, 2023, 37(16): 22010110-12(in Chinese). [7] WU F H, REN Y, QU G F, et al. Utilization path of bulk industrial solid waste: A review on the multi-directional resource utilization path of phosphogypsum[J]. Journal of Environmental Management,2022,313:114957. doi: 10.1016/j.jenvman.2022.114957 [8] 张智, 蔡自伟, 李凌志, 等. 再生砂超高性能混凝土力学性能[J]. 复合材料学报, 2022, 39(11):5158-5169.ZHANG Zhi, CAI Ziwei, LI Lingzhi, et al. Mechanical properties of recycled sand ultra-high performance concrete[J]. Acta Materiae Compositae Sinica,2022,39(11):5158-5169(in Chinese). [9] 李佳璇, 王平, 万斯, 等. 高孔隙率生物炭研制及其处理废水中磷酸盐[J]. 复合材料学报, 2023, 40(11):6395-6406. doi: 10.13801/j.cnki.fhclxb.20230131.001LI Jiaxuan, WANG Ping, WAN Si, et al. High porosity biochar and its treatment of phosphate in wastewater[J]. Acta Materiae Compositae Sinica,2023,40(11):6395-6406(in Chinese). doi: 10.13801/j.cnki.fhclxb.20230131.001 [10] 高乙博, 罗健林, 李治庆, 等. 正交优化纤维聚合物修补防护砂浆配比及其综合性能实现机制[J]. 复合材料学报, 2023, 40(9):5258-5275.GAO Yibo, LUO Jianlin, LI Zhiqing, et al. Orthogonal optimi-zation mix ratio of fiber polymer repair protect mortar and its comprehensive performance realization mechanism[J]. Acta Materiae Compositae Sinica,2023,40(9):5258-5275(in Chinese). [11] IGLIŃSKI B, BUCZKOWSKI R. Development of cement industry in Poland-History, current state, ecological aspects. A review[J]. Journal of Cleaner Production,2017,141:702-720. doi: 10.1016/j.jclepro.2016.09.139 [12] PLIAKA M, GAIDAJIS G. Potential uses of phosphogypsum: A review[J]. Journal of Environmental Science and Health, Part A,2022,57(9):746-763. doi: 10.1080/10934529.2022.2105632 [13] 徐方, 李恒, 孙涛, 等. 基于分子动力学模拟的过硫磷石膏矿渣水泥组成设计[J]. 复合材料学报, 2022, 39(6):2821-2828.XU Fang, LI Heng, SUN Tao, et al. Composition design of excess-sulfate phosphogypsum slag cement based on molecular dynamics simulation[J]. Acta Materiae Compositae Sinica,2022,39(6):2821-2828(in Chinese). [14] SINGH M, GARG M. Cementitious binder from fly ash and other industrial wastes[J]. Cement and Concrete Research,1999,29(3):309-314. doi: 10.1016/S0008-8846(98)00210-5 [15] DEĞIRMENCI N. Utilization of phosphogypsum as raw and calcined material in manufacturing of building products[J]. Construction and Building Materials,2008,22(8):1857-1862. doi: 10.1016/j.conbuildmat.2007.04.024 [16] 林宗寿, 黄赟. 磷石膏基免煅烧水泥的开发研究[J]. 武汉理工大学学报, 2009, 31(4):53-55.LIN Zongshou, HUANG Yun. Investigation on phosphogypsum-base non-calcined cement[J]. Journal of Wuhan University of Technology,2009,31(4):53-55(in Chinese). [17] GONG X Q, LIU J S, SUN Z G, et al. Effects of phosphogypsum and calcined phosphogypsum content on the basic physical and mechanical properties of Portland cement mortar[J]. Journal of Testing and Evaluation,2020,48(5):3539-3549. [18] ZHANG Y Y, YANG J S, CAO X Y. Effects of several retarders on setting time and strength of building gypsum[J]. Construction and Building Materials,2020,240:117927. doi: 10.1016/j.conbuildmat.2019.117927 [19] 张立, 胡修权, 张晋, 等. 工业固废耦合磷石膏制备胶凝材料试验[J]. 非金属矿, 2022, 45(2):33-37. doi: 10.3969/j.issn.1000-8098.2022.02.008ZHANG Li, HU Xiuquan, ZHANG Jin, et al. Experiment on preparation of phosphogypsum cementitious materials with industrial waste[J]. Non-Metallic Mines,2022,45(2):33-37(in Chinese). doi: 10.3969/j.issn.1000-8098.2022.02.008 [20] SUN C Y, ZHANG J, YAN C W, et al. Hydration characteristics of low carbon cementitious materials with multiple solid wastes[J]. Construction and Building Materials,2022,322:126-136. [21] YANG J, ZENG J Y, HE X Y, et al. Sustainable clinker-free solid waste binder produced from wet-ground granulated blast-furnace slag, phosphogypsum and carbide slag[J]. Construction and Building Materials,2022,330:127218. doi: 10.1016/j.conbuildmat.2022.127218 [22] 马保国, 邬磊, 陈偏, 等. 缓凝剂对磷建筑石膏-普通硅酸盐水泥复合体系性能的影响及其机理研究[J]. 