留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于应变失配原理驱动的4D打印研究进展

刘小艳 张亚玲 耿呈祯 廖恩泽 刘禹 芦艾

刘小艳, 张亚玲, 耿呈祯, 等. 基于应变失配原理驱动的4D打印研究进展[J]. 复合材料学报, 2024, 41(2): 533-547. doi: 10.13801/j.cnki.fhclxb.20230724.002
引用本文: 刘小艳, 张亚玲, 耿呈祯, 等. 基于应变失配原理驱动的4D打印研究进展[J]. 复合材料学报, 2024, 41(2): 533-547. doi: 10.13801/j.cnki.fhclxb.20230724.002
LIU Xiaoyan, ZHANG Yaling, GENG Chengzhen, et al. Research progress of 4D printing based on strain mismatch[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 533-547. doi: 10.13801/j.cnki.fhclxb.20230724.002
Citation: LIU Xiaoyan, ZHANG Yaling, GENG Chengzhen, et al. Research progress of 4D printing based on strain mismatch[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 533-547. doi: 10.13801/j.cnki.fhclxb.20230724.002

基于应变失配原理驱动的4D打印研究进展

doi: 10.13801/j.cnki.fhclxb.20230724.002
基金项目: 国家自然科学基金(22075258;U2030203)
详细信息
    通讯作者:

    张亚玲,博士,副研究员,研究方向为刺激响应性聚合物及其3D/4D打印 E-mail:zhangyl@caep.cn

    刘禹,博士,教授,博士生导师,研究方向为微器件增材制造与柔性传感器及软材料、表面工程与微纳米技术 E-mail: yuliu@jiangnan.edu.cn

  • 中图分类号: TH145.4;TB33

Research progress of 4D printing based on strain mismatch

Funds: National Natural Science Foundation of China (22075258; U2030203)
  • 摘要: 4D打印是一种新兴技术,旨在赋予增材制造所得的物体随时间变化形状或功能的能力,由于其可以将平面前驱图案转换为具有复杂几何形状的3D结构,4D打印为制造领域提供了一种灵活高效的制造方式。4D打印中前驱结构的设计是影响形状转换效果的关键因素之一,本文从前驱结构设计的角度,对基于应变失配原理驱动变形下4D打印的发展进行综述。首先对4D打印的研究现状作了简要概述,再从不同维度下的前驱结构展开,对结构设计相关的研究进行分类,全面梳理了不同维度前驱结构驱动下的4D打印。同时,对于前驱结构的设计,讨论了几种辅助设计方法,有预测变形的理论计算模型和仿真分析及可用来相对精确设计前驱结构的逆向设计工具。最后,对4D打印的应用前景及面临的挑战进行了总结和展望。

     

  • 图  1  基于不同维度前驱结构驱动的4D打印:(a) 一维直线图案转换为二维平面或三维立体结构[8-10];(b) 二维平面图案转换为三维立体结构[12-14];(c) 三维立体结构重构[15-17]

    Figure  1.  4D printing driven by different dimensions of precursor structures: (a) One-dimensional linear patterns transfer to two-dimensional or three-dimensional structures[8-10]; (b) Two-dimensional planar patterns transfer to three-dimensional structures[12-14]; (c) Reconstruction of three-dimensional structures[15-17]

    图  2  基于一维线性前驱结构驱动的4D打印[8, 17, 42]:(a) 一维线条转换为一维或二维图案;(b) 一维线条转换为二维平面图案;(c) 一维直线棒转换为三维结构

    ML—Machine learning; EA—Evolutionary algorithms; CV—Computer vision

    Figure  2.  4D printing driven by linear precursor structure[8, 17, 42]: (a) One-dimensional lines transfer to one-dimensional or two-dimensional patterns; (b) One-dimensional lines transfer to two-dimensional flat patterns; (c) A one-dimensional straight rod transfers to a three-dimensional structure

    图  3  多材料喷墨打印的基于二维平面前驱结构驱动的4D打印[11, 45-46]:(a) 嵌有一种纤维的平面前驱结构的弯曲变形;(b) 嵌有一种纤维结合排布模式的平面前驱结构的自折叠折纸结构;(c) 嵌有两种纤维的前驱结构驱动的多形状转换

    σ—Stress; TH—High temperature (60℃) above glass transition temperature (35℃); TL—Low temperature (15℃) below glass transition temperature (35℃); F—Fiber; M—Matrix; ε0—Strain applied along the printing direction; L—Length of strip; w—Width of strip; h—Height of strip; t1—Dimensions of fiber 1; t2—Dimensions of fiber 2

