Processing math: 35%

纳米SiO2和聚丙烯纤维对全煤矸石骨料混凝土力学性能与微观结构的影响

姚贤华, 郭晓宁, 韩瑞聪, 管俊峰, 李焕

姚贤华, 郭晓宁, 韩瑞聪, 等. 纳米SiO2和聚丙烯纤维对全煤矸石骨料混凝土力学性能与微观结构的影响[J]. 复合材料学报, 2024, 41(3): 1402-1419. DOI: 10.13801/j.cnki.fhclxb.20230714.005
引用本文: 姚贤华, 郭晓宁, 韩瑞聪, 等. 纳米SiO2和聚丙烯纤维对全煤矸石骨料混凝土力学性能与微观结构的影响[J]. 复合材料学报, 2024, 41(3): 1402-1419. DOI: 10.13801/j.cnki.fhclxb.20230714.005
YAO Xianhua, GUO Xiaoning, HAN Ruicong, et al. Effect of nano-SiO2 and polypropylene fibers on the mechanical properties and microscopic properties of all coal gangue aggregate concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1402-1419. DOI: 10.13801/j.cnki.fhclxb.20230714.005
Citation: YAO Xianhua, GUO Xiaoning, HAN Ruicong, et al. Effect of nano-SiO2 and polypropylene fibers on the mechanical properties and microscopic properties of all coal gangue aggregate concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1402-1419. DOI: 10.13801/j.cnki.fhclxb.20230714.005

纳米SiO2和聚丙烯纤维对全煤矸石骨料混凝土力学性能与微观结构的影响

基金项目: 国家自然科学基金面上项目(52179132);河南省杰出青年科学基金(232300421016);华北水利水电大学水利工程创新型科技团队培育计划(2023SZ100100084);河南省科技攻关项目(232102320184);西安理工大学省部共建西北旱区生态水利国家重点实验室(2021KFKT-10)
详细信息
    通讯作者:

    管俊峰,博士,教授,博士生导师,研究方向为材料与结构损伤断裂机制、结构仿真模型设计理论与技术、高强钢筋高性能混凝土结构设计理论等 E-mail: junfengguan@ncwu.edu.cn

  • 中图分类号: TB332;TU528

Effect of nano-SiO2 and polypropylene fibers on the mechanical properties and microscopic properties of all coal gangue aggregate concrete

Funds: National Natural Science Foundation of China (52179132); Henan Natural Science Fund for Distinguished Young Scholars (232300421016); Cultivation Project of Innovative Technology Team for Hydraulic Engineering of NCWU (2023SZ100100084); Henan Province Science and Technology Research Project (232102320184); Open Research Fund Program of State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology (2021KFKT-10)
  • 摘要: 煤矸石作为工业固体废弃物,替换全部骨料制备混凝土,是对煤矸石二次利用的有效途径。本文将破碎后的煤矸石骨料替换混凝土全部粗细骨料,利用不同掺量的纳米SiO2和聚丙烯纤维(PPF)对其改性,通过宏观力学和微观分析相结合的方法,研究了纳米SiO2和PPF单独作用与复合作用下对混凝土力学性能、微观结构的影响。研究结果表明,纳米SiO2与PPF复掺,其掺量分别为1.5wt%与0.6 kg·m−3时混凝土的性能最好。与对照组相比,龄期为7天时,混凝土抗压强度、抗折强度和抗劈裂强度分别提高21.8%、43.5%和44.4%;龄期为28天时,其抗压强度、抗折强度和劈裂强度分别提高20%、44.9%和43.6%。微观结构分析表明,煤矸石混凝土孔隙率减少,水化过程加速,混凝土中大孔的分形维数从2.9975提高至2.9990,而小孔的分形维数从2.9852降低至2.9827,小孔分形维数降低,大孔的分形维数增加,使空间填充能力越强,内部孔隙越少。

     