硅酸盐通报, 2022, 41(7): 2411-2420.MA Baoguo, WU Lei, CHEN Bian, et al. Effect of retarder on properties of β-hemihydrate phosphogypsum-ordinary portland cement composite system and its mechanism[J]. Bulletin of the Chinese Ceramic Society , 2022, 41(7): 2411-2420(in Chinese). [23] SINGH M. Treating waste phosphogypsum for cement and plaster manufacture[J]. Cement and Concrete Research,2002,32(7):1033-1038. doi: 10.1016/S0008-8846(02)00723-8 [24] ZHANG L C, ZHANG A L, LI K, et al. Research on the pretreatment and mechanical performance of undisturbed phosphogypsum[J]. Case Studies in Construction Materials,2020,13:e00400. doi: 10.1016/j.cscm.2020.e00400 [25] AVERITT D W, GLIKSMAN J E. Free water in phosphogypsum[J]. Fertilizer Research,1990,24(1):57-62. doi: 10.1007/BF01073147 [26] 中国国家标准化管理委员会. 水泥砂浆强度试验方法(ISO法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021.Standardization Administration of the People's Republic of China. Test method for the strength of cement mortar (ISO method): GB/T 17671—2021[S]. Beijing: Standards Press of China, 2021(in Chinese). [27] 中华人民共和国国家质量监督检验检疫总局. 水泥标准稠度用水量、凝结时间、安定性检验方法: GB/T 1346—2011[S]. 北京: 中国标准出版社, 2011.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Test method for water consumption, setting time and stability of cement standard consistency: GB/T 1346—2011[S]. Beijing: Standards Press of China, 2011(in Chinese). [28] 国家质量技术监督局. 建筑石膏力学性能的测定: GB/T 17669.3—1999[S]. 北京: 中国标准出版社, 1999.The State Bureau of Quality and Technical Supervision. Determination of mechanical properties of building gypsum: GB/T 17669.3—1999[S]. Beijing: Standards Press of China, 1999(in Chinese). [29] 王紫嫣, 水中和, 孙涛, 等. 高铁钢渣作碱激发剂对过硫磷石膏矿渣凝结硬化性能的影响[J]. 材料导报, 2023(S1):277-283.WANG Ziyan, SHUI Zhonghe, SUN Tao, et al. Steel slag with high iron phase activates excess-sulphate slag cement: Effect on the coagulation and strength development[J]. Materials Reports,2023(S1):277-283(in Chinese). [30] MUN K J, HYOUNG W K, LEE C W, et al. Basic properties of non-sintering cement using phosphogypsum and waste lime as activator[J]. Construction and Building Materials,2007,21(6):1342-1350. doi: 10.1016/j.conbuildmat.2005.12.022 [31] 黄滔, 彭小芹, 王淑萍, 等. 蛋白类缓凝剂对建筑石膏的适应性[J]. 建筑材料学报, 2018, 21(4):608-613. doi: 10.3969/j.issn.1007-9629.2018.04.013HUANG Tao, PENG Xiaoqin, WANG Shuping, et al. Adaptability of protein retarder for calcined gypsum[J]. Journal of Building Materials,2018,21(4):608-613(in Chinese). doi: 10.3969/j.issn.1007-9629.2018.04.013 [32] DING X L, WEI B Q, DENG M G, et al. Effect of protein peptides with different molecular weights on the setting and hydration process of gypsum[J]. Construction and Building Materials,2022,318:126185. doi: 10.1016/j.conbuildmat.2021.126185 [33] ELIWA A A, MUBARK A E, ABDELFATTAH N A, et al. Maximizing the exploitation of phosphogypsum wastes using soaking technique with citric acid, recovering rare-earth and residual phosphate contents[J]. Journal of Central South University,2022,29(12):3896-3911. doi: 10.1007/s11771-022-5209-0 [34] 陈迁好, 蒋正武. 化学预处理对磷石膏基复合胶凝材料性能的影响[J]. 建筑材料学报, 2022, 23(1):200-209.CHEN Qianhao, JIANG Zhengwu. Effect of chemical pretreatment on the properties of phosphogypsum-based composite cementitious materials[J]. Journal of Building Materials,2022,23(1):200-209(in Chinese). [35] 中华人民共和国国家质量监督检验检疫总局. 通用硅酸盐水泥: GB175—2007/XG3—2018[S]. 北京: 中国标准出版社, 2018.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. General purpose portland cement: GB175—2007/XG3—2018[S]. Beijing: Standards Press of China, 2018(in Chinese). [36] 黄赟. 磷石膏基水泥的开发研究[D]. 武汉: 武汉理工大学, 2010.HUANG Yun. Research and development of phosphogypsum based cement[D]. Wuhan: Wuhan University of Technology, 2010(in Chinese). [37] CHEN P, MA B G, TAN H B, et al. Improving the mechani-cal property and water resistance of β-hemihydrate phosphogypsum by incorporating ground blast-furnace slag and steel slag[J]. Construction and Building Materials,2022,344:128265. doi: 10.1016/j.conbuildmat.2022.128265 [38] 中华人民共和国住房和城乡建设部. 砌体结构通用规范: GB 55007—2021[S]. 北京: 中国建筑工业出版社, 2021.Ministry of Housing and Urban-Rural Development of the People's Republic of China. General code for masonry structure: GB 55007—2021[S]. Beijing: China Building and Construction Press, 2021(in Chinese) .