    Figure  3.  4D printing driven by a two-dimensional planar precursor structure via multi-material inkjet printing method[11, 45-46]: (a) Bending deformation of a simple planar precursor structure embedded with a fiber; (b) A self-folding origami structure with a planar precursor structure embedded with a combination of fibers and different layout patterns; (c) Multi-shape conversion driven by precursor structure embedded with two types of fibers

    图  4  熔融沉积成型技术(FDM)打印的基于二维平面前驱结构驱动的4D打印[47-48]:(a) 以不同打印方向调控层间的应变失配;(b) 以不同打印速度调控层间的应变失配

    T—Temperature; Tg—Glass transition temperature; h—Total thickness of deformation unit; d—Thickness of single layer of deformation unit; n—Representative porosity; σ—Standard deviation; t—Time; L—Original length; L0—Length after heating expansion; ∆L—Length change before and after heating

    Figure  4.  4D printing driven by a two-dimensional planar precursor structure via fused deposition modeling (FDM) printing method[47-48]: (a) Strain mismatch was adjusted by different printing directions between printing layers; (b) Strain mismatch was adjusted by different printing speeds between different layers

    图  5  数字光处理(DLP)打印的基于二维平面前驱结构驱动的4D打印[51- 52]:(a) 以曝光时间调控材料交联度使溶胀率不同驱动形状变化;(b) 不同材料吸水溶胀率时不同驱动形状变化

    PEGDA—Poly(ethylene glycol) diacrylate; PPGDMA—Poly(propylene glycol) dimethacrylate; r—Radius of in-plane circle; R—Excircle radius of plane; r'—Geometric radius after deformation; H—Geometric height after deformation

    Figure  5.  4D printing driven by a two-dimensional planar precursor structure via digital light processing (DLP) printing method[51- 52]: (a) Adjusted crosslinking degree of materials with different exposure time results in different swelling rates and various shape changes; (b) Different materials with different water absorption and swelling rates drive shape changes

    图  6  墨水直书写(DIW)打印的基于二维平面前驱结构驱动的4D打印[34, 53]:(a) 加热脱除溶剂驱动变形;(b) 热水-Ca2+溶液双重刺激驱动变形

    L—Longitudinal; T—Transversal; PCLDMA—Polycaprolactone dimethylacetamide; SAMA—Sodium alginate methacrylate; θ—Tilt angle; PCL-MA—Polycaprolactone methacrylate

    Figure  6.  4D printing driven by 2D planar precursor structure via direct ink writing (DIW) printing method[34, 53]: (a) Solvent removal by heating drives shape changes; (b) Hot water-Ca2+solvent double stimulation drive shape changes

    图  7  基于三维立体前驱结构驱动的4D打印[12, 37]:(a) 具有多曲率及高刚度结构的变形;(b) 具有中空管状结构的变形

    l—Length; t—Thickness; d2—The displacement of joints determined from the temperature-induced elongation skew; θ, λ—Angle; Ec and Ef—Axial elastic modulus of the core and frame trusses; αc and αf—Coefficient of thermal expansion of the core and frame trusses; k—Curvature; α—The number of passive layers; β—The amount of the programmed out-of-plane actuation; Compr.—Compress; Lens.—Tension; EXP—Experiment; FEA—Finite element analysis

    Figure  7.  4D printing driven by a three-dimensional precursor structure[12, 37]: (a) Deformation of structures with multiple curvatures and high stiffness; (b) Deformation of structures with hollow tubular patterning

    图  8  基于4D打印以非对称层合板结构开发的柔性机翼[54]

    Figure  8.  4D printed flexible wings with asymmetric laminated plates[54]

    图  9  基于理论计算模型的双层弯曲结构辅助设计[58-60]:(a) 对折叠结构的建模;(b) 热驱动双层结构的建模

    t—Time; ε—Strain; α—Coefficient of thermal expansion; d—Thickness; k—Thickness ratio; θ—Temperature change; ∆εT—The average strain of bilayer structure; n—Ratio of modulus; m—Ratio of thickness; htotal—Sum of thickness; E—Elastic modulus; a—Thickness; P—Axial tensile forces; κ—Curvature; I—Moment of inertia;

    Figure  9.  Aided design of double-layer bending structures based on theoretical calculation models[58-60]: (a) Modeling of folding structures; (b) Modeling of double layer structure by heating

