Effect of nano-SiO2 and polypropylene fibers on the mechanical properties and microscopic properties of all coal gangue aggregate concrete
-
摘要: 煤矸石作为工业固体废弃物,替换全部骨料制备混凝土,是对煤矸石二次利用的有效途径。本文将破碎后的煤矸石骨料替换混凝土全部粗细骨料,利用不同掺量的纳米SiO2和聚丙烯纤维(PPF)对其改性,通过宏观力学和微观分析相结合的方法,研究了纳米SiO2和PPF单独作用与复合作用下对混凝土力学性能、微观结构的影响。研究结果表明,纳米SiO2与PPF复掺,其掺量分别为1.5wt%与0.6 kg·m−3时混凝土的性能最好。与对照组相比,龄期为7天时,混凝土抗压强度、抗折强度和抗劈裂强度分别提高21.8%、43.5%和44.4%;龄期为28天时,其抗压强度、抗折强度和劈裂强度分别提高20%、44.9%和43.6%。微观结构分析表明,煤矸石混凝土孔隙率减少,水化过程加速,混凝土中大孔的分形维数从2.9975提高至2.9990,而小孔的分形维数从2.9852降低至2.9827,小孔分形维数降低,大孔的分形维数增加,使空间填充能力越强,内部孔隙越少。Abstract: Coal gangue as industrial solid waste, replacing all aggregates to produce concrete, is an effective way to reuse coal gangue. In this paper, all the coarse and fine aggregates of concrete were replaced by crushed coal gangue aggregate, and modified by different amounts of nano-SiO2 and polypropylene fiber (PPF). Based on the combination of macro mechanics and micro analysis, the effects of the single and combined action of nano-SiO2 and PPF on the mechanical properties and microstructure of concrete were studied. The results show that the performance of concrete is the best when the mixture of nano-SiO2 and PPF is 1.5wt% and 0.6 kg·m−3, respectively. Compared with the control group, the compressive strength, flexural strength and splitting strength of the concrete at 7 days increase by 21.8%, 43.5% and 44.4%, respectively. Besides, the compressive strength, flexural strength and splitting strength at 28 days increase by 20%, 44.9% and 43.6%, respectively. The microstructure analysis shows that the porosity of coal gangue concrete decreases, the hydration process is accelerated, the fractal dimension of large holes of the concrete increases from 2.9975 to 2.9990, while that of small holes decreases from 2.9852 to 2.9827, the fractal dimension of small holes decreases, and the fractal dimension of large holes increases, so that the stronger the space filling capacity, the fewer internal pores.
-
Key words:
- coal gangue /
- nano-SiO2 /
- PPF /
- concrete /
- mechanical properties /
- microscopic characteristics
-
图 18 混凝土大孔与小孔径范围内lg(1-V)和lg(lk/L)的线性拟合关系
Figure 18. Concrete big hole and small aperture within the scope of lg(1-V) and lg(lk/L) of the linear fitting relationship
lk/L—Number of parting holes remaining after k times removal processes; V—Total volume of the removed holes after k times removal processes
表 1 水泥和粉煤灰的化学成分
Table 1. Chemical composition of cement and fly ash
Composition Na2O MgO Al2O3 SiO2 SO3 K2O CaO Fe2O3 Loss on ignition Compressive
strength/MPaFlexural
strength/MPa3 d 28 d 3 d 28 d Cement/wt% 0.79 1.02 4.93 17.63 3.01 0.47 63.22 3.99 3.95 21.2 46.7 5.7 8.3 Fly ash/wt% 0.33 0.23 38.01 46.44 0.69 0.88 7.5 3.12 2.79 — — — — 表 2 煤矸石的物理性质
Table 2. Physical properties of coal gangue
Coal gangue Bulk density/
(kg·m−3)Performance
density/(kg·m−3)Water
absorption/wt%Poriness/
wt%Moisture
content/wt%Crushing
value/wt%Coarse aggregate 1507 2740 6.9 45 2.0 22.4 Fine aggregate 1475 2620 2.7 44 0.9 10.2 表 3 纳米SiO2活性试验结果
Table 3. Activity testing results of the nano-SiO2