    Abstract: Coal gangue as industrial solid waste, replacing all aggregates to produce concrete, is an effective way to reuse coal gangue. In this paper, all the coarse and fine aggregates of concrete were replaced by crushed coal gangue aggregate, and modified by different amounts of nano-SiO2 and polypropylene fiber (PPF). Based on the combination of macro mechanics and micro analysis, the effects of the single and combined action of nano-SiO2 and PPF on the mechanical properties and microstructure of concrete were studied. The results show that the performance of concrete is the best when the mixture of nano-SiO2 and PPF is 1.5wt% and 0.6 kg·m−3, respectively. Compared with the control group, the compressive strength, flexural strength and splitting strength of the concrete at 7 days increase by 21.8%, 43.5% and 44.4%, respectively. Besides, the compressive strength, flexural strength and splitting strength at 28 days increase by 20%, 44.9% and 43.6%, respectively. The microstructure analysis shows that the porosity of coal gangue concrete decreases, the hydration process is accelerated, the fractal dimension of large holes of the concrete increases from 2.9975 to 2.9990, while that of small holes decreases from 2.9852 to 2.9827, the fractal dimension of small holes decreases, and the fractal dimension of large holes increases, so that the stronger the space filling capacity, the fewer internal pores.

     

  • 近年来由于航空航天、高铁的飞速发展,航空航天器、高速列车等在高速运行时会产生剧烈的振动,该结构的减振设计将成为技术的关键。波纹夹芯结构作为一种新型的复合材料组合结构,具有高比强度、高比刚度、质量轻、吸能能力强、承载效率高等良好特性,在航空航天、高速列车、汽车、建筑、机械、船舶等领域有着广泛的应用[1-4]。与传统的复合结构材料相比,波纹夹芯板结构很好地克服了夹芯板不连续的问题,具有良好的承载性能。此外,波纹夹芯板芯层间隙具备一定的流通性能,在间隙中穿插泡沫、多孔纤维、玻璃纤维等材料还能起到一定的隔声和隔热作用。因此,对波纹夹芯板的研究具有重要的意义。

    由于夹层板拥有广阔的应用前景,近年来国内外学者针对波纹夹芯板各方面特性展开了广泛的研究。Peng等[5] 提出一种无网格伽辽金法来研究非加筋和加筋波纹夹芯板的弹性弯曲问题,将波纹夹芯板视为在两个垂直方向上具有不同挠曲力的正交各项异性板,并推导了梯形、正弦型波纹夹芯板的等效参数。Semenyuk等[6]研究了三种用于纵向波纹圆柱壳稳定性分析的设计方法。Briassoulis等[7]基于正交各向异性壳的拉伸刚度和弯曲刚度的一组解析表达式,对波纹壳进行了数值模拟。Sohrab等[8]提出一种新型的分层波纹复合芯,并通过实验进行了测试。Tian等[9]对波纹夹芯板进行了优化分析。Samanta等[10]首次提出了梯形波纹夹芯板的非线性几何分析,将波纹夹芯板等效成各向异性模型,对梯形波纹夹芯板进行了自由振动分析。Xia等[11]提出了一种基于均质化的波纹夹芯板模型,该模型可用于任何波纹形状。Li 等[12]针对铝制波纹夹芯板开展了空中爆炸试验研究和有限元数值分析,验证了有限元分析技术的可行性。王红霞等[13]和王青伟等[14]推导了考虑波纹拉伸变形的三角形波纹夹芯板的等效弹性参数,后来进行了修正。吴建均等[15]推导了泡沫填充下的三角形波纹夹芯梁的等效弹性常数公式,并且对泡沫波纹夹芯梁的模态进行实验研究和数值计算。还有一些学者对波纹夹芯板的结构性能、力学性能和冲击性能进行了研究[16-18]

    在夹芯板或板结构的研究中,发展了不同的理论,如Reissner板理论、基尔霍夫经典板理论(CLPT)及后来发展的各种剪切变形理论[19-21]等。Talha等[22]基于高阶剪切理论研究了梯度板的静态响应和自由振动。WU等[23]提出了基于RMVT的三阶剪切变形理论(TSDT)。THAI等[24]用正弦剪切变形理论(SSDT)分析了功能梯度板的弯曲、屈曲和振动特性。曹源等[25]用SSDT和修正的欧应力理论研究了功能梯度三明治微梁的静态弯曲和自由振动。但是,用这些理论来研究波纹夹芯板性能的还比较少。