    图  10  模拟仿真辅助4D打印结构设计[63-65]:(a) 温度驱动双层结构的变形仿真;(b) 复杂可逆变形结构仿真

    Figure  10.  Simulation-assisted 4D printing structure design[63-65]: (a) Deformation simulation of temperature-driven double-layer structures; (b) Simulation of complex reversible deformation structures

    图  11  逆几何方法辅助设计前驱结构[10, 68-69]:(a) 基于共形曲面投影的前驱结构设计;(b) 基于智能材料体素化分布的前驱结构设计;(c) 基于智能材料拓扑优化的前驱结构设计

    L—Length of per-rib; R−1—Curvature

    Figure  11.  Inverse geometry method aided design of precursor structure[10, 68-69]: (a) Design of precursor structure based on conformal surface projection; (b) Design of precursor structures based on voxel distribution of intelligent materials; (c) Topology optimization design of precursor structure based on intelligent materials

    表  1  基于应变失配原理下不同方式驱动的4D打印

    Table  1.   4D printing driven in different ways based on strain mismatch

    NumberStrain mismatch sourceDescriptionPrinting methodStimulusRef.
    1Residue stress releaseInternal stresses stored in the structure during printing are released during reheatingFDM, polyjet, DLPThermal[8, 12-13, 29]
    2Residual strain
    mismatch
    Different residual strains after tensile between bonded layers of a two-layer structureDIWForce, light, thermal[28, 30-32]
    3Solvent removal rate mismatchDifferential solvent evaporation rates between layers of a two-layer structureDLP, DIWLight, thermal[33-36]
    4Thermal expansion coefficient mismatchDifferent coefficients of thermal expansion between layers of a two-layer structureDIW, FDMThermal[12, 37-39]
    5Dissolution rate mismatchDifferential dissolution rates between layers of a bilayer structureDIW, FDMSolvent[10, 17, 33]
    Notes: FDM—Fused deposition modeling; DLP—Digital light processing; DIW—Direct ink writing.
    下载: 导出CSV
  • [1] LEE J, KIM H, CHOI J, et al. A review on 3D printed smart devices for 4D printing[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2017,4(3):373-383. doi: 10.1007/s40684-017-0042-x
    [2] HUANG S H, LIU P, MOKASDAR A, et al. Additive manufacturing and its societal impact: A literature review[J]. The International Journal of Advanced Manufacturing Technology,2013,67(5-8):1191-1203. doi: 10.1007/s00170-012-4558-5
    [3] SHIRAZI S F, GHAREHKHANI S, MEHRALI M, et al. A review on powder-based additive manufacturing for tissue engineering: Selective laser sintering and inkjet 3D printing[J]. Science and Technology of Advanced Materials,2015,16(3):33502-33521. doi: 10.1088/1468-6996/16/3/033502
    [4] TOFAIL S A M, KOUMOULOS E P, BANDYOPADHYAY A, et al. Additive manufacturing: Scientific and technological challenges, market uptake and opportunities[J]. Materials Today,2018,21(1):22-37. doi: 10.1016/j.mattod.2017.07.001
    [5] MOON S K, TAN Y E, HWANG J, et al. Application of 3D printing technology for designing light-weight unmanned aerial vehicle wing structures[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2014,1(3):223-228. doi: 10.1007/s40684-014-0028-x
    [6] JOSHI S, RAWAT K, KARUNAKARAN C, et al. 4D printing of materials for the future: Opportunities and challenges[J]. Applied Materials Today,2020,18:100490. doi: 10.1016/j.apmt.2019.100490
    [7] XIA Y, HE Y, ZHANG F, et al. A review of shape memory polymers and composites: Mechanisms, materials, and applications[J]. Advanced Materials,2021,33(6):2000713. doi: 10.1002/adma.202000713
    [8] DING Z, WEEGER O, QI H J, et al. 4D rods: 3D structures via programmable 1D composite rods[J]. Materials & Design,2018,137:256-265.
    [9] TIBBITS S. 4D printing: Multi-material shape change[J]. Architectural Design,2014,84(1):116-121. doi: 10.1002/ad.1710
    [10] SUN X, YUE L, YU L, et al. Machine learning-evolutionary algorithm enabled design for 4D-printed active composite structures[J]. Advanced Functional Materials,2022,32(10):2109805. doi: 10.1002/adfm.202109805
