Research progress of cellulose-based solid-state fluorescence sensors
-
摘要: 在“双碳”战略背景下,生物基荧光智能材料的研究进展及其多功能应用备受瞩目。纤维素是自然界储量最丰富的天然高分子材料,基于纤维素的固态荧光传感器不但具备绿色、成本低、可降解、亲水性好、生物相容性好、无毒等优点,相较于传统的荧光分子探针,还拥有更便携、高效、寿命长、稳定性高、适用场景广泛等优势。综述了近些年来利用化学改性制备纤维素基固态荧光传感器的研究进展,阐明了纤维素与不同荧光分子结合的机制,即通过共价交联或者引入官能团,将荧光分子引到纤维素表面进行改性。分类介绍了各种纤维素基固态荧光传感器的类型,包括阳离子型、阴离子型、pH型、硝基芳香型、气体型和双(多)重响应型等,以及在环境检测、生物成像、食品安全、荧光印刷及防伪等应用领域的优势。最后,详细探讨了纤维素基荧光智能传感器的相关研究,并对其发展机遇和未来挑战进行展望。Abstract: Under the background of the "dual carbon" strategy, the research progress of bio-based fluorescent intelligent materials and their multifunctional applications have attracted much attention. Cellulose is the most abundant natural polymer material in nature. Cellulose-based solid-state fluorescence sensors not only have the advantages of green, low cost, biodegradability, good hydrophilicity, good biocompatibility, and non-toxicity, but also have advantages such as portability, efficiency, long lifespan, high stability, and wide applicability compared to traditional fluorescent molecular probes. The research progress of cellulose-based solid-state fluorescent sensors prepared by chemical modification in recent years was reviewed. The mechanism of the combination of cellulose with different fluorescent molecules was clarified. Fluorescent molecules were introduced to the surface of cellulose by covalent crosslinking or introduction of functional groups. Various types of cellulose-based solid-state fluorescence sensors, including cationic, anionic, pH-type, nitroaromatic, gas-type and double (multi) re-responsive types, were introduced. The advantages of cellulose-based solid-state fluorescence sensors in environmental detection, bioimaging, food safety, fluorescence printing and anti-counterfeiting applications were also introduced. Finally, the relevant research on cellulose-based fluorescent smart sensors is discussed in detail, and their development opportunities and future challenges are prospected.
-
Key words:
- fluorescence /
- cellulose /
- intelligent response /
- sensors /
- testing
-
图 2 (a) 1, 10-邻菲罗啉-5-胺 (Phen)-4, 4' -亚甲基二苯基二异氰酸酯(MDI)-醋酸纤维素(CA)对Fe2+检测机制[32];(b) 纤维素纳米晶体(CNC)-琥珀酸酐(SA)-卟啉酯(COOC6TPP)对Hg2+检测机制[33]
Figure 2. (a) 1, 10-phenanthroline-5-amine (Phen)-4,4′-methylene diphenyl diisocyanate (MDI)-cellulose acetate (CA) detection mechanism for Fe2+[32]; (b) Cellulose nanocrystal (CNC)-succinic anhydride (SA)-porphyrin ester (COOC6TPP) detection mechanism for Hg2+[33]
Ex—Excitation spectrum; Em—Emission spectrum
图 3 自然光下(a)和紫外光下(b)的香豆素基荧光分子(CAM)照片;(c) 香豆素基荧光纤维素(CFC)复合膜材料制备及Hg2+检测示意图;自然光下 (d) 和紫外光下 (e) 抗聚集诱导猝灭(anti-ACQ)材料照片[34]
Figure 3. Photographs of coumarin-based probe molecule (CAM) under daylight (a) and ultraviolet light (b); (c) Schematic diagram of coumarin-based fluorescent cellulose (CFC) composite membrane material preparation and Hg2+ detection and removal; Photographs of anti-aggregation-caused quenching (anti-ACQ) materials under daylight (d) and ultraviolet light (e)[34]
CMC—Carboxymethyl cellulose
图 4 (a) 柠檬酸/半胱氨酸改性纤维素基复合材料的防伪、Cl−检测和紫外屏蔽性能[39];(b) 四丁基铵盐和HSO4−浓度对纸条颜色的影响[40];(c) 纸带浸入HSO4−与NaOH溶液及两次重复使用后的紫外-可见吸收光谱[40]
