留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米SiO2和聚丙烯纤维对全煤矸石骨料混凝土力学性能与微观结构的影响

姚贤华 郭晓宁 韩瑞聪 管俊峰 李焕

姚贤华, 郭晓宁, 韩瑞聪, 等. 纳米SiO2和聚丙烯纤维对全煤矸石骨料混凝土力学性能与微观结构的影响[J]. 复合材料学报, 2024, 41(3): 1402-1419. doi: 10.13801/j.cnki.fhclxb.20230714.005
引用本文: 姚贤华, 郭晓宁, 韩瑞聪, 等. 纳米SiO2和聚丙烯纤维对全煤矸石骨料混凝土力学性能与微观结构的影响[J]. 复合材料学报, 2024, 41(3): 1402-1419. doi: 10.13801/j.cnki.fhclxb.20230714.005
YAO Xianhua, GUO Xiaoning, HAN Ruicong, et al. Effect of nano-SiO2 and polypropylene fibers on the mechanical properties and microscopic properties of all coal gangue aggregate concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1402-1419. doi: 10.13801/j.cnki.fhclxb.20230714.005
Citation: YAO Xianhua, GUO Xiaoning, HAN Ruicong, et al. Effect of nano-SiO2 and polypropylene fibers on the mechanical properties and microscopic properties of all coal gangue aggregate concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1402-1419. doi: 10.13801/j.cnki.fhclxb.20230714.005

纳米SiO2和聚丙烯纤维对全煤矸石骨料混凝土力学性能与微观结构的影响

doi: 10.13801/j.cnki.fhclxb.20230714.005
基金项目: 国家自然科学基金面上项目(52179132);河南省杰出青年科学基金(232300421016);华北水利水电大学水利工程创新型科技团队培育计划(2023SZ100100084);河南省科技攻关项目(232102320184);西安理工大学省部共建西北旱区生态水利国家重点实验室(2021KFKT-10)
详细信息
    通讯作者:

    管俊峰,博士,教授,博士生导师,研究方向为材料与结构损伤断裂机制、结构仿真模型设计理论与技术、高强钢筋高性能混凝土结构设计理论等 E-mail: junfengguan@ncwu.edu.cn

  • 中图分类号: TB332;TU528

Effect of nano-SiO2 and polypropylene fibers on the mechanical properties and microscopic properties of all coal gangue aggregate concrete

Funds: National Natural Science Foundation of China (52179132); Henan Natural Science Fund for Distinguished Young Scholars (232300421016); Cultivation Project of Innovative Technology Team for Hydraulic Engineering of NCWU (2023SZ100100084); Henan Province Science and Technology Research Project (232102320184); Open Research Fund Program of State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology (2021KFKT-10)
  • 摘要: 煤矸石作为工业固体废弃物,替换全部骨料制备混凝土,是对煤矸石二次利用的有效途径。本文将破碎后的煤矸石骨料替换混凝土全部粗细骨料,利用不同掺量的纳米SiO2和聚丙烯纤维(PPF)对其改性,通过宏观力学和微观分析相结合的方法,研究了纳米SiO2和PPF单独作用与复合作用下对混凝土力学性能、微观结构的影响。研究结果表明,纳米SiO2与PPF复掺,其掺量分别为1.5wt%与0.6 kg·m−3时混凝土的性能最好。与对照组相比,龄期为7天时,混凝土抗压强度、抗折强度和抗劈裂强度分别提高21.8%、43.5%和44.4%;龄期为28天时,其抗压强度、抗折强度和劈裂强度分别提高20%、44.9%和43.6%。微观结构分析表明,煤矸石混凝土孔隙率减少,水化过程加速,混凝土中大孔的分形维数从2.9975提高至2.9990,而小孔的分形维数从2.9852降低至2.9827,小孔分形维数降低,大孔的分形维数增加,使空间填充能力越强,内部孔隙越少。

     

  • 图  1  煤矸石重金属沉淀和自燃对生态环境的影响

    Figure  1.  Effects of heavy metal precipitation and spontaneous combustion of coal gangue on ecological environment

    图  2  2011~2021年中国煤矸石产量、使用量及利用率[18]

    Figure  2.  Production, utilization amount and rates of coal gangue in China from 2011 to 2021[18]