    [11] TOLLEY M T, FELTON S M, MIYASHITA S, et al. Self-folding origami: Shape memory composites activated by uniform heating[J]. Smart Materials and Structures,2014,23(9):1-9.
    [12] BOLEY J W, VAN REES W M, LISSANDRELLO C, et al. Shape-shifting structured lattices via multimaterial 4D printing[J]. Proceedings of the National Academy of Sciences,2019,116(42):20856-20862. doi: 10.1073/pnas.1908806116
    [13] WU J, YUAN C, DING Z, et al. Multi-shape active compo-sites by 3D printing of digital shape memory polymers[J]. Scientific Reports,2016,6(1):24224-24234. doi: 10.1038/srep24224
    [14] SYDNEY G A, MATSUMOTO E A, NUZZO R G, et al. Biomimetic 4D printing[J]. Nature Materials,2016,15(4):413-418. doi: 10.1038/nmat4544
    [15] VAN MANEN T, JANBAZ S, JANSEN K M B, et al. 4D printing of reconfigurable metamaterials and devices[J]. Communications Materials,2021,2(1):56.
    [16] WANG J, WANG Z, SONG Z, et al. Biomimetic shape-color double-responsive 4D printing[J]. Advanced Materials Technologies,2019,4(9):1900293. doi: 10.1002/admt.201900293
    [17] ZAREK M, LAYANI M, COOPERSTEIN I, et al. 3D printing of shape memory polymers for flexible electronic devices[J]. Advanced Materials,2016,28(22):4449-4454. doi: 10.1002/adma.201503132
    [18] WU J, HUANG L, ZHAO Q, et al. 4D printing: History and recent progress[J]. Chinese Journal of Polymer Science,2018,36(5):563-575. doi: 10.1007/s10118-018-2089-8
    [19] YUAN C, LU T, WANG T J. Mechanics-based design strategies for 4D printing: A review[J]. Forces in Mechanics,2022,7:100081. doi: 10.1016/j.finmec.2022.100081
    [20] AHMED A, ARYA S, GUPTA V, et al. 4D printing: Fundamentals, materials, applications and challenges[J]. Polymer,2021,228:123926. doi: 10.1016/j.polymer.2021.123926
    [21] MOMENI F, LIU X, NI J, et al. A review of 4D printing[J]. Materials & Design,2017,122:42-79.
    [22] LEIST S K, ZHOU J. Current status of 4D printing technology and the potential of light-reactive smart materials as 4D printable materials[J]. Virtual and Physical Prototyping,2016,11(4):249-262. doi: 10.1080/17452759.2016.1198630
    [23] WAN X, LUO L, LIU Y, et al. Direct ink writing based 4D printing of materials and their applications[J]. Advanced Science,2020,7(16):2001000. doi: 10.1002/advs.202001000
    [24] ZHANG F, ZHAO T, RUIZ-MOLINA D, et al. Shape memory polyurethane microcapsules with active deformation[J]. ACS Applied Materials & Interfaces,2020,12(41):47059-47064.
    [25] XIAO X, KONG D, QIU X, et al. Shape memory polymers with high and low temperature resistant properties[J]. Scientific Reports. 2015, 5(1) : 14137.
    [26] MALLAKPOUR S, TABESH F, HUSSAIN C M. 3D and 4D printing: From innovation to evolution[J]. Advances in Colloid and Interface Science,2021,294:102482. doi: 10.1016/j.cis.2021.102482
    [27] QI J, CHEN Z, JIANG P, et al. Recent progress in active mechanical metamaterials and construction principles[J]. Advanced Science,2022,9(1):e2102662. doi: 10.1002/advs.202102662
    [28] DENG H, ZHANG C, SATTARI K, et al. 4D printing elastic composites for strain-tailored multistable shape morphing[J]. ACS Applied Materials & Interfaces,2021,13(11):12719-12725.
    [29] HANN S Y, CUI H, NOWICKI M, et al. 4D printing soft robotics for biomedical applications[J]. Additive Manufacturing,2020,36:101567. doi: 10.1016/j.addma.2020.101567
    [30] DENG H, XU X, ZHANG C, et al. Reprogrammable 3D shaping from phase change microstructures in elastic composites[J]. ACS Applied Materials & Interfaces,2020,12(3):4014-4021.
    [31] TANG J, CHEN Z, CAI Y, et al. Stretch-activated reprogrammable shape-morphing composite elastomers[J]. Advanced Functional Materials,2022,32(34):2203308. doi: 10.1002/adfm.202203308
