In-plane compression properties of 3D printed continuous carbon fiber circular improved honeycomb
-
摘要: 为提高圆形蜂窝(CH)的抗压缩性能和吸能性能,以CH结构为基础,在横向和竖向上增设树叶形支撑,提出了单向增强圆形蜂窝(SEH)和双向增强圆形蜂窝(DEH)两种改进型蜂窝。以碳纤维(CF)作为增强体,聚乳酸(PLA)为基体,使用连续纤维3D打印技术制造了试验件,并规划结构内部CF的成型路径,同时设置PLA对照组。通过准静态压缩试验研究各蜂窝的面内压缩性能、吸能特性和结构的变形失效模式。结果表明:CF增强后的DEH-CF相较CH-CF在比吸能上提升167.63%。CH、SEH和DEH在采用CF增强后,比吸能相比PLA对照组分别提高43.37%、63.17%和161.58%,平均压缩力分别提高51.72%、61.81%和96.09%。研究发现,CF增强结构内部的纤维路径规划会影响结构的刚度和变形行为,采用“支撑一体化成型”路径的DEH-CF在压缩时,其结构动态泊松比保持在PLA对照组33.36%以下。Abstract: To improve the compression resistance and energy absorption performance of circular honeycomb (CH), two improved honeycomb, single enhanced circular honeycomb (SEH) and double enhanced circular honeycomb (DEH) were designed on the basis of CH structure, and leaf shaped supports were added horizontally and vertically. Using carbon fiber (CF) as reinforcement and polylactic acid (PLA) as matrix, continuous fiber 3D printing technology was used to manufacture test parts, and the forming path of CF bundle inside the structure was designed, PLA control group was set. The in-plane compression properties, energy absorption characteristics and deformation failure modes of the honeycomb structures were investigated by quasi-static compression tests. The results show that the specific energy absorption (SEA) of CF enhanced DEH-CF is improved by 167.63% compared with CH-CF. The SEA are increased by 43.37%, 63.17% and 161.58% and mean crushing force are increased by 51.72%, 61.81% and 96.09% compared with the PLA control group, respectively. The results indicate that the fiber path planning inside the CF reinforced structure would affect the stiffness and deformation behavior of the structure. The dynamic Poisson's ratio of the DEH-CF using the "strut integrated molding path" during compression remains 33.36% lower than that of the PLA control group.
-
Key words:
- circular honeycomb /
- in-plane compression /
- continuous fiber /
- path planning /
- 3D printing /
- composite material
-
表 1 蜂窝结构设计参数
Table 1. Geometric parameters of honeycomb
$ {r}_{1} $/mm $ {r}_{2} $/mm $ \phi $/(°) L/mm H/mm q/mm 10 14.14 90 60 60 20 Notes: $ {r}_{1} $—Radius of honeycomb outer circle; q—Thickness of honeycombs. 表 2 打印成型参数
Table 2. Parameters of printing process
tz/mm $ {V}_{1} $/(mm·min–1) $ {T}_{1} $/℃ $ {n}_{1} $ $ {t}_{\mathrm{H}} $/mm 0.4 130 200 50 1.7 Notes: tz—Thickness of layer; $ {V}_{1} $—Speed of moulding; $ {T}_{1} $—Nozzle temperature; $ {n}_{1} $—Number of layers; $ {t}_{\mathrm{H}} $—Honey-comb wall and strut thickness. 表 3 蜂窝试验件参数
Table 3. Parameters of honeycomb specimens
Type $ L $/mm $ H $/mm $q$/mm m/g $ \stackrel{-}{\rho } $ CH-PLA 61 61 20 18.1 0.24 CH-CF 61 61 20 18.8 0.24 SEH-PLA 61 61 20 31.1 0.40 SEH-CF 61 61 20 32.1 0.40 DEH-PLA 61 61 20 43.3 0.57 DEH-CF 61 61 20 44.9 0.57 Notes: m—Mass of specimen; $ \stackrel{-}{\rho } $—Relative density; PLA—Poly-lactic acid. 表 4 各蜂窝结构的吸能参数
Table 4. Energy absorption parameters of each honeycomb
Type $ {\mathit{\varepsilon }}_{\mathbf{d}} $ $ {\mathit{S'}} $/(J·g−1) $({S_{\mathrm{CF} }^{\prime}-S_{\mathrm{PLA} }^{\prime} })/{S_{\mathrm{PLA} }^{\prime} }$ $ {\mathit{M'}}$/kN $({M_{\mathrm{CF} }^{\prime}-M_{\mathrm{PLA} }^{\prime} })/{M_{\mathrm{PLA} }^{\prime} }$ CH-PLA 0.76 3.62 — 1.45 — CH-CF 0.74 5.19 43.37% 2.20 51.72% SEH-PLA 0.59 3.53 — 3.09 — SEH-CF 0.61 5.76 63.17% 5.00 61.81% DEH-PLA 0.42 5.31 — 8.95 — DEH-CF 0.59 13.89 161.58% 17.55 96.09% Notes: $ {\varepsilon }_{\mathrm{d}} $—Densification strain; $ {S'}$—Specific energy absorption; $ {\mathit{M'}} $—Mean crushing force. -