    图  3  反击式破碎机对煤矸石的破碎过程

    Figure  3.  Breaking process for coal gangue with counterattack crusher

    图  4  煤矸石的外观

    Figure  4.  Appearance of coal gangue

    图  5  煤矸石矿物组成和粒度分布

    Figure  5.  Mineral composition and particle size distribution of coal gangue

    图  6  改性材料及分散装置

    Figure  6.  Modified materials and dispersing devices

    PPF—Polypropylene fiber

    图  7  力学试验

    Figure  7.  Mechanical experimental test

    F—Vertical force

    图  8  不同纳米SiO2和PPF掺量混凝土的抗压强度

    Figure  8.  Compressive strength of concrete with different nano-SiO2 and PPF contents

    图  9  不同纳米SiO2和PPF掺量混凝土在压缩试验中的破坏模式

    Figure  9.  Failure patterns of concrete with different nano-SiO2 and PPF contents during compressive test

    图  10  不同纳米SiO2和PPF掺量混凝土的抗折强度

    Figure  10.  Flexural strength of concrete with different nano-SiO2 and PPF contents

    图  11  不同纳米SiO2和PPF掺量混凝土在弯曲试验中的断裂

    Figure  11.  Fracture of concrete with different nano-SiO2 and PPF contents during flexural test

    图  12  CGAC和1.5wt%N/CGAC断裂面图

    Figure  12.  Fracture surface diagram of CGAC and 1.5wt%N/CGAC

    图  13  纳米SiO2和PPF掺量对混凝土劈裂强度的影响

    Figure  13.  Splitting strength of concrete with different nano-SiO2 and PPF contents

    图  14  不同纳米SiO2和PPF掺量混凝土劈裂试验过程中的断裂裂缝

    Figure  14.  Fracture crack of concrete with different nano-SiO2 and PPF contents in the process of splitting test

    图  15  CGAC和1.5wt%N-0.6PPF/CGAC混凝土的孔隙分布

    Figure  15.  Pore distribution of CGAC and 1.5wt%N-0.6PPF/CGAC concrete

    图  16  不同掺量的纳米SiO2和PPF混凝土的XRD图谱

    Figure  16.  XRD patterns of concrete with different dosages of nano-SiO2 and PPF

    图  17  不同掺量的纳米SiO2和PPF混凝土在养护7天和28天后的SEM图像

    Figure  17.  SEM images of concrete with different dosages of nano-SiO2 and PPF after 7 days and 28 days curing

    AFt—Ettringite

    图  18  混凝土大孔与小孔径范围内lg(1-V)和lg(lk/L)的线性拟合关系

    Figure  18.  Concrete big hole and small aperture within the scope of lg(1-V) and lg(lk/L) of the linear fitting relationship

    lk/L—Number of parting holes remaining after k times removal processes; V—Total volume of the removed holes after k times removal processes

    表  1  水泥和粉煤灰的化学成分

    Table  1.   Chemical composition of cement and fly ash

    CompositionNa2OMgOAl2O3SiO2SO3K2OCaOFe2O3Loss on ignitionCompressive
    strength/MPa
    Flexural
    strength/MPa
    3 d28 d3 d28 d
    Cement/wt%0.791.02 4.9317.633.010.4763.223.993.9521.246.75.78.3
    Fly ash/wt%0.330.2338.0146.440.690.88 7.53.122.79
    下载: 导出CSV

    表  2  煤矸石的物理性质

    Table  2.   Physical properties of coal gangue

    Coal gangueBulk density/
    (kg·m−3)
    Performance
    density/(kg·m−3)
    Water
    absorption/wt%
    Poriness/
    wt%
    Moisture
    content/wt%
    Crushing
    value/wt%
    Coarse aggregate150727406.9452.022.4
    Fine aggregate147526202.7440.910.2
    下载: 导出CSV

    表  3  纳米SiO2活性试验结果

    Table  3.   Activity testing results of the nano-SiO2

    CodeConcrete mix design/(kg·m−3)Compressive strength/MPaActivity index/%
    CementSandWaterNano-SiO27 d28 d7 d28 d
    MTB4501350225034.544.3
    2wt%N/MTB4411350225941.849.1121.1110.8
    Notes: MTB—Mortar test block; N—Nano-SiO2.
    下载: 导出CSV