Code Concrete mix design/(kg·m−3) Compressive strength/MPa Activity index/% Cement Sand Water Nano-SiO2 7 d 28 d 7 d 28 d MTB 450 1350 225 0 34.5 44.3 — — 2wt%N/MTB 441 1350 225 9 41.8 49.1 121.1 110.8 Notes: MTB—Mortar test block; N—Nano-SiO2. 表 4 混凝土配合比设计
Table 4. Concrete mix design
kg·m−3 Code Cement Fly ash Water Sand Aggregate Water reducer Nano-SiO2 PPF CGAC 400 100 240 720 880 15 0 0 0.75wt%N/CGAC 400 100 240 720 880 15 3.75 0 1.5wt%N/CGAC 400 100 240 720 880 20 7.5 0 2.25wt%N/CGAC 400 100 240 720 880 22.5 11.25 0 0.3PPF/CGAC 400 100 240 720 880 15 0 0.3 0.75wt%N-0.3PPF/CGAC 400 100 240 720 880 15 3.75 0.3 1.5wt%N-0.3PPF/CGAC 400 100 240 720 880 20 7.5 0.3 2.25wt%N-0.3PPF/CGAC 400 100 240 720 880 22.5 11.25 0.3 0.6PPF/CGAC 400 100 240 720 880 15 0 0.6 0.75wt%N-0.6 PPF/CGAC 400 100 240 720 880 15 3.75 0.6 1.5wt%N-0.6PPF/CGAC 400 100 240 720 880 20 7.5 0.6 2.25wt%N-0.6PPF/CGAC 400 100 240 720 880 22.5 11.25 0.6 0.9PPF/CGAC 400 100 240 720 880 15 0 0.9 0.75wt%N-0.9PPF/CGAC 400 100 240 720 880 15 3.75 0.9 1.5wt%N-0.9PPF/CGAC 400 100 240 720 880 20 7.5 0.9 2.25wt%N-0.9PPF/CGAC 400 100 240 720 880 22.5 11.25 0.9 Notes: CGAC—Coal gangue aggregate concrete; Example: 0.75wt%N-0.3PPF/CGAC is that the control group was added with 0.75wt% nano-SiO2 and 0.3 kg·m−3 PPF. 表 5 煤矸石混凝土孔隙特性参数
Table 5. Pore characteristic parameters of coal gangue concrete
Code Total pore
area/(m2·g−1)Median pore diameter
(volume)/nmMedian pore diameter
(area)/nmAverage pore
diameter/nmPorosity/wt% CGAC 16.123 32.68 10.03 21.51 17.58 1.5wt%N-0.6PPF/CGAC 10.843 26.56 9.23 18.99 12.36 表 6 不同孔径范围内混凝土孔隙占比
Table 6. Proportion of concrete pores in different pore size scopes
wt% Code CGAC 1.5wt%N-0.6PPF/CGAC d≤20 nm 35.6 40.6 20 nm≤d≤50 nm 25.2 28.8 50 nm≤d≤200 nm 18.6 20.8 d>200 nm 20.3 10.3 表 7 混凝土多孔结构的分形维数参数
Table 7. Fractal dimension parameters of porous structures in concrete
Code Demarcation points/nm Great pore Small pore RMSE Fractal dimension Correlation Fractal dimension Correlation CGAC 102.40 2.9975 0.99 2.9852 0.99 0.00057 1.5wt%N-0.6PPF/CGAC 64.70 2.9990 0.90 2.9827 0.97 0.00144 Note: RMSE—Evaluation index of transition aperture. -
[1] LI J, WANG J. Comprehensive utilization and environmen-tal risks of coal gangue: A review[J]. Journal of Cleaner Production,2019,239(C):117946. [2] HU L. Coal gangue and its application research in building materials[J]. Materials Science Forum,2016,4269(873):90-104. [3] HAN J, LIU X, YANG W, et al. Research of comprehensive utilization of coal gangue [C]//DEStech Transactions on Engineering and Technology Research. Lancaster: DEStech Pulications Inc, 2018: 24927. [4] WU H, WEN Q, HU L, et al. Feasibility study on the application of coal gangue as landfill liner material[J]. Waste Management,2017,63:161-171. doi: 10.1016/j.wasman.2017.01.016 [5] TAN W, WANG L, HUANG C. Environmental effects of coal gangue and its utilization[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,2016,38(24):3716-3721. doi: 10.1080/15567036.2012.700997 [6] ZHANG Y, ZHANG Y, SHI X, et al. Investigation of thermal behavior and hazards quantification in spontaneous combustion fires of coal and coal gangue[J]. The Science of the Total Environment,2022,843:157072. doi: 10.1016/j.scitotenv.2022.157072 [7] LI A, LEI P, CHEN C, et al. A simplified model for