留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续碳纤维3D打印圆形增强蜂窝的面内压缩性能

孟云聪 周光明 蔡登安

孟云聪, 周光明, 蔡登安. 连续碳纤维3D打印圆形增强蜂窝的面内压缩性能[J]. 复合材料学报, 2024, 41(4): 1776-1787. doi: 10.13801/j.cnki.fhclxb.20230721.001
引用本文: 孟云聪, 周光明, 蔡登安. 连续碳纤维3D打印圆形增强蜂窝的面内压缩性能[J]. 复合材料学报, 2024, 41(4): 1776-1787. doi: 10.13801/j.cnki.fhclxb.20230721.001
MENG Yuncong, ZHOU Guangming, CAI Deng'an. In-plane compression properties of 3D printed continuous carbon fiber circular improved honeycomb[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1776-1787. doi: 10.13801/j.cnki.fhclxb.20230721.001
Citation: MENG Yuncong, ZHOU Guangming, CAI Deng'an. In-plane compression properties of 3D printed continuous carbon fiber circular improved honeycomb[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1776-1787. doi: 10.13801/j.cnki.fhclxb.20230721.001

连续碳纤维3D打印圆形增强蜂窝的面内压缩性能

doi: 10.13801/j.cnki.fhclxb.20230721.001
详细信息
    通讯作者:

    周光明,博士,教授,博士生导师,研究方向为先进复合材料的结构设计 E-mail: zhougm@nuaa.edu.cn

  • 中图分类号: TB332

In-plane compression properties of 3D printed continuous carbon fiber circular improved honeycomb

  • 摘要: 为提高圆形蜂窝(CH)的抗压缩性能和吸能性能,以CH结构为基础,在横向和竖向上增设树叶形支撑,提出了单向增强圆形蜂窝(SEH)和双向增强圆形蜂窝(DEH)两种改进型蜂窝。以碳纤维(CF)作为增强体,聚乳酸(PLA)为基体,使用连续纤维3D打印技术制造了试验件,并规划结构内部CF的成型路径,同时设置PLA对照组。通过准静态压缩试验研究各蜂窝的面内压缩性能、吸能特性和结构的变形失效模式。结果表明:CF增强后的DEH-CF相较CH-CF在比吸能上提升167.63%。CH、SEH和DEH在采用CF增强后,比吸能相比PLA对照组分别提高43.37%、63.17%和161.58%,平均压缩力分别提高51.72%、61.81%和96.09%。研究发现,CF增强结构内部的纤维路径规划会影响结构的刚度和变形行为,采用“支撑一体化成型”路径的DEH-CF在压缩时,其结构动态泊松比保持在PLA对照组33.36%以下。

     

  • 图  1  (a) 连续纤维3D打印设备;(b) 加工示意图

    Figure  1.  (a) Continuous fiber 3D printing equipment; (b) Processing diagram

    图  2  (a) 圆形蜂窝(CH)-碳纤维(CF)试件;(b) 单向增强圆形蜂窝(SEH)-CF试件;(c) 双向增强圆形蜂窝(DEH)-CF试件

    Figure  2.  (a) Circular honeycomb (CH)-carbon fiber (CF) specimen; (b) Single enhanced circular honeycomb (SEH)-CF specimen; (c) Double enhanced circular honeycomb (DEH)-CF specimen

    图  3  (a) DEH单胞示意图;(b) SEH单胞成型轨迹;(c) CH成型轨迹

    Figure  3.  (a) Diagram of DEH monocell; (b) SEH monocell forming path; (c) CH forming path

    r2—Radius of leaf support; ; $ \phi $—Radian of leaf support curve; L, H—Width, height of honeycombs

    图  4  DEH成型轨迹

    Figure  4.  Forming path of DEH

    图  5  采用“支撑一体化成型”路径打印的DEH结构

    Figure  5.  DEH printed by the path of "strut integrated molding"

    图  6  实验设备及试件安装

    Figure  6.  Experimental equipment and installation of specimen

    图  7  不同蜂窝的面内压缩名义应力-应变曲线:(a) CH;(b) SEH;(c) DEH

    Figure  7.  In-plane compression stress-strain curves of different honeycombs: (a) CH; (b) SEH; (c) DEH