    表  4  混凝土配合比设计

    Table  4.   Concrete mix design kg·m−3

    CodeCementFly ashWaterSandAggregateWater reducerNano-SiO2PPF
    CGAC 400 100 240 720 880 15 0 0
    0.75wt%N/CGAC 400 100 240 720 880 15 3.75 0
    1.5wt%N/CGAC 400 100 240 720 880 20 7.5 0
    2.25wt%N/CGAC 400 100 240 720 880 22.5 11.25 0
    0.3PPF/CGAC 400 100 240 720 880 15 0 0.3
    0.75wt%N-0.3PPF/CGAC 400 100 240 720 880 15 3.75 0.3
    1.5wt%N-0.3PPF/CGAC 400 100 240 720 880 20 7.5 0.3
    2.25wt%N-0.3PPF/CGAC 400 100 240 720 880 22.5 11.25 0.3
    0.6PPF/CGAC 400 100 240 720 880 15 0 0.6
    0.75wt%N-0.6 PPF/CGAC 400 100 240 720 880 15 3.75 0.6
    1.5wt%N-0.6PPF/CGAC 400 100 240 720 880 20 7.5 0.6
    2.25wt%N-0.6PPF/CGAC 400 100 240 720 880 22.5 11.25 0.6
    0.9PPF/CGAC 400 100 240 720 880 15 0 0.9
    0.75wt%N-0.9PPF/CGAC 400 100 240 720 880 15 3.75 0.9
    1.5wt%N-0.9PPF/CGAC 400 100 240 720 880 20 7.5 0.9
    2.25wt%N-0.9PPF/CGAC 400 100 240 720 880 22.5 11.25 0.9
    Notes: CGAC—Coal gangue aggregate concrete; Example: 0.75wt%N-0.3PPF/CGAC is that the control group was added with 0.75wt% nano-SiO2 and 0.3 kg·m−3 PPF.
    下载: 导出CSV

    表  5  煤矸石混凝土孔隙特性参数

    Table  5.   Pore characteristic parameters of coal gangue concrete

    CodeTotal pore
    area/(m2·g−1
    Median pore diameter
    (volume)/nm
    Median pore diameter
    (area)/nm
    Average pore
    diameter/nm
    Porosity/wt%
    CGAC16.12332.6810.0321.5117.58
    1.5wt%N-0.6PPF/CGAC10.84326.56 9.2318.9912.36
    下载: 导出CSV

    表  6  不同孔径范围内混凝土孔隙占比

    Table  6.   Proportion of concrete pores in different pore size scopes wt%

    Code CGAC 1.5wt%N-0.6PPF/CGAC
    d≤20 nm 35.6 40.6
    20 nm≤d≤50 nm 25.2 28.8
    50 nm≤d≤200 nm 18.6 20.8
    d>200 nm 20.3 10.3
    下载: 导出CSV