[1] WANG Z G. Recent advances in novel metallic honeycomb structure[J]. Composites Part B: Engineering,2019,166:731-741. doi: 10.1016/j.compositesb.2019.02.011 [2] FENG G Z, LI S, XIAO L J, et al. Energy absorption performance of honeycombs with curved cell walls under quasi-static compression[J]. International Journal of Mechanical Sciences, 2021, 210: 106746. [3] QI C, JIANG F, YANG S. Advanced honeycomb designs for improving mechanical properties: A review[J]. Composites Part B: Engineering,2021,227:109393. doi: 10.1016/j.compositesb.2021.109393 [4] NOVAK N, HOKAMOTO K, VESENJAK M, et al. Mechanical behaviour of auxetic cellular structures built from inverted tetrapods at high strain rates[J]. International Journal of Impact Engineering,2018,122:83-90. doi: 10.1016/j.ijimpeng.2018.08.001 [5] 沈振峰, 张新春, 白江畔, 等. 负泊松比内凹环形蜂窝结构的冲击响应特性研究[J]. 振动与冲击, 2020, 39(18):89-95, 117.SHEN Zhenfeng, ZHANG Xinchun, BAI Jiangpan, et al. Dynamic response characteristics of re-entrant circular honeycombs with negative Poisson's ratio[J]. Journal of Vibration and Shock,2020,39(18):89-95, 117(in Chinese). [6] 周星驰, 唐振刚, 周徐斌, 等. CFRP圆形胞元蜂窝芯层面外剪切模量[J]. 复合材料学报, 2018, 35(10):2777-2785. doi: 10.13801/j.cnki.fhclxb.20180202.001ZHOU Xingchi, TANG Zhengang, ZHOU Xubin, et al. External shear modulus of CFRP circular cell honeycomb[J]. Acta Materiae Compositae Sinica,2018,35(10):2777-2785(in Chinese). doi: 10.13801/j.cnki.fhclxb.20180202.001 [7] 章娅菲, 闵世威, 王海涛, 等. TPU蜂窝结构及吸能特性研究[J]. 塑性工程学报, 2023, 30(3):113-122. doi: 10.3969/j.issn.1007-2012.2023.03.016ZHANG Yafei, MIN Shiwei, WANG Haitao, et al. Study on compression and energy absorption characteristics of TPU honeycomb structure[J]. Journal of Plasticity Engineering,2023,30(3):113-122(in Chinese). doi: 10.3969/j.issn.1007-2012.2023.03.016 [8] 孙靖, 王旭琴, 柳玉文, 等. 熔融沉积成型连续碳纤维增强尼龙蜂窝芯材的压缩特性[J]. 上海航天, 2020, 37(3):32-37.SUN Jing, WANG Xuqin, LIU Yuwen, et al. Compressive behavior of continuous carbon fiber reinforced nylon honeycomb cores prepared by fused deposition modeling[J]. Aerospace Shanghai,2020,37(3):32-37(in Chinese). [9] 杨来侠, 刘波, 刘腾飞, 等. 3D打印连续纤维增强聚碳酸酯复合材料预浸丝制备与性能[J]. 复合材料学报, 2023, 40(10): 5654-5665.YANG Laixia, LIU Bo, LIU Tengfei, et al. Preparation and properties of 3D printing continuous fiber reinforced polycarbonate composite prepreg filaments[J]. Acta Materiae Compositae Sinica, 2023, 40(10): 5654-5665(in Chinese). [10] QUAN C, HAN B, HOU Z H, et al. 3D printed continuous fiber reinforced composite auxetic honeycomb structures[J]. Composites Part B: Engineering, 2020, 187: 107858. [11] CHENG Y Y, LI J J, QIAN X P, et al. 3D printed recoverable honeycomb composites reinforced by continuous carbon fibers[J]. Composite Structures,2021,268:113974. doi: 10.1016/j.compstruct.2021.113974 [12] ZENG C, LIU L W, BIAN W, et al. Compression behavior and energy absorption of 3D printed continuous fiber reinforced composite honeycomb structures with shape memory effects[J]. Additive Manufacturing, 2021, 38: 101842. [13] 张亚男. 连续芳纶纤维增强TPU复合材料蜂窝结构设计与性能研究[D]. 济南: 山东大学, 2019.ZHANG Yanan. Study on the design and properties of honeycomb structure of continuous PPTA fiber reinforced TPU composites[D]. Jinan: Shandong University, 2019(in Chinese). [14] 胡锦顺, 林永水, 陈威, 等. 