留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳点改性聚乙烯醇性能的研究进展

宫贵贞

宫贵贞. 碳点改性聚乙烯醇性能的研究进展[J]. 复合材料学报, 2024, 41(1): 92-107. doi: 10.13801/j.cnki.fhclxb.20230728.002
引用本文: 宫贵贞. 碳点改性聚乙烯醇性能的研究进展[J]. 复合材料学报, 2024, 41(1): 92-107. doi: 10.13801/j.cnki.fhclxb.20230728.002
GONG Guizhen. Research progress in the properties of polyvinyl alcohol modified with carbon dots[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 92-107. doi: 10.13801/j.cnki.fhclxb.20230728.002
Citation: GONG Guizhen. Research progress in the properties of polyvinyl alcohol modified with carbon dots[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 92-107. doi: 10.13801/j.cnki.fhclxb.20230728.002

碳点改性聚乙烯醇性能的研究进展

doi: 10.13801/j.cnki.fhclxb.20230728.002
基金项目: 徐州工程学院培育项目(XKY2018124)
详细信息
    通讯作者:

    宫贵贞,博士,副教授,研究方向为功能高分子材料的制备及应用 E-mail: ggz72@163.com

  • 中图分类号: TQ322;TB332

Research progress in the properties of polyvinyl alcohol modified with carbon dots

Funds: Cultivation Project of Xuzhou University of Technology (XKY2018124)
  • 摘要: 碳点(CDs)具有低毒性、水溶性、良好的生物相容性、易修饰性、优良的电化学活性和光学性能等优点,可用于高分子材料的改性,赋予其良好的光学性能及其他多种特殊性能。将其加入到聚乙烯醇(PVA)中,不仅可以使PVA力学性能和热稳定性得到有效改善,还赋予PVA一些新的性能,诸如电导率、介电性、热电性等多种电参数得到提高,呈现出荧光、磷光和耐紫外线等光学特性,同时具有抗菌性、抗氧化性和耐水性等一些优异的性能。使其在电磁屏蔽、存储器件、电容器、传感器、光学器件及功能性包装袋等领域崭露头角。本文就CDs改性PVA复合材料(CDs/PVA)性能的最新研究进展进行重点介绍,并对CDs/PVA复合材料未来应用方面进行了展望,对拓展其应用领域具有重要意义。

     

  • 图  1  碳点(CDs)/聚乙烯醇(PVA)复合材料的性能

    Figure  1.  Properties of carbon dots (CDs)/polyvinyl alcohol (PVA) composite

    图  2  Ag@CDs/聚乙烯醇(PVA)纳米复合膜的SEM图像[50]

    Figure  2.  SEM image of Ag@CDs/polyvinyl alcohol (PVA) nanocomposite film[50]

    图  3  (a) GQDs2-6/PVA中氢键形成示意图;(b) GQDs2-6/PVA中荧光(FL)和室温磷光(RTP)形成机制图[71] (将NaOH 和壳聚糖(NaOH∶壳聚糖=1∶2质量比) 的水溶液置于特氟隆内衬高压釜中在微波水热平行合成仪中于180℃下反应6 h制得物质命名为GQDs2-6)

    Figure  3.  (a) Schematic of hydrogen bonds formed in GQDs2-6/PVA; (b) Schematic of the fluorescence (FL) and room temperature phosphorescence (RTP) mechanisms in GQDs2-6/PVA[71] (The aqueous solution of NaOH and chitosan (NaOH∶chitosan=1∶2 mass ratio) was reacted in a Teflon-lined autoclave at 180℃ for 6 h in a microwave hydrothermal parallel synthesizer, and the obtained samples was named GQDs2-6)

    S0—Ground state; S1—The lowest excited singlet state; Sn—The nth excited state of singlet state; T1—The lowest excited triplet state; Tn—The nth excited state of the triplet state; EX—Excite; ΔEST—Energy gap between T1 and S1; ISC—Intersystem crossing

    图  4  (a) N掺杂碳点(N-CDs)/PVA复合膜的透射光谱;(b) N-CDs/PVA用作紫外线阻挡和可见光透明温室材料的示意图(插图为温室图片);(c) N-CDs/PVA复合膜阻断UV-A的示意图;(d) 紫外线阻断性能的演示:(I) N-CDs溶液直接在UV-LED手电筒上;(II) N-CDs溶液和UV-LED手电筒之间插入单层N-CDs/PVA复合膜(在载玻片上);(III) N-CDs溶液和UV-LED手电筒之间插入双层N-CDs/PVA薄膜(在载玻片上)[81]