    表  7  混凝土多孔结构的分形维数参数

    Table  7.   Fractal dimension parameters of porous structures in concrete

    CodeDemarcation points/nmGreat poreSmall poreRMSE
    Fractal dimensionCorrelationFractal dimensionCorrelation
    CGAC102.402.99750.992.98520.990.00057
    1.5wt%N-0.6PPF/CGAC 64.702.99900.902.98270.970.00144
    Note: RMSE—Evaluation index of transition aperture.
    下载: 导出CSV
  • [1] LI J, WANG J. Comprehensive utilization and environmen-tal risks of coal gangue: A review[J]. Journal of Cleaner Production,2019,239(C):117946.
    [2] HU L. Coal gangue and its application research in building materials[J]. Materials Science Forum,2016,4269(873):90-104.
    [3] HAN J, LIU X, YANG W, et al. Research of comprehensive utilization of coal gangue [C]//DEStech Transactions on Engineering and Technology Research. Lancaster: DEStech Pulications Inc, 2018: 24927.
    [4] WU H, WEN Q, HU L, et al. Feasibility study on the application of coal gangue as landfill liner material[J]. Waste Management,2017,63:161-171. doi: 10.1016/j.wasman.2017.01.016
    [5] TAN W, WANG L, HUANG C. Environmental effects of coal gangue and its utilization[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,2016,38(24):3716-3721. doi: 10.1080/15567036.2012.700997
    [6] ZHANG Y, ZHANG Y, SHI X, et al. Investigation of thermal behavior and hazards quantification in spontaneous combustion fires of coal and coal gangue[J]. The Science of the Total Environment,2022,843:157072. doi: 10.1016/j.scitotenv.2022.157072
    [7] LI A, LEI P, CHEN C, et al. A simplified model for SO2 ge-neration during spontaneous combustion of coal gangue[J]. Energy Engineering,2021,118(5):1469-1482. doi: 10.32604/EE.2021.015413
    [8] GUO W, CHEN B, LI G, et al. Ambient PM2.5 and related health impacts of spontaneous combustion of coal and coal gangue[J]. Environmental Science & Technology,2021,55(9):5763-5771.
    [9] HUANG Y, LI J, MA D, et al. Triaxial compression behaviour of gangue solid wastes under effects of particle size and confining pressure[J]. Science of the Total Environment,2019,693(C):133607.
    [10] QI C, FOURIE A. Cemented paste backfill for mineral tailings management: Review and future perspectives[J]. Mi-nerals Engineering,2019,144(C):106025.
    [11] MA D, DUAN H, LIU J, et al. The role of gangue on the mi-tigation of mining-induced hazards and environmental pollution: An experimental investigation[J]. Science of the Total Environment,2019,664:436-448. doi: 10.1016/j.scitotenv.2019.02.059
    [12] LI S, LIBER K. Influence of different revegetation choices on plant community and soil development nine years after initial planting on a reclaimed coal gob pile in the Shanxi mining area, China[J]. Science of the Total Environment,2018,618:1314-1323. doi: 10.1016/j.scitotenv.2017.09.252
    [13] LI H, CHENG R, LIU Z, et al. Waste control by waste: Fenton-like oxidation of phenol over Cu modified ZSM-5 from coal gangue[J]. Science of the Total Environment,2019,683:638-647. doi: 10.1016/j.scitotenv.2019.05.242
    [14] BAIC I, WITKOWSKA-KITA B. Hard coal mining waste management technologies-diagnosis of current development, innovativeness evaluation and SWOT analysis[J]. Rocznik Ochrona Srodowiska,2011,13(1):1315-1325.
    [15] YU L, FENG Y, YAN W. The current situation of comprehensive utilization of coal gangue in China[J]. Advanced Materials Research,2012,524-527:915-918. doi: 10.4028/www.scientific.net/AMR.524-527.915
    [16] BIAN Z, INYANG H, DANIELS J, et al. Environmental issues from coal mining and their solutions[J]. Mining Science and Technology (China),2010,20(2):215-223. doi: 10.1016/S1674-5264(09)60187-3
    [17] HAO Y, GUO X, YAO X, et al. Using chinese coal gangue as an ecological aggregate and its modification: A review[J]. Materials,2022,15(13):4495. doi: 10.3390/ma15134495
    [18] 常纪文, 杜根杰, 杜建磊, 等. 我国煤矸石综合利用的现状、问题与建议[J]. 中国环保产业, 2022(8):13-17. doi: 10.3969/j.issn.1006-5377.2022.08.024