    综上所述,波纹夹芯板具有很强的各向异性特性,目前多数文献研究四边简支边界条件下波纹夹芯板的动力学特性,但波纹夹芯板在实际应用中还有其它的边界条件,并且边界条件的影响较显著。鉴于此,本文将采用不同的夹层板理论研究波纹夹芯板在四边简支(SSSS)、四边固支(CCCC)、对边简支和固支(CCSS)、一边固支三边简支(CSSS)四种边界条件下的自由振动,与ABAQUS有限元仿真结果进行对比,验证理论模型的正确性,分析边界条件对波纹夹芯板振动特性的影响。此外,基于指数剪切变形理论(ESDT),讨论波纹夹芯板的材料参数和结构几何参数对系统振动特性的影响。所得结果为轻质波纹夹芯结构的优化设计提供了必要的理论指导。

    波纹夹芯板的模型如图1(a)所示,由上、下面板及中间的波纹芯层组成。在板中面建立x-y坐标系,z轴垂直于x-y面,z>0的一侧称为下表面,z<0的一侧称为上表面。波纹夹芯板的长度为a,宽度为b,高度为h,上、下板厚为hf图1(b)为波纹芯层的胞元,单胞的底边长为2p,波纹壁厚为tc,波纹与面板的夹角为θ,斜边长lc=p/cosθ芯层厚度hc=ptanθ

    在波纹夹芯板中,上、下面板采用各向同性均质体,中间波纹芯层等效为各向异性均质体,等效示意图如图2所示。仿照文献[13-15],考虑波纹夹芯板的伸缩变形,波纹芯层的等效参数表达式为

    E1(2)=EstcpsinθE2(2)=Estc3cosθhc3[1+(tchc)2cos2θ]G12(2)=Gsptcsinθhc2G13(2)=GstcsinθpG23(2)=Estcsin2θcosθhcv12(2)=vstc2cos2θ(hc2+tc2cos2θ)v21(2)=vsρ(2)=2ρstclcsin2θ (1)

    其中:E1(2)E2(2)G12(2)G13(2)G23(2)v12(2)v21(2)ρ(2)分别表示波纹芯层在各方向上的等效弹性模量、剪切模量、泊松比和密度;EsGsρs分别为基体材料的弹性模量、剪切模量和密度。

    图  1  波纹夹芯板的模型(a)和波纹单胞示意图(b)
    Figure  1.  Model diagrams of corrugated sandwich panel (a) and corrugated cell (b)
    a—Length of corrugated sandwich panel; b—Width of corrugated sandwich panel; lc—Length of the hypotenuse; hc—Height of core layer; tc—Wall thickness; θ—Corrugation angle; p—Length of bottom side
    图  2  波纹夹芯板等效示意图
    Figure  2.  Equivalent models of corrugated sandwich panel

    考虑到波纹夹芯板的横向剪切变形效应,位移场可表示为如下形式:

    u(x,y,z;t)=u0zw0x+f(z)ϕxv(x,y,z;t)=v0zw0y+f(z)ϕyw(x,y,z;t)=w0 (2)

    其中:u0v0w0分别为波纹夹芯板中面上任意一点的位移;ϕxϕy分别为波纹夹芯板的直法线沿x轴和y轴的转角;f(z)是决定横向剪切应力和应变沿厚度分布的形状函数。表1为几种不同剪切形状函数[19, 23-26]。CLPT不考虑横向剪切变形,低估了挠度,高估了固有频率和屈曲载荷,只适用于薄板,而一阶剪切变形理论(FSDT)在此基础上考虑了横向剪切变形,但是在上下表面处不满足面力自由的条件,需要剪切修正因子;ESDT、SSDT和TSDT都考虑了横向剪切变形,且在夹层板的上下表面处满足面力自由的条件,在计算中不需要横向剪切修正因子,很好地克服了CLPT和FSDT的局限性,三者的横向剪切应力和应变沿厚度的形状分别为指数函数型、正弦函数型和曲线型。