    Figure  4.  (a) Transmittance spectra of N doped carbon dots (N-CDs)/PVA films; (b) Schematic illustration of N-CDs/PVA utilized as a UV-blocking and visible-transparent greenhouse material (Inset photograph shows a typical greenhouse); (c) Schematic demonstration of UV-A blocking by N-CDs/PVA film; (d) Demonstration of UV-blocking performance: (I) N-CDs solution directly on top of a UV-LED torch; (II) A single-layer of N-CDs/PVA film (on a glass slide) inserted between the N-CDs solution and the UV-LED torch; (III) A double-layer of N-CDs/PVA film (on a glass slide) inserted between the N-CDs solution and the UV-LED torch [81]

    图  5  N, P-CDs和PVA链之间相互作用形成的氢键示意图[88]

    Figure  5.  Schematic of hydrogen bonds formed by interactions between N, P-CDs and PVA chains[88]

    图  6  (a) 纯PVA膜断裂截面SEM图像;(b) 2 mL CDs (0.1wt%)/10 mL PVA (10wt%)复合膜SEM图像;(c) 8wt%纤维素纳米纤维(CNF)/PVA复合膜SEM图像;(d) 10 mL CNF (1wt%)/2 mL CDs (0.1wt%)/10 mL PVA (10wt%)复合膜SEM图像[90]

    Figure  6.  (a) SEM image of the fracture section of PVA film; (b) SEM image of 2 mL CDs (0.1wt%)/10 mL PVA (10wt%) film; (c) SEM image of 8wt%cellulose nanofibers (CNF)/PVA; (d) SEM image of 10 mL CNF (1wt%)/2 mL CDs (0.1wt%)/10 mL PVA (10wt%) film[90]

    图  7  (a) 纯PVA膜垂直燃烧试验(UL-94)测试照片;(b) N, P-CDs20/PVA复合膜的UL-94测试照片;(c) N, P-CDs30/PVA复合膜的UL-94测试照片[88]

    Figure  7.  (a) Photos of vertical flame (UL-94) test of pure PVA; (b) Photos of UL-94 test of N, P-CDs20/PVA composite film; (c) Photos of UL-94 test of N, P-CDs30/PVA composite film[88]

    图  8  La@N-P-CDs/PVA形成示意图及其杀菌过程[95]

    Figure  8.  Schematic illustration of the formation and bacteria-killing processes of La@N-P-CDs/PVA[95]