SO2 ge-neration during spontaneous combustion of coal gangue[J]. Energy Engineering,2021,118(5):1469-1482. doi: 10.32604/EE.2021.015413 [8] GUO W, CHEN B, LI G, et al. Ambient PM2.5 and related health impacts of spontaneous combustion of coal and coal gangue[J]. Environmental Science & Technology,2021,55(9):5763-5771. [9] HUANG Y, LI J, MA D, et al. Triaxial compression behaviour of gangue solid wastes under effects of particle size and confining pressure[J]. Science of the Total Environment,2019,693(C):133607. [10] QI C, FOURIE A. Cemented paste backfill for mineral tailings management: Review and future perspectives[J]. Mi-nerals Engineering,2019,144(C):106025. [11] MA D, DUAN H, LIU J, et al. The role of gangue on the mi-tigation of mining-induced hazards and environmental pollution: An experimental investigation[J]. Science of the Total Environment,2019,664:436-448. doi: 10.1016/j.scitotenv.2019.02.059 [12] LI S, LIBER K. Influence of different revegetation choices on plant community and soil development nine years after initial planting on a reclaimed coal gob pile in the Shanxi mining area, China[J]. Science of the Total Environment,2018,618:1314-1323. doi: 10.1016/j.scitotenv.2017.09.252 [13] LI H, CHENG R, LIU Z, et al. Waste control by waste: Fenton-like oxidation of phenol over Cu modified ZSM-5 from coal gangue[J]. Science of the Total Environment,2019,683:638-647. doi: 10.1016/j.scitotenv.2019.05.242 [14] BAIC I, WITKOWSKA-KITA B. Hard coal mining waste management technologies-diagnosis of current development, innovativeness evaluation and SWOT analysis[J]. Rocznik Ochrona Srodowiska,2011,13(1):1315-1325. [15] YU L, FENG Y, YAN W. The current situation of comprehensive utilization of coal gangue in China[J]. Advanced Materials Research,2012,524-527:915-918. doi: 10.4028/www.scientific.net/AMR.524-527.915 [16] BIAN Z, INYANG H, DANIELS J, et al. Environmental issues from coal mining and their solutions[J]. Mining Science and Technology (China),2010,20(2):215-223. doi: 10.1016/S1674-5264(09)60187-3 [17] HAO Y, GUO X, YAO X, et al. Using chinese coal gangue as an ecological aggregate and its modification: A review[J]. Materials,2022,15(13):4495. doi: 10.3390/ma15134495 [18] 常纪文, 杜根杰, 杜建磊, 等. 我国煤矸石综合利用的现状、问题与建议[J]. 中国环保产业, 2022(8):13-17. doi: 10.3969/j.issn.1006-5377.2022.08.024CHANG Jiwen, DU Genjie, DU Jianlei, et al. Current situation of the comprehensive utilization of coal gangue in China and the related problems and recommendations[J]. China Environmental Protection Industry,2022(8):13-17(in Chinese). doi: 10.3969/j.issn.1006-5377.2022.08.024 [19] LI M, ZHANG J, LI A, et al. Reutilisation of coal gangue and fly ash as underground backfill materials for surface subsidence control[J]. Journal of Cleaner Production,2020,254:120113. doi: 10.1016/j.jclepro.2020.120113 [20] LUO L, LI K, FU W, et al. Preparation, characteristics and mechanisms of the composite sintered bricks produced from shale, sewage sludge, coal gangue powder and iron ore tailings[J]. Construction and Building Materials,2019,232:117250. [21] ZHAN X, FANG W, SONG Z, et al. Development model of circular eco-industrial park for comprehensive utilization of coal gangue