改进星形蜂窝结构面内动力学响应及能量吸收特性研究[J]. 振动与冲击, 2022, 41(23):119-128. doi: 10.13465/j.cnki.jvs.2022.23.015HU Jinshun, LIN Yongshui, CHEN Wei, et al. In-plane dynamic response and energy absorption characteristics of improved star-shape honeycomb structure[J]. Journal of Vibration and Shock,2022,41(23):119-128(in Chinese). doi: 10.13465/j.cnki.jvs.2022.23.015 [15] 杨玉平, 张中伟, 李玮洁, 等. 碳/碳蜂窝制备工艺及压缩与剪切行为[J]. 复合材料学报, 2023, 40(12): 6639-6648.YANG Yuping, ZHANG Zhongwei, LI Weijie, et al. Preparation process, compression and shear behavior of carbon/carbon honeycomb[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6639-6648(in Chinese). [16] YANG X F, XI X L, PAN Q F, et al. In-plane dynamic crushing of a novel circular-celled honeycomb nested with petal-shaped mesostructure.[J]. Composite Structures,2019,226:111219. doi: 10.1016/j.compstruct.2019.111219 [17] LIN T C, CHEN T J, HUANG J S. In-plane elastic constants and strengths of circular cell honeycombs[J]. Composites Science and Technology,2012,72(12):1380-1386. doi: 10.1016/j.compscitech.2012.05.009 [18] ORUGANTI R K, GHOSH A K. FEM analysis of transverse creep in honeycomb structures[J]. Acta Materialia,2008,56(4):726-735. doi: 10.1016/j.actamat.2007.10.019 [19] 张帆, 魏培祥, 赵圆圆, 等. 基于体素的机械臂连续碳纤维3D打印路径规划[J]. 计算机集成制造系统, 2023, 29(5):1517-1527.ZHANG Fan, WEI Peixiang, ZHAO Yuanyuan, et al. Voxel-based path planning method for continuous carbon fiber 3D printing with robot arm[J]. Computer Integrated Manufacturing Systems,2023,29(5):1517-1527(in Chinese). [20] 韩宁达. 连续纤维复合材料构件三维打印工艺及机电系统设计[D]. 南京: 南京师范大学, 2019.HAN Ningda. 3D printing technology and electromechanical system design of continuous carbon fiber composite components[D]. Nanjing: Nanjing Normal University, 2019(in Chinese). [21] 秦若森, 孙守政, 韩振宇, 等. 3D打印连续纤维增强热塑性复合材料成型质量的研究进展[J]. 材料导报, 2022, 36(17):200-208.QIN Ruosen, SUN Shouzheng, HAN Zhengyu, et al. 3D printing for continuous fiber-reinforced thermoplastic composites: A review on molding quality[J]. Materials Reports,2022,36(17):200-208(in Chinese). [22] 田小永, 张亚园, 刘腾飞, 等. 连续碳纤维增强尼龙复合材料预浸丝制备与3D打印性能研究[J]. 航空制造技术, 2021, 64(15):24-33.TIAN Xiaoyong, ZHANG Yayuan, LIU Tengfei, et al. Prepreg preparation and 3D printing of continuous carbon fiber reinforced nylon composite[J]. Aeronautical Manufacturing Technology,2021,64(15):24-33(in Chinese). [23] MATSUZAKI R, UEDA M, NAMIKI M, et al. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation[J]. Scientific Reports,2016,6:23058. doi: 10.1038/srep23058 [24] WU H X, ZHANG X C, LIU Y. In-plane crushing behavior of density graded cross-circular honeycombs with zero Poisson's ratio[J]. Thin-Walled Structures,2020,151:106767. doi: 10.1016/j.tws.2020.106767 [25] 中国国家标准化管理委员会. 高聚物多孔材料 压缩应力应变特性的测试: GB/T 18942—2003[S]. 北京: 中国标准出版社, 2003.Standardization Administration of the People's Republic of China. Flexible cellular polymeric materials—Determination of stress-strain characteristics in compression: GB/T 18942—2003[S]. Beijing: China Standards Press, 2003. [26] 魏路路, 余强, 赵轩, 等. 内凹-反手性蜂窝结构的面内动态压溃性能研究[J]. 振动与冲击, 2021, 40(4):261-269. doi: 10.13465/j.cnki.jvs.2021.04.036WEI Lulu, YU Qiang, ZHAO Xuan, et al. In-plane dynamic crushing characteristics of re-entrant anti-trichiral honeycomb[J]. Journal of Vibration and Shock,2021,40(4):261-269(in Chinese). doi: 10.13465/j.cnki.jvs.2021.04.036