  • [1] ELBLBESY M A, HANAFY T A, KANDIL B A. Effect of gelatin concentration on the characterizations and hemocompatibility of polyvinyl alcohol-gelatin hydrogel[J]. Bio-Medical Materials and Engineering,2020,31(4):225-234. doi: 10.3233/BME-201096
    [2] AALAM M, KALYAR M A, RAZA Z A. Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites[J]. Polymer Engineering & Science,2018,58(12):2119-2132.
    [3] SADYKOV R, LYTKINA D, STEPANOVA K, et al. Synthesis of biocompatible composite material based on cryogels of polyvinyl alcohol and calcium phosphates[J]. Polymers,2022,14(16):3420. doi: 10.3390/polym14163420
    [4] LAN W J, LIANG X E, LAN W T, et al. Electrospun polyvinyl alcohol/D-limonene fibers prepared by ultra-sonic processing for antibacterial active packaging material[J]. Molecules,2019,24(4):767. doi: 10.3390/molecules24040767
    [5] RUIZ S, TAMAYO J A, OSPINA J D, et al. Antimicrobial films based on nanocomposites of chitosan/poly(vinyl alcohol)/graphene oxide for biomedical applications[J]. Biomolecules,2019,9(3):109-125. doi: 10.3390/biom9030109
    [6] DING C M, QIAO Z Y. A review of the application of polyvinyl alcohol membranes for fuel cells[J]. Ionics,2022,28(1):1-13. doi: 10.1007/s11581-021-04338-w
    [7] ESFAHANI N P, KOUPAEI N, BAHREINI H. Fabrication and characterization of a novel hydrogel network composed of polyvinyl alcohol/polyvinylpyrrolidone/nano-rGO as wound dressing application[J]. Journal of Polymer Research,2023,30(2):1-15.
    [8] MALEK N N A, JAWAD A H, ISMAIL K, et al. Fly ash modified magnetic chitosan-polyvinyl alcohol blend for reactive orange 16 dye removal: Adsorption parametric optimization[J]. International Journal of Biological Macromolecules,2021,189:464-476. doi: 10.1016/j.ijbiomac.2021.08.160
    [9] KHODAEE Z, MAZINANI S, SHARIF F. Reduced graphene oxide-modified polyvinyl alcohol hydrogel with potential application as skin wound dressings[J]. Journal of Polymer Research,2022,30(1):1-16.
    [10] XIE J W, SITU W B, WANG R, et al. The visible light photocatalytic degradation of ethylene using a polyvinyl alcohol film loaded with Ag2O-TiO2-Bi2WO6 heterojunction microspheres[J]. Applied Surface Science,2022,584:152562. doi: 10.1016/j.apsusc.2022.152562
    [11] WANG X G, LI Y C, MENG D, et al. A review on flame-retardant polyvinyl alcohol: Additives and technologies[J]. Polymer Reviews,2023,63(2):324-364. doi: 10.1080/15583724.2022.2076694
    [12] LIANG X E, FENG S Y, AHMED S, et al. Effect of potassium sorbate and ultrasonic treatment on the properties of fish scale collagen/polyvinyl alcohol composite film[J]. Molecules,2019,24(13):2363. doi: 10.3390/molecules24132363
    [13] NGUYEN S V, LEE B K. Multifunctional food packaging polymer composites based on polyvinyl alcohol/cellulose nanocrystals/apple peel extract[J]. Cellulose,2023,30(3):1697-1716. doi: 10.1007/s10570-022-04976-x
    [14] HUANG X M, AO X A, YANG L H, et al. One-pot freezing-thawing preparation of hydroxyethyl cellulose reinforced polyvinyl alcohol based ionic hydrogel[J]. Integrated Ferroelectrics,2023,231(1):106-114. doi: 10.1080/10584587.2022.2143185
    [15] XUE Y Y, LACHANCE A M, LIU J J, et al. Polyvinyl alcohol/α-zirconium phosphate nanocomposite coatings via facile one-step coassembly[J]. Polymer,2023,265:125580. doi: 10.1016/j.polymer.2022.125580
    [16] MOHAMED T M, SAYED A, MAHMOUD G A. Tuning of the properties of polyvinyl alcohol/polyacrylamide film by phytic acid and gamma radiation crosslinking for food packaging applications[J]. Polymer-Plastics Technology and Materials,2023,62(7):866-876. doi: 10.1080/25740881.2022.2164723
    [17] XU X Y, RAY R, GU Y L, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society,2004,126(40):12736-12737. doi: 10.1021/ja040082h