Figure 4. (a) Anti-counterfeiting, Cl− detection, and UV shielding properties of citric acid/cysteine modified cellulose based composites[39]; (b) Effect of tetrabutylammonium salt and HSO4− concentration on the color of paper strips[40]; (c) Paper tape was immersed in HSO4− solution and NaOH solution, and refreshed in the UV visible absorption spectra after two repeated uses[40]
表 1 纤维素基固态荧光传感器的类型、性能优势及其应用领域
类型 检测物质 性能优势 应用领域 参考文献 阳离子型 Fe2+ 高选择性、灵敏、易操作、形态多样等 图案印刷、化学传感、防伪等 [32] Hg2+ 灵敏、选择性高、便携、易规模化等 重金属吸附、检测等 [33, 34] Pb2+ 简单、灵敏、成本低、抗干扰等 重金属吸附、生物成像等 [35-37] Cu2+ 灵敏、高选择性等 重金属吸附、检测等 [1, 38] 阴离子型 Cl- 形态多样、抗紫外、高选择性等 化学传感、紫外屏蔽和防伪等 [33] HSO4- 灵敏、高选择性、抗干扰、强荧光等 环境检测等 [39] CN- 高选择性、高亲/保水性等 环境检测等 [40-43] ClO-/SCN- 响应可逆、循环使用性好等 环境检测、指纹信息提取等 [44] 其他 硝基芳烃 高选择性、适用场景灵活等 水体与固体检测、生物监测传感等 [2, 45-48] pH 灵敏、机械性能好、绿色、溶剂稳定等 酸碱指示、检测等 [49, 50] 气体 高选择性、适用场景灵活等 生物医学、食品安全等 [17, 51] 双(多)重 灵敏、检测物质多样、适用场景灵活等 多模式监测、环境检测等 [52-55] 其他 生物相容性、低细胞毒性等 生物成像、安全印刷、防伪等 [58-60] 表 1 纤维素基固态荧光传感器的类型、性能优势及其应用领域
Table 1. Types, performance advantages and applications of cellulose based solid-state fluorescence sensors
类型 检测物质 性能优势 应用领域 参考文献 阳离子型 Fe2+ 高选择性、灵敏、易操作、形态多样等 图案印刷、化学传感、防伪等 [32] Hg2+ 灵敏、选择性高、便携、易规模化等 重金属吸附、检测等 [33-34] Pb2+ 简单、灵敏、成本低、抗干扰等 重金属吸附、生物成像等 [35-37] Cu2+ 灵敏、高选择性等 重金属吸附、检测等 [1, 38] 阴离子型 Cl− 形态多样、抗紫外、高选择性等 化学传感、紫外屏蔽和防伪等 [39] HSO4− 灵敏、高选择性、抗干扰、强荧光等 环境检测等 [40] CN− 高选择性、高亲/保水性等 环境检测等 [41-44] ClO−/SCN− 响应可逆、循环使用性好等 环境检测、指纹信息提取等 [45] 其他 硝基芳烃 高选择性、适用场景灵活等 水体与固体检测、生物监测传感等 [2, 46-49] pH 灵敏、力学性能好、绿色、溶剂稳定等 酸碱指示、检测等 [50-51] 气体 高选择性、适用场景灵活等 生物医学、食品安全等 [17, 52] 双(多)重 灵敏、检测物质多样、适用场景灵活等 多模式监测、环境检测等 [53-57] 其他 生物相容性、低细胞毒性等 生物成像、安全印刷、防伪等 [59-61] -
[1] LI M, LIU Z J, WANG S, et al. Fluorescence detection and removal of copper from water using a biobased and biodegradable 2D soft material[J]. Chemical Communications,2018,54(2):184-187. doi: 10.1039/C7CC08035B [2] HU H Z, WANG F Y, YU L S, et al. Synthesis of novel fluorescent cellulose derivatives and their applications in detection of nitroaromatic compounds[J]. ACS Sustainable Chemistry & Engineering,2018,6(1):1436-1445. [3] FAN X M, YU H Y, WANG D C, et al. Designing highly luminescent cellulose nanocrystals with modulated morphology for multifunctional bioimaging materials[J]. ACS Applied Materials & Interfaces,2019,11(51):48192-48201. [4] ALSHAREEF M, SNARI R M, ALAYSUY O, et al. Optical detection of acetone using turn-off fluorescent rice straw based cellulose carbon dots imprinted onto paper dipstick for diabetes monitoring[J]. ACS Omega,2022,7(19):16766-16777. doi: 10.1021/acsomega.2c01492 [5] SUN Q J, FU L X, YIN C H, et al. Construction of biomass carbon dots@molecularly imprinted polymer fluorescent sensor array for accurate identification of 5-nitroimidazole antibiotics[J]. Sensors and Actuators B: Chemical,2022,373:132716. doi: 10.1016/j.snb.2022.132716 [6] SUN Q J, FU L X, YIN C H, et al. Facile synthesis of biomass silica-silver colloidal nanoparticles and its application as highly sensitive fluorescent biosensor[J]. Surfaces and Interfaces,2021,23:101010. doi: 