in coal enterprise[J]. Materials Science Forum,2014,787:71-75. doi: 10.4028/www.scientific.net/MSF.787.71 [22] HAN R, GUO X, GUAN J, et al. Activation mechanism of coal gangue and its impact on the properties of geopolymers: A review[J]. Polymers,2022,14(18):3861. doi: 10.3390/polym14183861 [23] GUO Y, ZHAN Q, YAN K, et al. Novel process for alumina extraction via the coupling treatment of coal gangue and bauxite red mud[J]. Industrial & Engineering Chemistry Research,2014,53(11):4518-4521. [24] ZHOU M, DOU Y, ZHANG Y, et al. Effects of the variety and content of coal gangue coarse aggregate on the mechani-cal properties of concrete[J]. Construction and Building Materials,2019,220:386-395. doi: 10.1016/j.conbuildmat.2019.05.176 [25] WANG C, NI W, ZHANG S, et al. Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings[J]. Construction and Building Materials,2016,104:109-115. doi: 10.1016/j.conbuildmat.2015.12.041 [26] LIU H, BAI G, GU Y, et al. The influence of coal gangue coarse aggregate on the mechanical properties of concrete columns[J]. Case Studies in Construction Materials,2022,17:e01315. doi: 10.1016/j.cscm.2022.e01315 [27] WANG Q, LI Z, ZHANG Y, et al. Influence of coarse coal gangue aggregates on elastic modulus and drying shrinkage behaviour of concrete[J]. Journal of Building Engineering,2020,32:101748. [28] YU L, XIA J, XIA Z, et al. Study on the mechanical behavior and micro-mechanism of concrete with coal gangue fine and coarse aggregate[J]. Construction and Building Materials,2022,338:127626. doi: 10.1016/j.conbuildmat.2022.127626 [29] QIU J, ZHOU Y, VATIN N, et al. Damage constitutive model of coal gangue concrete under freeze-thaw cycles[J]. Construction and Building Materials,2020,264:120720. doi: 10.1016/j.conbuildmat.2020.120720 [30] MAHMOUD A K, KRISHNA K P, SHEIK M M J, et al. Influence of coarse coal gangue aggregates on properties of structural concrete with nano silica[J]. Materials Today: Proceedings,2023,72(P4):2089-2095. [31] TANG Y, CHEN Z, FENG W, et al. Combined effects of nano-silica and silica fume on the mechanical behavior of recycled aggregate concrete[J]. Nanotechnology Reviews,2021,10(1):819-838. doi: 10.1515/ntrev-2021-0058 [32] FENG W, TANG Y, ZHANG Y, et al. Partially fly ash and nano-silica incorporated recycled coarse aggregate based concrete: Constitutive model and enhancement mecha-nism[J]. Journal of Materials Research and Technology,2022,17:192-210. doi: 10.1016/j.jmrt.2021.12.135 [33] ZHU M, QIU J, CHEN J. Effect and mechanism of coal gangue concrete modification by basalt fiber[J]. Construction and Building Materials, 2022, 328: 123563. [34] 周梅, 朱涵, 汪振双. 钢纤维增强自燃煤矸石轻集料混凝土试验研究[J]. 建筑材料学报, 2008, 11(6):715-720. doi: 10.3969/j.issn.1007-9629.2008.06.017ZHOU Mei, ZHU Han, WANG Zhenshuang, et al. Study of spontaneous combustion coal gangue steel fiber reinforced lightweight aggregate concrete[J]. Journal of Building Materials,2008,11(6):715-720(in Chinese). doi: 10.3969/j.issn.1007-9629.2008.06.017 [35] 中国建筑材料科学研究总院. 水泥比表面积测定方法-勃氏法: GB/T 8074—2008[S]. 北京: 中国标准出版社, 2008: 12.China Academy of Building Materials Science. Method for the determination of specific surface area of cement-Brinell method: GB/T 8074—2008 [S]. Beijing: China Standards Press, 2008: 12(in Chinese). [36] 中国建筑材料科学研究院. 