    [18] SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society,2006,128(24):7756-7757. doi: 10.1021/ja062677d
    [19] HE Z G, SUN Y D, ZHANG C, et al. Recent advances of solvent-engineered carbon dots: A review[J]. Carbon,2023,204:76-93. doi: 10.1016/j.carbon.2022.12.052
    [20] SHARMA V D, KANSAY V, CHANDAN G, et al. Solid-state fluorescence based on nitrogen and calcium co-doped carbon quantum dots@bioplastic composites for applications in optical displays and light-emitting diodes[J]. Carbon,2023,201:972-983. doi: 10.1016/j.carbon.2022.10.007
    [21] ZHANG Z W, CHEN J Q, YAN X T, et al. One-step microwave preparation of carbon dots-composited G-quartet hydrogels with controllable chirality and circularly polarized luminescence[J]. Carbon,2023,203:39-46. doi: 10.1016/j.carbon.2022.11.023
    [22] LI T, DONG Y, BATEER B, et al. The preparation, optical properties and applications of carbon dots derived from phenylenediamine[J]. Microchemical Journal,2023,185:108299. doi: 10.1016/j.microc.2022.108299
    [23] PRAKASH A, YADAV S, YADAV U, et al. Recent advances on nitrogen-doped carbon quantum dots and their applications in bioimaging: A review[J]. Bulletin of Materials Science,2023,46(1):1-9.
    [24] QANDEEL N A, EL-MASRY A A, EID M, et al. Fast one-pot microwave-assisted green synthesis of highly fluorescent plant-inspired S, N-self-doped carbon quantum dots as a sensitive probe for the antiviral drug nitazoxanide and hemoglobin[J]. Analytica Chimica Acta,2023,1237:340592. doi: 10.1016/j.aca.2022.340592
    [25] KARAGIANNI A, TSIERKEZOS N G, PRATO M, et al. Application of carbon-based quantum dots in photodynamic therapy[J]. Carbon,2023,203:273-310. doi: 10.1016/j.carbon.2022.11.026
    [26] TRAN N A, HIEN N T, HOANG N M, et al. Carbon dots in environmental treatment and protection applications[J]. Desalination,2023,548:116285. doi: 10.1016/j.desal.2022.116285
    [27] JIANG Z Y, GUAN L N, XU X J, et al. Applications of carbon dots in electrochemical energy storage[J]. ACS Applied Electronic Materials,2022,4(11):5144-5164. doi: 10.1021/acsaelm.2c01152
    [28] EGGINGER M, SCHWÖDIAUER R. Analysis of mobile ionic impurities in polyvinylalcohol thin films by thermal discharge current and dielectric impedance spectroscopy[J]. AIP Advances,2012,2(4):042152. doi: 10.1063/1.4768805
    [29] TOMMALIEH M J. Electrical conductivity characterization of chitosan/poly(vinyl alcohol) doped by bismuth oxide nanoparticles[J]. Composites Communications,2021,25:100692. doi: 10.1016/j.coco.2021.100692
    [30] RAO J K, RAIZADA A, GANGULY D, et al. Investigation of structural and electrical properties of novel CuO-PVA nanocomposite films[J]. Journal of Materials Science,2015,50:7064-7074. doi: 10.1007/s10853-015-9261-0
    [31] SIVA V, VANITHA D, MURUGAN A, et al. Studies on structural and dielectric behaviour of PVA/PVP/ SnO nanocomposites[J]. Composites Communications,2021,23:100597. doi: 10.1016/j.coco.2020.100597
    [32] KOTESWARARAO J, ABHISHEK R, SATYANARAYANA S V, et al. Influence of cadmium sulfide nanoparticles on structural and electrical properties of polyvinyl alcohol films[J]. Express Polymer Letters,2016,10(11):883-894. doi: 10.3144/expresspolymlett.2016.83
    [33] EL-SHAMY A G, ATTIA W M, ABD EL KADER K M. Enhancement of the conductivity and dielectric properties of PVA/Ag nanocomposite films using γ irradiation[J]. Materials Chemistry and Physics,2017,191:225-229. doi: 10.1016/j.matchemphys.2017.01.026
    [34] PUTRO P A, YUDASARI N, ISNAENI I, et al. Spectroscopy study of polyvinyl alcohol/carbon dots composite films[J]. Walailak Journal of Science and Technology,2021,18(7):9184.
    [35] SAADIAH M A, ZHANG D, NAGAO Y, et al. Reducing crystallinity on thin film based CMC/PVA hybrid polymer for application as a host in polymer electrolytes[J]. Journal of Non-Crystalline Solids,2019,511:201-211. doi: 10.1016/j.jnoncrysol.2018.11.032