    CHANG Jiwen, DU Genjie, DU Jianlei, et al. Current situation of the comprehensive utilization of coal gangue in China and the related problems and recommendations[J]. China Environmental Protection Industry,2022(8):13-17(in Chinese). doi: 10.3969/j.issn.1006-5377.2022.08.024
    [19] LI M, ZHANG J, LI A, et al. Reutilisation of coal gangue and fly ash as underground backfill materials for surface subsidence control[J]. Journal of Cleaner Production,2020,254:120113. doi: 10.1016/j.jclepro.2020.120113
    [20] LUO L, LI K, FU W, et al. Preparation, characteristics and mechanisms of the composite sintered bricks produced from shale, sewage sludge, coal gangue powder and iron ore tailings[J]. Construction and Building Materials,2019,232:117250.
    [21] ZHAN X, FANG W, SONG Z, et al. Development model of circular eco-industrial park for comprehensive utilization of coal gangue in coal enterprise[J]. Materials Science Forum,2014,787:71-75. doi: 10.4028/www.scientific.net/MSF.787.71
    [22] HAN R, GUO X, GUAN J, et al. Activation mechanism of coal gangue and its impact on the properties of geopolymers: A review[J]. Polymers,2022,14(18):3861. doi: 10.3390/polym14183861
    [23] GUO Y, ZHAN Q, YAN K, et al. Novel process for alumina extraction via the coupling treatment of coal gangue and bauxite red mud[J]. Industrial & Engineering Chemistry Research,2014,53(11):4518-4521.
    [24] ZHOU M, DOU Y, ZHANG Y, et al. Effects of the variety and content of coal gangue coarse aggregate on the mechani-cal properties of concrete[J]. Construction and Building Materials,2019,220:386-395. doi: 10.1016/j.conbuildmat.2019.05.176
    [25] WANG C, NI W, ZHANG S, et al. Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings[J]. Construction and Building Materials,2016,104:109-115. doi: 10.1016/j.conbuildmat.2015.12.041
    [26] LIU H, BAI G, GU Y, et al. The influence of coal gangue coarse aggregate on the mechanical properties of concrete columns[J]. Case Studies in Construction Materials,2022,17:e01315. doi: 10.1016/j.cscm.2022.e01315
    [27] WANG Q, LI Z, ZHANG Y, et al. Influence of coarse coal gangue aggregates on elastic modulus and drying shrinkage behaviour of concrete[J]. Journal of Building Engineering,2020,32:101748.
    [28] YU L, XIA J, XIA Z, et al. Study on the mechanical behavior and micro-mechanism of concrete with coal gangue fine and coarse aggregate[J]. Construction and Building Materials,2022,338:127626. doi: 10.1016/j.conbuildmat.2022.127626
    [29] QIU J, ZHOU Y, VATIN N, et al. Damage constitutive model of coal gangue concrete under freeze-thaw cycles[J]. Construction and Building Materials,2020,264:120720. doi: 10.1016/j.conbuildmat.2020.120720
    [30] MAHMOUD A K, KRISHNA K P, SHEIK M M J, et al. Influence of coarse coal gangue aggregates on properties of structural concrete with nano silica[J]. Materials Today: Proceedings,2023,72(P4):2089-2095.
    [31] TANG Y, CHEN Z, FENG W, et al. Combined effects of nano-silica and silica fume on the mechanical behavior of recycled aggregate concrete[J]. Nanotechnology Reviews,2021,10(1):819-838. doi: 10.1515/ntrev-2021-0058
    [32] FENG W, TANG Y, ZHANG Y, et al. Partially fly ash and nano-silica incorporated recycled coarse aggregate based concrete: Constitutive model and enhancement mecha-nism[J]. Journal of Materials Research and Technology,2022,17:192-210. doi: 10.1016/j.jmrt.2021.12.135
    [33] ZHU M, QIU J, CHEN J. Effect and mechanism of coal gangue concrete modification by basalt fiber[J]. Construction and Building Materials, 2022, 328: 123563.
    [34] 周梅, 朱涵, 汪振双. 钢纤维增强自燃煤矸石轻集料混凝土试验研究[J]. 建筑材料学报, 2008, 11(6):715-720. doi: 10.3969/j.issn.1007-9629.2008.06.017

    ZHOU Mei, ZHU Han, WANG Zhenshuang, et al. Study of spontaneous combustion coal gangue steel fiber reinforced lightweight aggregate concrete[J]. Journal of Building Materials,2008,11(6):715-720(in Chinese). doi: 10.3969/j.issn.1007-9629.2008.06.017
    [35] 中国建筑材料科学研究总院. 水泥比表面积测定方法-勃氏法: GB/T 8074—2008[S]. 北京: 中国标准出版社, 2008: 12.

    China Academy of Building Materials Science. Method for the determination of specific surface area of cement-Brinell method: GB/T 8074—2008 [S]. Beijing: China Standards Press, 2008: 12(in Chinese).
    [36] 中国建筑材料科学研究院. 用于水泥混合材的工业废渣活性试验方法: GB/T 12957—2005[S]. 北京: 中国标准出版社, 2005: 8.