    图  8  各蜂窝的抗压强度

    Figure  8.  Compressive strength of honeycombs

    图  9  变形过程:(a) CH-PLA;(b) CH-CF

    Figure  9.  Deformation process: (a) CH-PLA; (b) CH-CF

    εy—Nominal strain

    图  10  变形过程:(a) SEH-PLA;(b) SEH-CF

    Figure  10.  Deformation process: (a) SEH-PLA; (b) SEH-CF

    图  11  变形过程:(a) DEH-PLA;(b) DEH-CF

    Figure  11.  Deformation process: (a) DEH-PLA; (b) DEH-CF

    图  12  蜂窝破坏模式:(a) CH-PLA;(b) CH-CF;(c) SEH-PLA;(d) SEH-CF;(e) DEH-PLA;(f) DEH-CF

    Figure  12.  Failure mode of honeycombs: (a) CH-PLA; (b) CH-CF; (c) SEH-PLA; (d) SEH-CF; (e) DEH-PLA; (f) DEH-CF

    图  13  DEH-PLA和DEH-CF侧向视图

    Figure  13.  Side view of DEH-PLA and DEH-CF

    图  14  DEH蜂窝的泊松比-名义应变曲线

    Figure  14.  Poisson's ratio-nominal strain curves of DEH

    图  15  DEH-PLA变形过程

    Figure  15.  Deformation process of DEH-PLA

    A1-A3—Left end point of DEH; B1-B3—Right end point of DEH

    图  16  DEH-CF变形过程

    Figure  16.  Deformation process of DEH-CF

    表  1  蜂窝结构设计参数

    Table  1.   Geometric parameters of honeycomb

    $ {r}_{1} $/mm$ {r}_{2} $/mm$ \phi $/(°)L/mmH/mmq/mm
    1014.1490606020
    Notes: $ {r}_{1} $—Radius of honeycomb outer circle; q—Thickness of honeycombs.
    下载: 导出CSV

    表  2  打印成型参数

    Table  2.   Parameters of printing process

    tz/mm$ {V}_{1} $/(mm·min–1)$ {T}_{1} $/℃$ {n}_{1} $$ {t}_{\mathrm{H}} $/mm
    0.4130200501.7
    Notes: tz—Thickness of layer; $ {V}_{1} $—Speed of moulding; $ {T}_{1} $—Nozzle temperature; $ {n}_{1} $—Number of layers; $ {t}_{\mathrm{H}} $—Honey-comb wall and strut thickness.
    下载: 导出CSV

    表  3  蜂窝试验件参数

    Table  3.   Parameters of honeycomb specimens

    Type$ L $/mm$ H $/mm$q$/mmm/g$ \stackrel{-}{\rho } $
    CH-PLA61612018.10.24
    CH-CF61612018.80.24
    SEH-PLA61612031.10.40
    SEH-CF61612032.10.40
    DEH-PLA61612043.30.57
    DEH-CF61612044.90.57
    Notes: m—Mass of specimen; $ \stackrel{-}{\rho } $—Relative density; PLA—Poly-lactic acid.
    下载: 导出CSV

    表  4  各蜂窝结构的吸能参数

    Table  4.   Energy absorption parameters of each honeycomb

    Type$ {\mathit{\varepsilon }}_{\mathbf{d}} $$ {\mathit{S'}} $/(J·g−1)$({S_{\mathrm{CF} }^{\prime}-S_{\mathrm{PLA} }^{\prime} })/{S_{\mathrm{PLA} }^{\prime} }$$ {\mathit{M'}}$/kN$({M_{\mathrm{CF} }^{\prime}-M_{\mathrm{PLA} }^{\prime} })/{M_{\mathrm{PLA} }^{\prime} }$
    CH-PLA0.76 3.62 1.45
    CH-CF0.74 5.19 43.37% 2.2051.72%
    SEH-PLA0.59 3.53 3.09
    SEH-CF0.61 5.76 63.17% 5.0061.81%
    DEH-PLA0.42 5.31 8.95
    DEH-CF0.5913.89161.58%17.5596.09%
    Notes: $ {\varepsilon }_{\mathrm{d}} $—Densification strain; $ {S'}$—Specific energy absorption; $ {\mathit{M'}} $—Mean crushing force.
    下载: 导出CSV
  • [1] WANG Z G. Recent advances in novel metallic honeycomb structure[J]. Composites Part B: Engineering,2019,166:731-741. doi: 10.1016/j.compositesb.2019.02.011
    [2] FENG G Z, LI S, XIAO L J, et al. Energy absorption performance of honeycombs with curved cell walls under quasi-static compression[J]. International Journal of Mechanical Sciences, 2021, 210: 106746.
    [3] QI C, JIANG F, YANG S. Advanced honeycomb designs for improving mechanical properties: A review[J]. Composites Part B: Engineering,2021,227:109393. doi: 10.1016/j.compositesb.2021.109393
    [4] NOVAK N, HOKAMOTO K, VESENJAK M, et al. Mechanical behaviour of auxetic cellular structures built from inverted tetrapods at high strain rates[J]. International Journal of Impact Engineering,2018,122:83-90. doi: 10.1016/j.ijimpeng.2018.08.001
    [5] 沈振峰, 张新春, 白江畔, 等. 负泊松比内凹环形蜂窝结构的冲击响应特性研究[J]. 振动与冲击, 2020, 39(18):89-95, 117.