    [36] HAFIZA M N, ISA M. Solid polymer electrolyte production from 2-hydroxyethyl cellulose: Effect of NH4NO3 composition on its structural properties[J]. Carbohydrate Polymers,2017,165:123-131. doi: 10.1016/j.carbpol.2017.02.033
    [37] EL-SHAMY A G. An efficient removal of methylene blue dye by adsorption onto carbon dot@zinc peroxide embedded poly vinyl alcohol (PVA/CZnO2) nano-compo-site: A novel reusable adsorbent[J]. Polymer,2020,202:122565. doi: 10.1016/j.polymer.2020.122565
    [38] LI M, TANG S, ZHAO Z W, et al. A novel nanocomposite based silica gel/graphene oxide for the selective separation and recovery of palladium from a spent industrial catalyst[J]. Chemical Engineering Journal,2020,386:123947. doi: 10.1016/j.cej.2019.123947
    [39] LAI H K, CHOU Y Z, LEE M H, et al. Coordination polymer-derived cobalt nanoparticle-embedded carbon nanocomposite as a magnetic multi-functional catalyst for energy generation and biomass conversion[J]. Chemical Engineering Journal,2018,332:717-726. doi: 10.1016/j.cej.2017.09.098
    [40] PRANAV C M, MADHU G M, KOTESWARARAO J, et al. Mechanical and electrical properties evaluation of PVA-carbon dot polymer nanocomposites[J]. Indian Journal of Chemical Technology,2020,27:488-495.
    [41] EL-SHAMY A G. New free-standing and flexible PVA/carbon quantum dots (CQDs) nanocomposite films with promising power factor and thermoelectric power applications[J]. Materials Science in Semiconductor Processing,2019,100:245-254. doi: 10.1016/j.mssp.2019.04.004
    [42] VARSHNEY N, SAHI A K, PODDAR S, et al. Freeze-thaw-induced physically cross-linked superabsorbent polyvinyl alcohol/soy protein isolate hydrogels for skin wound dressing: In vitro and in vivo characterization[J]. ACS Applied Materials & Interfaces,2022,14(12):14033-14048.
    [43] MIAO Z H, SUN Y B, TAO Z C, et al. Thermochromic polyvinyl alcohol-iodine hydrogels with safe threshold temperature for infectious wound healing[J]. Advanced Healthcare Materials,2021,10:2100722. doi: 10.1002/adhm.202100722
    [44] PATEL D K, GANGULY K, DUTTA S D, et al. Multifunctional hydrogels of polyvinyl alcohol/polydopamine functionalized with carbon nanomaterials as flexible sensors[J]. Materials Today Communications,2022,32:103906. doi: 10.1016/j.mtcomm.2022.103906
    [45] WANG Z Q, CHENG F C, CAI H C, et al. Robust versatile nanocellulose/polyvinyl alcohol/carbon dot hydrogels for biomechanical sensing[J]. Carbohydrate Polymers,2021,259:117753. doi: 10.1016/j.carbpol.2021.117753
    [46] GONÇALVES H M R, NEVES S A F, DUARTE A, et al. Nanofluid based on carbon dots functionalized with ionic liquids for energy applications[J]. Energies,2020,13(3):649. doi: 10.3390/en13030649
    [47] LIU J, YE J L, PAN F, et al. Solid-state yet flexible supercapacitors made by inkjet-printing hybrid ink of carbon quantum dots/graphene oxide platelets on paper[J]. Science China Materials,2019,62(4):545-554. doi: 10.1007/s40843-018-9309-x
    [48] AMBASANKAR K N, BHATTACHARJEE L, JAT S K, et al. Study of electrical charge storage in polymer-carbon quantum dot composite[J]. Chemistry Select,2017,2(15):4241-4247.
    [49] EL-SHAMY A G. Novel conducting PVA/carbon quantum dots (CQDs) nanocomposite for high anti-electromagnetic wave performance[J]. Journal of Alloys and Compounds,2019,810:151940. doi: 10.1016/j.jallcom.2019.151940
    [50] EL-SHAMY A G. Polyvinyl alcohol and silver decorated carbon quantum-dots for new nanocomposites with application electromagnetic interface (EMI) shielding[J]. Progress in Organic Coatings,2020,146:105747. doi: 10.1016/j.porgcoat.2020.105747
    [51] BHARTI M, SINGH A, SAMANTA S, et al. Conductive polymers for thermoelectric power generation[J]. Progress in Materials Science,2018,93:270-310. doi: 10.1016/j.pmatsci.2017.09.004