10.1016/j.surfin.2021.101010 [7] WANG X Y, LYU Y J, KONG X F, et al. A fluorescence visual detection for glyphosine based on a biomass carbon quantum dot paper-based sensor[J]. New Journal of Chemistry,2023,47(22):10696-10705. doi: 10.1039/D3NJ00795B [8] KAMEL S, KHATTAB T A. Recent advances in cellulose-based biosensors for medical diagnosis[J]. Biosensors,2020,10(6):67. doi: 10.3390/bios10060067 [9] CAZÓN P, VÁZQUEZ M. Bacterial cellulose as a biodegradable food packaging material: A review[J]. Food Hydrocolloids, 2021, 113: 106530. [10] YANG R H, LU X Y, GU X L. Pyrolysis kinetics of a lignin-modified cellulose composite film[J]. ACS Omega,2021,6(51):35584-35592. doi: 10.1021/acsomega.1c05289 [11] JIAO Z G, HU J H, MA M L, et al. Research progress of cellulose-derived carbon-based composites for microwave absorption[J]. Journal of Materials Science: Materials in Electronics,2023,34(6):536. doi: 10.1007/s10854-022-09811-4 [12] PRASAD C, MADKHALI N, JEONG S G, et al. Recent advances in the hybridization of cellulose and semiconductors: Design, fabrication and emerging multidimensional applications: A review[J]. International Journal of Biological Macromolecules,2023,233:123551. doi: 10.1016/j.ijbiomac.2023.123551 [13] ZHANG Y Y, ZHAO Y L, SONG B, et al. UV-fluorescence probe for detection Ni2+ with colorimetric/spectral dual-mode analysis method and its practical application[J]. Bioorganic Chemistry,2021,114:105103. doi: 10.1016/j.bioorg.2021.105103 [14] LAM S S, XIA C L, SONNE C. Plastic crisis underscores need for alternative sustainable-renewable materials[J]. Journal of Bioresources and Bioproducts,2022,7(3):145-147. doi: 10.1016/j.jobab.2022.06.001 [15] WANG J X, EURING M, OSTENDORF K, et al. Biobased materials for food packaging[J]. Journal of Bioresources and Bioproducts,2022,7(1):1-13. doi: 10.1016/j.jobab.2021.11.004 [16] UDHAYAKUMARI D. Review on fluorescent sensors-based environmentally related toxic mercury ion detection[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry,2022,102(5):451-476. [17] ZHANG Y Y, CHEN L, HUANG J H, et al. Biomass-based indole derived composited with cotton cellulose fiber integrated as sensitive fluorescence platform for NH3 detection and monitoring of seafood spoilage[J]. International Journal of Biological Macromolecules,2022,221:994-1001. doi: 10.1016/j.ijbiomac.2022.09.095 [18] XU M C, LI W, MA C H, et al. Multifunctional chiral nematic cellulose nanocrystals/glycerol structural colored nanocomposites for intelligent responsive films, photonic inks and iridescent coatings[J]. Journal of Materials Chemistry C,2018,6(20):5391-5400. doi: 10.1039/C8TC01321G [19] ZHANG Z, LIU G, LI X P, et al. Design and synthesis of fluorescent nanocelluloses for sensing and bioimaging applications[J]. ChemPlusChem,2020,85(3):487-502. doi: 10.1002/cplu.201900746 [20] KUMAR R, SHARMA R K, SINGH A P. Grafted cellulose: A bio-based polymer for durable applications[J]. Polymer Bulletin,2018,75(5):2213-2242. doi: 10.1007/s00289-017-2136-6 [21] TASHIRO K, GAKHUTISHVILI M. Crystal structure of