    SHEN Zhenfeng, ZHANG Xinchun, BAI Jiangpan, et al. Dynamic response characteristics of re-entrant circular honeycombs with negative Poisson's ratio[J]. Journal of Vibration and Shock,2020,39(18):89-95, 117(in Chinese).
    [6] 周星驰, 唐振刚, 周徐斌, 等. CFRP圆形胞元蜂窝芯层面外剪切模量[J]. 复合材料学报, 2018, 35(10):2777-2785. doi: 10.13801/j.cnki.fhclxb.20180202.001

    ZHOU Xingchi, TANG Zhengang, ZHOU Xubin, et al. External shear modulus of CFRP circular cell honeycomb[J]. Acta Materiae Compositae Sinica,2018,35(10):2777-2785(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180202.001
    [7] 章娅菲, 闵世威, 王海涛, 等. TPU蜂窝结构及吸能特性研究[J]. 塑性工程学报, 2023, 30(3):113-122. doi: 10.3969/j.issn.1007-2012.2023.03.016

    ZHANG Yafei, MIN Shiwei, WANG Haitao, et al. Study on compression and energy absorption characteristics of TPU honeycomb structure[J]. Journal of Plasticity Engineering,2023,30(3):113-122(in Chinese). doi: 10.3969/j.issn.1007-2012.2023.03.016
    [8] 孙靖, 王旭琴, 柳玉文, 等. 熔融沉积成型连续碳纤维增强尼龙蜂窝芯材的压缩特性[J]. 上海航天, 2020, 37(3):32-37.

    SUN Jing, WANG Xuqin, LIU Yuwen, et al. Compressive behavior of continuous carbon fiber reinforced nylon honeycomb cores prepared by fused deposition modeling[J]. Aerospace Shanghai,2020,37(3):32-37(in Chinese).
    [9] 杨来侠, 刘波, 刘腾飞, 等. 3D打印连续纤维增强聚碳酸酯复合材料预浸丝制备与性能[J]. 复合材料学报, 2023, 40(10): 5654-5665.

    YANG Laixia, LIU Bo, LIU Tengfei, et al. Preparation and properties of 3D printing continuous fiber reinforced polycarbonate composite prepreg filaments[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5654-5665(in Chinese).
    [10] QUAN C, HAN B, HOU Z H, et al. 3D printed continuous fiber reinforced composite auxetic honeycomb structures[J]. Composites Part B: Engineering, 2020, 187: 107858.
    [11] CHENG Y Y, LI J J, QIAN X P, et al. 3D printed recoverable honeycomb composites reinforced by continuous carbon fibers[J]. Composite Structures,2021,268:113974. doi: 10.1016/j.compstruct.2021.113974
    [12] ZENG C, LIU L W, BIAN W, et al. Compression behavior and energy absorption of 3D printed continuous fiber reinforced composite honeycomb structures with shape memory effects[J]. Additive Manufacturing, 2021, 38: 101842.
    [13] 张亚男. 连续芳纶纤维增强TPU复合材料蜂窝结构设计与性能研究[D]. 济南: 山东大学, 2019.

    ZHANG Yanan. Study on the design and properties of honeycomb structure of continuous PPTA fiber reinforced TPU composites[D]. Jinan: Shandong University, 2019(in Chinese).
    [14] 胡锦顺, 林永水, 陈威, 等. 改进星形蜂窝结构面内动力学响应及能量吸收特性研究[J]. 振动与冲击, 2022, 41(23):119-128. doi: 10.13465/j.cnki.jvs.2022.23.015

    HU Jinshun, LIN Yongshui, CHEN Wei, et al. In-plane dynamic response and energy absorption characteristics of improved star-shape honeycomb structure[J]. Journal of Vibration and Shock,2022,41(23):119-128(in Chinese). doi: 10.13465/j.cnki.jvs.2022.23.015
    [15] 杨玉平, 张中伟, 李玮洁, 等. 碳/碳蜂窝制备工艺及压缩与剪切行为[J]. 复合材料学报, 2023, 40(12): 6639-6648.