    [52] El-SHAMY A G. Novel hybrid nanocomposite based on poly(vinyl alcohol)/carbon quantum dots/fullerene (PVA/CQDs/C60) for thermoelectric power applications[J]. Composites Part B: Engineering,2019,174:106993. doi: 10.1016/j.compositesb.2019.106993
    [53] LEE C, PANT B, ALAM A M, et al. Biocompatible and photoluminescent keratin/poly(vinyl alcohol)/carbon quantum dot nanofiber: A novel multipurpose electrospun mat[J]. Macromolecular Research,2016,24:924-930. doi: 10.1007/s13233-016-4124-3
    [54] ZHAI L, REN X M, XU Q. Carbogenic π-conjugated domains as the origin of afterglow emissions in carbon dot-based organic composite films[J]. Materials Chemistry Frontiers,2021,5(11):4272-4279. doi: 10.1039/D1QM00019E
    [55] LEE C, PANT B, KIM B S, et al. Carbon quantum dots incorporated keratin/polyvinyl alcohol hydrogels: Preparation and photoluminescent assessment[J]. Materials Letters,2017,207:57-61. doi: 10.1016/j.matlet.2017.07.058
    [56] KURT S B, SAHINER N. Chitosan based fibers embedding carbon dots with anti-bacterial and fluorescent properties[J]. Polymer Composites,2021,42(2):872-880. doi: 10.1002/pc.25872
    [57] HOANG Q B, MAI V T, NGUYEN D K, et al. Crosslinking induced photoluminescence quenching in polyvinyl alcohol-carbon quantum dot composite[J]. Materials Today Chemistry,2019,12:166-172. doi: 10.1016/j.mtchem.2019.01.003
    [58] WANG Y Q, XUE Y N, WANG J H. et al. Biocompatible and photoluminescent carbon dots/hydroxyapatite/PVA dual-network composite hydrogel scaffold and their properties[J]. Journal of Polymer Research,2019,26(11):248-253. doi: 10.1007/s10965-019-1907-1
    [59] KWAN M N H, LEO C P, SENANAYAKE S M N A, et al. Carbon-dot dispersal in PVA thin film for food colorant sensing[J]. Journal of Environmental Chemical Engineering,2020,8(3):103187. doi: 10.1016/j.jece.2019.103187
    [60] ZHANG X Y, WANG H, NIU N, et al. Fluorescent poly(vinyl alcohol) films containing chlorogenic acid carbon nanodots for food monitoring[J]. ACS Applied Nano Materials,2020,3(8):7611-7620. doi: 10.1021/acsanm.0c01229
    [61] TAO X Y, LIAO M, WU F X, et al. Designing of biomass-derived carbon quantum dots@polyvinyl alcohol film with excellent fluorescent performance and pH-responsiveness for intelligent detection[J]. Chemical Engineering Journal,2022,443:136442. doi: 10.1016/j.cej.2022.136442
    [62] ABDULLAH ISSA M, ABIDIN Z Z. Sustainable development of enhanced luminescence polymer-carbon dots composite film for rapid Cd2+ removal from wastewater[J]. Molecules,2020,25(15):3541. doi: 10.3390/molecules25153541
    [63] ZHU Z Q, YANG P, CHEN M Z, et al. Microwave synthesis of amphiphilic carbon dots from xylose and construction of luminescent composites with shape recovery performance[J]. Journal of Luminescence,2019,213:474-481. doi: 10.1016/j.jlumin.2019.05.006
    [64] ZHAO F F, ZHANG T Y, LIU Q, et al. Aphen-derived N-doped white-emitting carbon dots with room temperature phosphorescence for versatile applications[J]. Sensors and Actuators B: Chemical,2020,304:127344. doi: 10.1016/j.snb.2019.127344
    [65] HE J L, HE Y L, CHEN Y H, et al. Construction and multifunctional applications of carbon dots/PVA nanofibers with phosphorescence and thermally activated delayed fluorescence[J]. Chemical Engineering Journal,2018,347:505-513. doi: 10.1016/j.cej.2018.04.110
    [66] CHEN Y H, HE J L, HU C F, et al. Room temperature phosphorescence from moisture-resistant and oxygen-barred carbon dot aggregates[J]. Journal of Materials Chemistry C,2017,5(25):6243-6250. doi: 10.1039/C7TC01615H
    [67] NI Y Y, ZHOU P Y, JIANG Q W, et al. Room-temperature phosphorescence based on chitosan carbon dots for trace water detection in organic solvents and anti-counterfeiting application[J]. Dyes and Pigments,2022,197:109923. doi: 10.1016/j.dyepig.2021.109923