    China Academy of Building Materials Science. Test method for activity of industrial waste slag used in cement mixture: GB/T 12957—2005 [S]. Beijing: China Standards Press, 2005: 8(in Chinese).
    [37] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese)
    [38] 中国国家标准化管理委员会. 水泥胶砂强度检验方法(ISO 法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021.

    Standardization Administration of the People's Republic of China. Test method of cement mortar strength (ISO method): GB/T 17671—2021[S]. Beijing: China Standards Press, 2021(in Chinese).
    [39] 宿晓萍, 王清. 复合盐浸-冻融-干湿多因素作用下的混凝土腐蚀破坏[J]. 吉林大学学报(工学版), 2015, 45(1):112-120. doi: 10.13229/j.cnki.jdxbgxb201501017

    SU Xiaoping, WANG Qing. Corrosion damage of concrete under multi-salt soaking, freezing-thawing and dry-wet cycles[J]. Journal of Jilin University (Engineering and Technology Edition),2015,45(1):112-120(in Chinese). doi: 10.13229/j.cnki.jdxbgxb201501017
    [40] 张利, ZHU Wenzhong, 宿晓萍, 等. 盐浸条件下引气混凝土的盐类腐蚀破坏研究[J]. 建筑科学, 2015, 31(5): 36-43.

    ZHANG Li, ZHU Wenzhong, SU Xiaoping, et al. Study on salt corrosion damage of air-entraining concrete under the condition of salt soaking[J]. Building Science, 2015, 31(5): 36-43(in Chinese).
    [41] WANG L, ZENG X, YANG H, et al. Investigation and application of fractal theory in cement-based materials: A review[J]. Fractal and Fractional,2021,5(4):247. doi: 10.3390/fractalfract5040247
    [42] 张韦, 刘超, 刘化威, 等. 基于孔体积分形维数的稻壳灰混凝土冻融损伤劣化机理[J]. 复合材料学报, 2022, 40(8):4738-4749. doi: 10.13801/j.cnki.fhclxb.20221014.004

    ZHANG Wei, LIU Chao, LIU Huawei, et al. Freeze-thaw damage deterioration mechanism of rice husk ash concrete based on pore volume fractal dimension[J]. Acta Materiae Compositae Sinica,2022,40(8):4738-4749(in Chinese). doi: 10.13801/j.cnki.fhclxb.20221014.004
    [43] JAIAI F, XU Y, IQBAL M, et al. Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP[J]. Journal of Environmental Management,2021,289:112420. doi: 10.1016/j.jenvman.2021.112420
    [44] 屠艳平, 程子扬, 陈旭勇, 等. 纳米二氧化硅对橡胶粉再生混凝土坍落度和抗压性能的影响[J]. 工业建筑, 2022, 52(2):126-132.

    TU Yanping, CHENG Ziyang, CHEN Xuyong, et al. Effect of nano-SiO2 on slump and compressive properties of recycled concrete with rubber powder[J]. Industrial Construction,2022,52(2):126-132(in Chinese).
    [45] 卢京宇, 王林, 雍涵, 等. 复掺膨胀剂和纤维对混凝土性能的影响[J]. 材料导报, 2020, 34(S2):1618-1622.

    LU Jingyu, WANG Lin, YONG Han, et al. Influence of composite expansive agent and fiber on the performance of concrete[J]. Materials Reports,2020,34(S2):1618-1622(in Chinese).
    [46] WANG K, GUO J, YANG L. Effect of dry-wet ratio on sulfate transport-reaction mechanism in concrete[J]. Construction and Building Materials, 2021, 302: 124418.
    [47] BELIE N, TITTELBOOM K. Self-healing in cementitious materials—A review[J]. Materials,2013,6(6):2182-2217. doi: 10.3390/ma6062182
    [48] WANG K, GUO J, ZHANG P, et al. The counterbalance of the adverse effect of abrasion on the properties of concrete incorporating nano-SiO2 and polypropylene fiber based on pore structure fractal characteristics[J]. Fractal and Fractional,2022,6(7):392. doi: 10.3390/fractalfract6070392
  • 加载中
图(18) / 表(7)
计量
  • 文章访问数:  667
  • HTML全文浏览量:  285
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-22
  • 修回日期:  2023-06-27
  • 录用日期:  2023-07-05
  • 网络出版日期:  2023-07-17
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回