    YANG Yuping, ZHANG Zhongwei, LI Weijie, et al. Preparation process, compression and shear behavior of carbon/carbon honeycomb[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6639-6648(in Chinese).
    [16] YANG X F, XI X L, PAN Q F, et al. In-plane dynamic crushing of a novel circular-celled honeycomb nested with petal-shaped mesostructure.[J]. Composite Structures,2019,226:111219. doi: 10.1016/j.compstruct.2019.111219
    [17] LIN T C, CHEN T J, HUANG J S. In-plane elastic constants and strengths of circular cell honeycombs[J]. Composites Science and Technology,2012,72(12):1380-1386. doi: 10.1016/j.compscitech.2012.05.009
    [18] ORUGANTI R K, GHOSH A K. FEM analysis of transverse creep in honeycomb structures[J]. Acta Materialia,2008,56(4):726-735. doi: 10.1016/j.actamat.2007.10.019
    [19] 张帆, 魏培祥, 赵圆圆, 等. 基于体素的机械臂连续碳纤维3D打印路径规划[J]. 计算机集成制造系统, 2023, 29(5):1517-1527.

    ZHANG Fan, WEI Peixiang, ZHAO Yuanyuan, et al. Voxel-based path planning method for continuous carbon fiber 3D printing with robot arm[J]. Computer Integrated Manufacturing Systems,2023,29(5):1517-1527(in Chinese).
    [20] 韩宁达. 连续纤维复合材料构件三维打印工艺及机电系统设计[D]. 南京: 南京师范大学, 2019.

    HAN Ningda. 3D printing technology and electromechanical system design of continuous carbon fiber composite components[D]. Nanjing: Nanjing Normal University, 2019(in Chinese).
    [21] 秦若森, 孙守政, 韩振宇, 等. 3D打印连续纤维增强热塑性复合材料成型质量的研究进展[J]. 材料导报, 2022, 36(17):200-208.

    QIN Ruosen, SUN Shouzheng, HAN Zhengyu, et al. 3D printing for continuous fiber-reinforced thermoplastic composites: A review on molding quality[J]. Materials Reports,2022,36(17):200-208(in Chinese).
    [22] 田小永, 张亚园, 刘腾飞, 等. 连续碳纤维增强尼龙复合材料预浸丝制备与3D打印性能研究[J]. 航空制造技术, 2021, 64(15):24-33.

    TIAN Xiaoyong, ZHANG Yayuan, LIU Tengfei, et al. Prepreg preparation and 3D printing of continuous carbon fiber reinforced nylon composite[J]. Aeronautical Manufacturing Technology,2021,64(15):24-33(in Chinese).
    [23] MATSUZAKI R, UEDA M, NAMIKI M, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation[J]. Scientific Reports,2016,6:23058. doi: 10.1038/srep23058
    [24] WU H X, ZHANG X C, LIU Y. In-plane crushing behavior of density graded cross-circular honeycombs with zero Poisson's ratio[J]. Thin-Walled Structures,2020,151:106767. doi: 10.1016/j.tws.2020.106767
    [25] 中国国家标准化管理委员会. 高聚物多孔材料 压缩应力应变特性的测试: GB/T 18942—2003[S]. 北京: 中国标准出版社, 2003.

    Standardization Administration of the People's Republic of China. Flexible cellular polymeric materials—Determination of stress-strain characteristics in compression: GB/T 18942—2003[S]. Beijing: China Standards Press, 2003.
    [26] 魏路路, 余强, 赵轩, 等. 内凹-反手性蜂窝结构的面内动态压溃性能研究[J]. 振动与冲击, 2021, 40(4):261-269. doi: 10.13465/j.cnki.jvs.2021.04.036

    WEI Lulu, YU Qiang, ZHAO Xuan, et al. In-plane dynamic crushing characteristics of re-entrant anti-trichiral honeycomb[J]. Journal of Vibration and Shock,2021,40(4):261-269(in Chinese). doi: 10.13465/j.cnki.jvs.2021.04.036
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  450
  • HTML全文浏览量:  217
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-26
  • 修回日期:  2023-06-26
  • 录用日期:  2023-07-06
  • 网络出版日期:  2023-07-24
  • 刊出日期:  2024-04-15

目录

    /

    返回文章
    返回