    [68] WANG B Y, SUN Z, YU J K, et al. Cross-linking enhanced room-temperature phosphorescence of carbon dots[J]. Smart Mat,2022,3(2):337-348.
    [69] JIANG K, ZHANG L, LU J F, et al. Triple-mode emission of carbon dots: Applications for advanced anti-counterfeiting[J]. Angewandte Chemie International Edition,2016,55(25):7231-7235. doi: 10.1002/anie.201602445
    [70] DENG Y H, ZHAO D X, CHEN X, et al. Long lifetime pure organic phosphorescence based on water soluble carbon dots[J]. Chemical Communications,2013,49(51):5751-5753. doi: 10.1039/c3cc42600a
    [71] WU Q, WANG L, YAN Y, et al. Chitosan-derived carbon dots with room-temperature phosphorescence and energy storage enhancement properties[J]. ACS Sustainable Chemistry & Engineering,2022,10(9):3027-3036.
    [72] LIU Y S, YANG H Y, MA C H, et al. Luminescent transparent wood based on lignin-derived carbon dots as a building material for dual-channel, real-time, and visual detection of formaldehyde gas[J]. ACS Applied Materials & Interfaces,2020,12(32):36628-36638.
    [73] WANG Y, JIANG K, DU J, et al. Green and near-infrared dual-mode afterglow of carbon dots and their applications for confidential information readout[J]. Nano-Micro Letters,2021,13(1):198-208. doi: 10.1007/s40820-021-00718-z
    [74] ZHAO L L, ZHANG M, MUJUMDAR A S, et al. Preparation of a novel carbon dot/polyvinyl alcohol composite film and its application in food preservation[J]. ACS Applied Materials & Interfaces,2022,14(33):37528-37539.
    [75] PATIL A S, WAGHMARE R D, PAWAR S P, et al. Photophysical insights of highly transparent, flexible and re-emissive PVA@WTR-CDs composite thin films: A next generation food packaging material for UV blocking applications[J]. Journal of Photochemistry & Photobiology A: Chemistry,2020,400:112647.
    [76] HESS S C, PERMATASARI F A, FUKAZAWA H, et al. Direct synthesis of carbon quantum dots in aqueous polymer solution: One-pot reaction and preparation of transparent UV-blocking films[J]. Journal of Materials Chemistry A,2017,5(10):5187-5194. doi: 10.1039/C7TA00397H
    [77] AZIZ S B, HASSAN A Q, MOHAMMED S J, et al. Structural and optical characteristics of PVA:C-dot composites: Tuning the absorption of ultra violet (UV) region[J]. Nanomaterials,2019,9(2):216-236. doi: 10.3390/nano9020216
    [78] DONG L, XIONG Z R, LIU X D, et al. Synthesis of carbon quantum dots to fabricate ultraviolet-shielding poly(vinylidene fluoride) films[J]. Journal of Applied Polymer Science,2019,136(25):47555. doi: 10.1002/app.47555
    [79] XU L, LI Y, GAO S Y, et al. Preparation and properties of cyanobacteria-based carbon quantum dots/polyvinyl alcohol/nanocellulose composite[J]. Polymers,2020,12(5):1143. doi: 10.3390/polym12051143
    [80] XU N, GAO S Y, XU C Y, et al. Carbon quantum dots derived from waste acorn cups and its application as an ultraviolet absorbent for polyvinyl alcohol film[J]. Applied Surface Science,2021,556:149774. doi: 10.1016/j.apsusc.2021.149774
    [81] KUMAR BARMAN B, NAGAO T, KAR NANDA K. Dual roles of a transparent polymer film containing dispersed N-doped carbon dots: A high-efficiency blue light converter and UV screen[J]. Applied Surface Science,2020,510:145405. doi: 10.1016/j.apsusc.2020.145405
    [82] EMMOTT C J M, RÖHR J A, CAMPOY-QUILES M, et al. Organic photovoltaic greenhouses: A unique application for semi transparent PV[J]. Energy & Environmental Science,2015,8(4):1317-1328.
    [83] LIU B T, TANG S J, YU Y Y, et al. High-refractive-index polymer/inorganic hybrid films containing high TiO2 contents[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2011,377(1-3):138-143.
    [84] SAINOV S, VLAEVA I, YOVCHEVA T, et al. Dielectric function of polymer nanocomposites in small filling factor approximation[J]. Journal of Physics: Conference Series,2010,253:012067. doi: 10.1088/1742-6596/253/1/012067