用于水泥混合材的工业废渣活性试验方法: GB/T 12957—2005[S]. 北京: 中国标准出版社, 2005: 8.China Academy of Building Materials Science. Test method for activity of industrial waste slag used in cement mixture: GB/T 12957—2005 [S]. Beijing: China Standards Press, 2005: 8(in Chinese). [37] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese) [38] 中国国家标准化管理委员会. 水泥胶砂强度检验方法(ISO 法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021.Standardization Administration of the People's Republic of China. Test method of cement mortar strength (ISO method): GB/T 17671—2021[S]. Beijing: China Standards Press, 2021(in Chinese). [39] 宿晓萍, 王清. 复合盐浸-冻融-干湿多因素作用下的混凝土腐蚀破坏[J]. 吉林大学学报(工学版), 2015, 45(1):112-120. doi: 10.13229/j.cnki.jdxbgxb201501017SU Xiaoping, WANG Qing. Corrosion damage of concrete under multi-salt soaking, freezing-thawing and dry-wet cycles[J]. Journal of Jilin University (Engineering and Technology Edition),2015,45(1):112-120(in Chinese). doi: 10.13229/j.cnki.jdxbgxb201501017 [40] 张利, ZHU Wenzhong, 宿晓萍, 等. 盐浸条件下引气混凝土的盐类腐蚀破坏研究[J]. 建筑科学, 2015, 31(5): 36-43.ZHANG Li, ZHU Wenzhong, SU Xiaoping, et al. Study on salt corrosion damage of air-entraining concrete under the condition of salt soaking[J]. Building Science, 2015, 31(5): 36-43(in Chinese). [41] WANG L, ZENG X, YANG H, et al. Investigation and application of fractal theory in cement-based materials: A review[J]. Fractal and Fractional,2021,5(4):247. doi: 10.3390/fractalfract5040247 [42] 张韦, 刘超, 刘化威, 等. 基于孔体积分形维数的稻壳灰混凝土冻融损伤劣化机理[J]. 复合材料学报, 2022, 40(8):4738-4749. doi: 10.13801/j.cnki.fhclxb.20221014.004ZHANG Wei, LIU Chao, LIU Huawei, et al. Freeze-thaw damage deterioration mechanism of rice husk ash concrete based on pore volume fractal dimension[J]. Acta Materiae Compositae Sinica,2022,40(8):4738-4749(in Chinese). doi: 10.13801/j.cnki.fhclxb.20221014.004 [43] JAIAI F, XU Y, IQBAL M, et al. Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP[J]. Journal of Environmental Management,2021,289:112420. doi: 10.1016/j.jenvman.2021.112420 [44] 屠艳平, 程子扬, 陈旭勇, 等. 纳米二氧化硅对橡胶粉再生混凝土坍落度和抗压性能的影响[J]. 工业建筑, 2022, 52(2):126-132.TU Yanping, CHENG Ziyang, CHEN Xuyong, et al. Effect of nano-SiO2 on slump and compressive properties of recycled concrete with rubber powder[J]. Industrial Construction,2022,52(2):126-132(in Chinese). [45] 卢京宇, 王林, 雍涵, 等. 复掺膨胀剂和纤维对混凝土性能的影响[J]. 材料导报, 2020, 34(S2):1618-1622.LU Jingyu, WANG Lin, YONG Han, et al. Influence of composite expansive agent and fiber on the performance of concrete[J]. Materials Reports,2020,34(S2):1618-1622(in Chinese). [46] WANG K, GUO J, YANG L. Effect of dry-wet ratio on sulfate transport-reaction mechanism in concrete[J]. Construction and Building Materials, 2021, 302: 124418. [47] BELIE N, TITTELBOOM K. Self-healing in cementitious materials—A review[J]. Materials,2013,6(6):2182-2217. doi: 10.3390/ma6062182 [48] WANG K, GUO J, ZHANG P, et al. The counterbalance of the adverse effect of abrasion on the properties of concrete incorporating nano-SiO2 and polypropylene fiber based on pore structure fractal characteristics[J]. Fractal and Fractional,2022,6(7):392. doi: 10.3390/fractalfract6070392