    表  1  不同板理论对应的剪切形状函数
    Table  1.  Shear shape functions corresponding to different plate theories
    Shear theoryFunction f (z)
    CLPT f(z)=0
    FSDT f(z)=z
    SSDT f(z)=hπsin(πzh)
    TSDT f(z)=z[143(zh)2]
    ESDT f(z)=ze2(zh)2
    Notes: CLPT—Classical plate theory; FSDT—First-order shear plate theory; SSDT—Sinusoidal shear deformation theory; TSDT—Third-order shear deformation theory; ESDT—Exponential shear deformation theory.
    下载: 导出CSV 
    | 显示表格

    根据小变形假设,位移-应变关系有:

    εxx=ux,εyy=vy,εzz=wz,γxz=uz+wx,γxy=uy+vx,γyz=vz+wy (3)

    将式(2)代入式(3)得到应变分量为

    {εxxεyyγxy}={εxx(0)εyy(0)γxy(0)}+z{εxx(1)εyy(1)γxy(1)}+f{εxx(3)εyy(3)γxy(3)},{γyzγxz}=f{γyz(2)γxz(2)},εzz=0 (4)

    其中,各应变分量的具体表达式为

    εxx(0)=u0x,εxx(1)=2w0x2,εxx(3)=ϕxx,εyy(0)=v0y,εyy(1)=2w0y2,εyy(3)=ϕyy,γxy(0)=u0y+v0x,γxy(1)=22w0xy,γxy(3)=ϕxy+ϕyx,γyz(2)=ϕy,γxz(2)=ϕx (5)

    波纹夹芯板的本构关系可表示为

    {σ(k)xxσ(k)yyτ(k)yzτ(k)xzτ(k)xy}=[Q(k)11Q(k)12000Q(k)21Q(k)2200000Q(k)4400000Q(k)5500000Q(k)66]{εxxεyyγyzγxzγxy} (6)

    其中,σ(k)xxσ(k)yyτ(k)yzτ(k)xzτ(k)xy为波纹夹芯板的应力和剪应力。

    各刚度系数可以表示为

    \begin{split} &Q_{11}^{(k)} = \frac{{E_1^{(k)}}}{{1 - \nu_{12}^{(k)}\nu_{21}^{(k)}}},Q_{12}^{(k)} = \frac{{E_1^{(k)}\nu_{21}^{(k)}}}{{1 - \nu_{12}^{(k)}ν_{21}^{(k)}}},Q_{22}^{(k)} = \frac{{E_2^{(k)}}}{{1 - \nu_{12}^{(k)}\nu_{21}^{(k)}}}, \\ &{Q_{66}} = {G_{12}},{Q_{44}} = {G_{23}},{Q_{55}} = {G_{13}},{Q_{21}} = {Q_{12}} \\[-12pt] \end{split} (7)

    其中:k=1、2、3 分别代表波纹夹芯板的上、中、下层;E1(k)E2(k)G12(k)G13(k)G23(k)ν12(k)ν21(k)分别表示上、下面板和芯层的弹性模量、剪切模量和泊松比。

    波纹夹芯板系统的势能、动能及外力势可以表示为

    \begin{split} {\rm{\delta}}U = &\int_0^a {\int_0^b {\int_{ - \frac{h}{2}}^{\frac{h}{2}} {({\sigma _{xx}}{\rm{\delta}}{\varepsilon _{xx}}} } } + {\sigma _{yy}}{\rm{\delta}}{\varepsilon _{yy}} + {\sigma _{{\textit{z}}{\textit{z}}}}{\rm{\delta}}{\varepsilon _{{\textit{z}}{\textit{z}}}} + {\tau _{y{\textit{z}}}}{\rm{\delta}}{\gamma _{y{\textit{z}}}} + \\ &{\tau _{x{\textit{z}}}}{\rm{\delta}}{\gamma _{x{\textit{z}}}} + {\tau _{xy}}{\rm{\delta}}{\gamma _{xy}}){\rm{d}}x{\rm{d}}y{\rm{d}}{\textit{z}} \\[-12pt] \end{split} (8)
    {\rm{\delta}}K = \int_0^a {\int_0^b {\int_{ - \frac{h}{2}}^{\frac{h}{2}} {\rho (\dot u{\rm{\delta}}\dot u + \dot v{\rm{\delta}}\dot v + \dot w{\rm{\delta}}\dot w)} } } {\rm{d}}x{\rm{d}}y{\rm{d}}{\textit{z}} (9)
    {\rm{\delta}}V = \int_0^a {\int_0^b {\int_{ - \frac{h}{2}}^{\frac{h}{2}} {q{\rm{\delta}}w{\rm{d}}x{\rm{d}}y{\rm{d}}{\textit{z}}} } } (10)