    [85] KUMAR V B, SAHU A K, MOHSIN A S M, et al. Refractive-index tuning of highly fluorescent carbon dots[J]. ACS Applied Materials & Interfaces,2017,9(34):28930-28938.
    [86] HU F, LU H L, XU G S, et al. Carbon quantum dots improve the mechanical behavior of polyvinyl alcohol/polyethylene glycol hydrogel[J]. Journal of Applied Polymer Science,2022,139(34):e52805.
    [87] SHAKIBA-MARANI R, EHTESABI H. A flexible and hemostatic chitosan, polyvinyl alcohol, carbon dot nanocomposite sponge for wound dressing application[J]. International Journal of Biological Macromolecules,2023,224:831-839. doi: 10.1016/j.ijbiomac.2022.10.169
    [88] YU S J, LU S Y, TAN D F, et al. Nitrogen and phosphorus co-doped carbon dots for developing highly flame retardant poly(vinyl alcohol) composite films[J]. European Polymer Journal,2022,164:110970. doi: 10.1016/j.eurpolymj.2021.110970
    [89] SONG P G, DAI J F, CHEN G R, et al. Bioinspired design of strong, tough, and thermally stable polymeric materials via nanoconfinement[J]. ACS Nano,2018,12(9):9266-9278. doi: 10.1021/acsnano.8b04002
    [90] XU L, ZHANG Y, PAN H, et al. Preparation and performance of radiata-pine-derived polyvinyl alcohol/carbon quantum dots fluorescent films[J]. Materials,2020,13(1):67.
    [91] ESKALEN H, ÇEŞME M, KERLI S, et al. Green synthesis of water-soluble fluorescent carbon dots from rosemary leaves: Applications in food storage capacity, fingerprint detection, and antibacterial activity[J]. Journal of Chemical Research,2021,45(5-6):428-435. doi: 10.1177/1747519820953823
    [92] ABOLGHASEMZADE S, POURMADADI M, RASHEDI H, et al. PVA based nanofiber containing CQDs modified with silica NPs and silk fibroin accelerates wound healing in a rat model[J]. Journal of Materials Chemistry B,2021,9(3):658-676. doi: 10.1039/D0TB01747G
    [93] HU M, GU X Y, HU Y, et al. PVA/carbon dot nanocomposite hydrogels for simple introduction of Ag nanoparticles with enhanced antibacterial activity[J]. Macromolecular Materials and Engineering,2016,301(11):1352-1362. doi: 10.1002/mame.201600248
    [94] MIN S, EZATI P, YOON K S, et al. Gelatin/poly(vinyl alcohol)-based functional films integrated with spent coffee ground-derived carbon dots and grapefruit seed extract for active packaging application[J]. International Journal of Biological Macromolecules,2023,231:123493. doi: 10.1016/j.ijbiomac.2023.123493
    [95] WANG M, SU Y, LIU Y, et al. Antibacterial fluorescent nano-sized lanthanum-doped carbon quantum dot embedded polyvinyl alcohol for accelerated wound healing[J]. Journal of Colloid and Interface Science,2022,608:973-983. doi: 10.1016/j.jcis.2021.10.018
    [96] KOUSHEH S A, MORADI M, TAJIK H, et al. Preparation of antimicrobial/ultraviolet protective bacterial nanocellulose film with carbon dots synthesized from lactic acid bacteria[J]. International Journal of Biological Macromolecules,2020,155:216-225. doi: 10.1016/j.ijbiomac.2020.03.230
    [97] EL-SHAMY A G, ZAYIED H S S. New polyvinyl alcohol/carbon quantum dots (PVA/CQDs) nanocomposite films: Structural, optical and catalysis properties[J]. Synthetic Metals,2020,259:116218. doi: 10.1016/j.synthmet.2019.116218
    [98] SHIT R, GIANG N N, PARK S Y. Visible light-responsive mechanically and electronically controllable conductive carbon dot-hydrogel-based pressure-strain sensor for wireless monitoring of antifouling performance[J]. Composites Science and Technology,2022,218:109212. doi: 10.1016/j.compscitech.2021.109212
  • 加载中
图(8)
计量
  • 文章访问数:  699
  • HTML全文浏览量:  524
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-06-15
  • 录用日期:  2023-07-04
  • 网络出版日期:  2023-07-31
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回