    [32] JIN B, SONG H, JIANG R, et al. Programming a crystalline shape memory polymer network with thermo- and photo-reversible bonds toward a single-component soft robot[J]. Science Advances,2018,4(1):eaao3865. doi: 10.1126/sciadv.aao3865
    [33] HUANG L, JIANG R, WU J, et al. Ultrafast digital printing toward 4D shape changing materials[J]. Advanced Aaterials, 2016, 29(7): 1605390.
    [34] WENG S, KUANG X, ZHANG Q, et al. 4D printing of glass fiber-regulated shape shifting structures with high stiffness[J]. ACS Applied Materials & Interfaces,2021,13(11):12797-12804.
    [35] GE Q, SAKHAEI A H, LEE H, et al. Multimaterial 4D printing with tailorable shape memory polymers[J]. Scientific Reports,2016,6(1):31110-31120. doi: 10.1038/srep31110
    [36] WEI H, ZHANG Q, YAO Y, et al. Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite[J]. ACS Applied Materials & Interfaces,2017,9(1):876-883.
    [37] MA R, LIU L, WYMAN O, et al. Programming polymorphable yet stiff truss metamaterials in response to tempera-ture[J]. Applied Materials Today,2022,27:101432. doi: 10.1016/j.apmt.2022.101432
    [38] DING Z, YUAN C, PENG X, et al. Direct 4D printing via active composite materials[J]. Science Advances,2017,3(4):e1602890. doi: 10.1126/sciadv.1602890
    [39] GEISS M J, BODDETI N, WEEGER O, et al. Combined level-set-XFEM-density topology optimization of four-dimensional printed structures undergoing large deformation[J]. Journal of Mechanical Design,2019,141(5):051405. doi: 10.1115/1.4041945
    [40] MAO Y, YU K, ISAKOV M S, et al. Sequential self-folding structures by 3D printed digital shape memory polymers[J]. Scientific Reports,2015,5(1):13616-13627. doi: 10.1038/srep13616
    [41] LIANG X, SHAN J, ZHOU X, et al. Active design of chiral cell structures that undergo complex deformation under uniaxial loads[J]. Materials & Design,2022,217:110649-110660.
    [42] RAVIV D, ZHAO W, MCKNELLY C, et al. Active printed materials for complex self-evolving deformations[J]. Scientific Reports,2014,4(1):7422-7430. doi: 10.1038/srep07422
    [43] MAO Y, DING Z, YUAN C, et al. 3D printed reversible shape changing components with stimuli responsive materials[J]. Scientific Reports,2016,6(1):24761-24773. doi: 10.1038/srep24761
    [44] WANG W, LI C, CHO M, et al. Soft tendril-inspired grippers: Shape morphing of programmable polymer-paper bilayer composites[J]. ACS Applied Materials & Interfaces,2018,10(12):10419-10427.
    [45] GE Q, QI H J, DUNN M L. Active materials by four-dimension printing[J]. Applied Physics Letters,2013,103(13):131900-131906.
    [46] YUAN C, WANG T, DUNN M L, et al. 3D printed active origami with complicated folding patterns[J]. International Journal of Precision Engineering and Manufacturing-Green Technology,2017,4(3):281-289. doi: 10.1007/s40684-017-0034-x
    [47] VAN M T, JANBAZ S, ZADPOOR A A. Programming 2D/3D shape-shifting with hobbyist 3D printers[J]. Materials Horizons,2017,4(6):1064-1069. doi: 10.1039/C7MH00269F
    [48] WANG F, LUO F, HUANG Y, et al. 4D printing via multispeed fused deposition modeling[J]. Advanced Materials Technologies,2022,8(2):2201383.
    [49] CHEN D, LIU Q, GENG P, et al. A 4D printing strategy and integrated design for programmable electroactive shape-color double-responsive bionic functions[J]. Composites Science and Technology,2021,208:108746. doi: 10.1016/j.compscitech.2021.108746
    [50] ZHOU Y, YANG Y, JIAN A, et al. Co-extrusion 4D printing of shape memory polymers with continuous metallic fibers for selective deformation[J]. Composites Science and Technology,2022,227:109603. doi: 10.1016/j.compscitech.2022.109603
    [51] HUANG L, JIANG R, WU J, et al. Ultrafast digital printing toward 4D shape changing materials[J]. Advanced Materials,2017,29(7):1605390. doi: 10.1002/adma.201605390
    [52] ZHAO Z, KUANG X, YUAN C, et al. Hydrophilic/hydrophobic composite shape-shifting structures[J]. ACS Applied Materials & Interfaces,2018,10(23):19932-19939.