cellulose-iodine complex[J]. Polymer,2019,171:140-148. doi: 10.1016/j.polymer.2019.03.034 [22] REN W T, GUO F, ZHU J W, et al. A comparative study on the crystalline structure of cellulose isolated from bamboo fibers and parenchyma cells[J]. Cellulose,2021,28(10):5993-6005. doi: 10.1007/s10570-021-03892-w [23] ZUGENMAIER P. Order in cellulosics: Historical review of crystal structure research on cellulose[J]. Carbohydrate Polymers,2021,254:117414. [24] LIU Y E, FU H Q, ZHANG W, et al. Effect of crystalline structure on the catalytic hydrolysis of cellulose in subcritical water[J]. ACS Sustainable Chemistry & Engineering,2022,10(18):5859-5866. [25] SPIESER H, DENNEULIN A, DEGANELLO D, et al. Cellulose nanofibrils and silver nanowires active coatings for the development of antibacterial packaging surfaces[J]. Carbohydrate Polymers,2020,240:116305. doi: 10.1016/j.carbpol.2020.116305 [26] POVEDAILO V A, LYSENKO I L, TIKHOMIROV S A, et al. Fluorescent properties of carboxyfluorescein bifluorophores[J]. Journal of Fluorescence,2020,30(3):629-635. doi: 10.1007/s10895-020-02535-w [27] DENG F, SUN D S, YANG S X, et al. Comparison of rhodamine 6G, rhodamine B and rhodamine 101 spirolactam based fluorescent probes: A case of pH detection[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2022,268:120662. doi: 10.1016/j.saa.2021.120662 [28] SUN J Y, WEI C Y. Two pyridine-based fluorescent probes for sensing pH[J]. Chemistryselect,2020,5(41):12704-12710. doi: 10.1002/slct.202003130 [29] BRZECHWA-CHODZYŃSKA A, DROŻDŻ W, HARROWFIELD J, et al. Fluorescent sensors: A bright future for cages[J]. Coordination Chemistry Reviews,2021,434:213820. doi: 10.1016/j.ccr.2021.213820 [30] LIU M, QIU J G, MA F, et al. Advances in single-molecule fluorescent nanosensors[J]. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology,2021,13(5):e1716. doi: 10.1002/wnan.1716 [31] ZHU M M, WANG W J, ZHANG C H, et al. Photo-responsive behaviors of hydrogen-bonded polymer complex fibers containing azobenzene functional groups[J]. Advanced Fiber Materials,2021,3(3):172-179. doi: 10.1007/s42765-021-00080-0 [32] NAWAZ H, TIAN W G, ZHANG J M, et al. Cellulose-based sensor containing phenanthroline for the highly selective and rapid detection of Fe2+ ions with naked eye and fluorescent dual modes[J]. ACS Applied Materials & Interfaces,2018,10(2):2114-2121. [33] CHEN J D, ZHOU Z X, CHEN Z X, et al. A fluorescent nanoprobe based on cellulose nanocrystals with porphyrin pendants for selective quantitative trace detection of Hg2+[J]. New Journal of Chemistry,2017,41(18):10272-10280. doi: 10.1039/C7NJ01263B [34] LI M, AN X F, JIANG M Y, et al. "Cellulose spacer" strategy: Anti-aggregation-caused quenching membrane for mercury ion detection and removal[J]. ACS Sustainable Chemistry & Engineering,2019,7(18):15182-15189. [35] ZHANG Y F, MAIMAITI H, ZHANG B. Preparation of cellulose-based fluorescent carbon nanoparticles and their application in trace detection of Pb(ii)[J]. RSC Advances,2017,7(5):2842-2850. doi: 10.1039/C6RA26684C [36] SONG R Y, ZHANG Q, CHU Y L, et al. Fluorescent cellulose nanocrystals for the detection of lead ions in complete aqueous solution[J]. Cellulose,2019,26(18):9553-9565. doi: 10.1007/s10570-019-02760-y [37] RAJ S, SHANKARAN D R. Curcumin based biocompatible nanofibers for lead ion detection[J]. Sensors and Actuators B: Chemical,2016,226:318-325. doi: 10.1016/j.snb.2015.12.006 [38] ZHANG M, LI Y, YANG Q L, et al. Temperature and pH responsive cellulose filament/poly (NIPAM-co-AAc) hybrids as novel adsorbent towards Pb(II) removal[J]. Carbohydrate Polymers,2018,195:495-504. doi: 10.1016/j.carbpol.2018.04.082 [39] CHEN H, YAN X H, FENG Q A, et al. Citric acid/cysteine-modified cellulose-based materials: Green preparation and their applications in anticounterfeiting, chemical sensing, and UV shielding[J]. ACS Sustainable Chemistry & Engineering,2017,5(12):11387-11394. [40] RULL-BARRULL J, D'HALLUIN M, LE GROGNEC E, et al. Chemically-modified cellulose paper as smart sensor device for colorimetric and optical detection of hydrogen sulfate in water[J]. Chemical Communications,2016,52(12):2525-2528. doi: 10.1039/C5CC09889K [41] ISAAD J, EL ACHARI A. Colorimetric sensing of cyanide anions in aqueous media based on functional surface modification of natural cellulose materials[J]. Tetrahedron,2011,67(26):4939-4947. doi: 10.1016/j.tet.2011.04.061 [42] İNCEL A, AKIN O, ÇAĞIR A, et al. Smart phone assisted detection and quantification of cyanide in drinking water by paper based sensing platform[J]. Sensors and Actuators B: Chemical,2017,252:886-893. doi: 10.1016/j.snb.2017.05.185 [43] NANDI L G, NICOLETI C R, MARINI V G, et al. Optical devices for the detection of cyanide in water based on ethyl(hydroxyethyl)cellulose functionalized with perichromic dyes[J]. Carbohydrate Polymers,2017,157:1548-1556. doi: 10.1016/j.carbpol.2016.11.039 [44] DREYER J P, STOCK R I, NANDI L G, et al. Electrospun blends comprised of poly(methyl methacrylate) and ethyl (hydroxyethyl)cellulose functionalized with perichromic dyes[J]. Carbohydrate Polymers, 2020, 236: 115991. [45] HAI J, LI T R, SU J X, et al. Reversible response of luminescent terbium(III)-nanocellulose hydrogels to anions for latent fingerprint detection and encryption[J]. Angewandte Chemie-International Edition,2018,57(23):6786-6790. doi: 10.1002/anie.201800119 [46] LU W, ZHANG J W, HUANG Y J, et al. Self-diffusion driven ultrafast detection of ppm-level nitroaromatic pollutants in aqueous media using a hydrophilic fluorescent paper sensor[J]. ACS Applied Materials & Interfaces,2017,9(28):23884-23893. [47] NIU Q Y, GAO K Z, WU W H. Cellulose nanofibril based graft conjugated polymer films act as a chemosensor for nitroaromatic[J]. Carbohydrate Polymers,2014,110:47-52. doi: 10.1016/j.carbpol.2014.03.042 [48] IKAI T, SUZUKI D, KOJIMA Y, et al. Chiral fluorescent sensors based on cellulose derivatives bearing terthienyl pendants[J]. Polymer Chemistry,2016,7(29):4793-4801. doi: 10.1039/C6PY00967K [49] IKAI T, SUZUKI D, SHINOHARA K I, et al. A cellulose-based chiral fluorescent sensor for aromatic nitro compounds with central, axial and planar