    [53] CAO P, YANG J, GONG J, et al. 4D printing of bilayer tubular structure with dual-stimuli responsive based on self-rolling behavior[J]. Journal of Applied Polymer Science,2023,140(1):53241-53252.
    [54] HOA S, ABDALI M, JASMIN A, et al. Development of a new flexible wing concept for unmanned aerial vehicle using corrugated core made by 4D printing of composites[J]. Composite Structures,2022,290:115444-115459. doi: 10.1016/j.compstruct.2022.115444
    [55] HOA S V. Factors affecting the properties of composites made by 4D printing (moldless composites manufacturing)[J]. Advanced Manufacturing Polymer & Composites Science,2017,3(3):101-109.
    [56] LEE A Y, AN J, CHUA C K, et al. Preliminary investigation of the reversible 4D printing of a dual-layer component[J]. Engineering,2019,5(6):1159-1170. doi: 10.1016/j.eng.2019.09.007
    [57] JEONG H Y, WOO B H, KIM N, et al. Multicolor 4D printing of shape-memory polymers for light-induced selective heating and remote actuation[J]. Scientific Reports,2020,10(1):6258-6268. doi: 10.1038/s41598-020-63020-9
    [58] LIU Z, LIU H, DUAN G, et al. Folding deformation modeling and simulation of 4D printed bilayer structures considering the thickness ratio[J]. Mathematics and Mechanics of Solids,2020,25(2):348-361. doi: 10.1177/1081286519877563
    [59] LIU H, LIU Z, DUAN G, et al. Geometric design of 4D printed bilayer structures for accurate folding deformation[J]. Journal of Intelligent Material Systems and Structures,2022,33(8):1046-1055. doi: 10.1177/1045389X211041167
    [60] ZENG S, GAO Y, FENG Y, et al. Programming the deformation of a temperature-driven bilayer structure in 4D printing[J]. Smart Materials and Structures,2019,28(10):105031-105044. doi: 10.1088/1361-665X/ab39c9
    [61] PINGALE P, DAWRE S, DHAPTE-PAWAR V, et al. Advances in 4D printing: From stimulation to simulation[J]. Drug Delivery and Translational Research,2023,13(1):164-188. doi: 10.1007/s13346-022-01200-y
    [62] BODAGHI M, NOROOZI R, ZOLFAGHARIAN A, et al. 4D printing self-morphing structures[J]. Materials,2019,12(8):1353-1368. doi: 10.3390/ma12081353
    [63] WANG Y, LI X. An accurate finite element approach for programming 4D-printed self-morphing structures produced by fused deposition modeling[J]. Mechanics of Materials,2020,151:103628-103639.
    [64] SONG J, FENG Y, WANG Y, et al. Complicated deformation simulating on temperature-driven 4D printed bilayer structures based on reduced bilayer plate model[J]. Applied Mathematics and Mechanics,2021,42(11):1619-1632. doi: 10.1007/s10483-021-2788-9
    [65] WANG Y, LI X. 4D-printed bi-material composite laminate for manufacturing reversible shape-change structures[J]. Composites Part B: Engineering,2021,219:108918. doi: 10.1016/j.compositesb.2021.108918
    [66] SOSSOU G, DEMOLY F, BELKEBIR H, et al. Design for 4D printing: Modeling and computation of smart materials distributions[J]. Materials & Design,2019,181:108074.
    [67] HAMEL C M, ROACH D J, LONG K N, et al. Machine-learning based design of active composite structures for 4D printing[J]. Smart Materials and Structures,2019,28(6):65005. doi: 10.1088/1361-665X/ab1439
    [68] SOSSOU G, DEMOLY F, BELKEBIR H, et al. Design for 4D printing: A voxel-based modeling and simulation of smart materials[J]. Materials & Design,2019,175:107798.
    [69] WEI Y, HUANG P, LI Z, et al. Design of active materials distributions for four-dimensional printing based on multi-material topology optimization[J]. Smart Materials and Structures,2021,30(9):95002. doi: 10.1088/1361-665X/ac13b3
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  572
  • HTML全文浏览量:  286
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-10
  • 修回日期:  2023-06-06
  • 录用日期:  2023-07-16
  • 网络出版日期:  2023-07-25
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回