chirality[J]. Polymer Chemistry,2017,8(14):2257-2265. doi: 10.1039/C7PY00285H [50] TAWEETANAVANICH T, WANNO B, TUNTULANI T, et al. A pH optical and fluorescent sensor based on rhodamine modified on activated cellulose paper[J]. Journal of the Chinese Chemical Society,2019,66(5):493-499. doi: 10.1002/jccs.201800327 [51] TANG L R, LI T, ZHUANG S Y, et al. Synthesis of pH-sensitive fluorescein grafted cellulose nanocrystals with an amino acid spacer[J]. ACS Sustainable Chemistry & Engineering,2016,4(9):4842-4849. [52] CHU C S, SYU J J. Optical sensor for dual sensing of oxygen and carbon dioxide based on sensing films coated on filter paper[J]. Applied Optics,2017,56(4):1225-1231. doi: 10.1364/AO.56.001225 [53] NAWAZ H, TIAN W G, ZHANG J M, et al. Visual and precise detection of pH values under extreme acidic and strong basic environments by cellulose-based superior sensor[J]. Analytical Chemistry,2019,91(4):3085-3092. doi: 10.1021/acs.analchem.8b05554 [54] PETROPOULOU A, KRALJ S, KARAGIORGIS X, et al. Multifunctional gas and pH fluorescent sensors based on cellulose acetate electrospun fibers decorated with rhodamine B-functionalised core-shell ferrous nanoparticles[J]. Scientific Reports,2020,10(1):367. doi: 10.1038/s41598-019-57291-0 [55] 曹庆华, 刘斐, 冯玉红, 等. 纤维素基荧光材料的制备及荧光检测性能研究[J]. 化工新型材料, 2022, 50(9):80-83.CAO Qinghua, LIU Fei, FENG Yuhong, et al. Preparation and detection performance of cellulose based fluorescent material[J]. New Chemical Materials,2022,50(9):80-83(in Chinese). [56] AN C C, ZHANG M, XIAO Z H, et al. Lignocellulose/chitosan hybrid aerogel composited with fluorescence molecular probe for simultaneous adsorption and detection of heavy metal pollutants[J]. Journal of Environmental Chemical Engineering,2023,11:111205. doi: 10.1016/j.jece.2023.111205 [57] AYSHA T S, EL-SEDIK M S, MOHAMED M B I, et al. Dual functional colorimetric and turn-off fluorescence probe based on pyrrolinone ester hydrazone dye derivative for Cu2+ monitoring and pH change[J]. Dyes and Pigments,2019,170:107549. doi: 10.1016/j.dyepig.2019.107549 [58] SHIBANO M, OECHIAI H, SUZUKI K, et al. Thermally activated delayed fluorescence benzyl cellulose derivatives for nondoped organic light-emitting diodes[J]. Macromolecules,2020,53(8):2864-2873. doi: 10.1021/acs.macromol.9b02644 [59] CUI Y, HUANG H Y, LIU M Y, et al. Facile preparation of luminescent cellulose nanocrystals with aggregation-induced emission feature through Ce(IV) redox polymerization[J]. Carbohydrate Polymers,2019,223:115102. doi: 10.1016/j.carbpol.2019.115102 [60] LYU H F, WANG S J, WANG Z X, et al. Fluorescent cellulose-based hydrogel with carboxymethyl cellulose and carbon quantum dots for information storage and fluorescent anti-counterfeiting[J]. Cellulose,2022,29(11):6193-204. doi: 10.1007/s10570-022-04643-1 [61] ABUMELHA H M, ALHARBI H, ABUALNAJA M M, et al. Preparation of fluorescent ink using perylene-encapsulated silica nanoparticles toward authentication of documents[J]. Journal of Photochemistry and Photobiology A: Chemistry,2023,441:114706. doi: 10.1016/j.jphotochem.2023.114706