    其中:\dot u\dot v\dot w为波纹夹芯板在xy{\textit{z}}方向的运动速度;q为外载荷。

    根据哈密顿变分原理[27],得到波纹夹芯板系统的动力学方程为

    \begin{split} &\frac{{\partial {N_{xx}}}}{{\partial x}} + \frac{{\partial {N_{xy}}}}{{\partial y}} = {I_0}{{\ddot u}_0} - {I_1}\frac{{\partial {{\ddot w}_0}}}{{\partial x}}{\rm{ + }}{J_1}{{\ddot \phi }_x} \\ &\frac{{\partial {N_{yy}}}}{{\partial y}} + \frac{{\partial {N_{xy}}}}{{\partial x}} = {I_0}{{\ddot v}_0} - {I_1}\frac{{\partial {{\ddot w}_0}}}{{\partial y}}{\rm{ + }}{J_1}{{\ddot \phi }_y} \\ &\frac{{{\partial ^2}{M_{xx}}}}{{\partial {x^2}}} + 2\frac{{{\partial ^2}{M_{xy}}}}{{\partial x\partial y}} + \frac{{{\partial ^2}{M_{yy}}}}{{\partial {y^2}}} + q = {I_0}{{\ddot w}_0}{\rm{ + }}{I_1}\frac{{\partial {{\ddot u}_0}}}{{\partial x}}- \\ &{I_2}\frac{{{\partial ^2}{{\ddot w}_0}}}{{\partial {x^2}}} + {K_2}\frac{{\partial {{\ddot \phi }_x}}}{{\partial x}} + {I_1}\frac{{\partial {{\ddot v}_0}}}{{\partial y}} - {I_2}\frac{{{\partial ^2}{{\ddot w}_0}}}{{\partial {y^2}}} + {K_2}\frac{{\partial {{\ddot \phi }_y}}}{{\partial y}} \\ &\frac{{\partial {H_{xx}}}}{{\partial x}} + \frac{{\partial {H_{xy}}}}{{\partial y}} - {Q_x} = {J_1}{{\ddot u}_0} - {K_2}\frac{{\partial {{\ddot w}_0}}}{{\partial x}} + {J_2}{{\ddot \phi }_x} \\ &\frac{{\partial {H_{yy}}}}{{\partial y}} + \frac{{\partial {H_{xy}}}}{{\partial x}} - {Q_y} = {J_1}{{\ddot v}_0} - {K_2}\frac{{\partial {{\ddot w}_0}}}{{\partial y}} + {J_2}{{\ddot \phi }_y} \\ \end{split} (11)

    其中:

    \begin{array}{*{20}{l}} {\left[ {\begin{array}{*{20}{c}} {{N_{\xi \eta }}}\\ {{M_{\xi \eta }}}\\ {{H_{\xi \eta }}} \end{array}} \right] = \displaystyle\int_{ - \frac{h}{2}}^{\frac{h}{2}} {{\sigma _{\xi \eta }}} \left[ {\begin{array}{*{20}{c}} 1\\ {\textit{z}}\\ f \end{array}} \right]{\rm{d}}{\textit{z}},{Q_\xi } = \displaystyle\int_{ - \frac{h}{2}}^{\frac{h}{2}} {{\sigma _{\xi {\textit{z}}}}} f'{\rm{d}}{\textit{z}}}\\ {[{I_0},{I_1},{I_2},{J_1},{J_2},{K_2}] = \displaystyle\sum\limits_{k = 1}^3 {\int_{{\zeta _k}}^{{\zeta _{k + 1}}} {{\rho ^{(k)}}[1,{\textit{z}},{{\textit{z}}^2},f,{f^2},{\textit{z}}f]} } {\rm{d}}{\textit{z}}} \end{array} (12)

    其中,\xi \eta 可以用xy表示。

    将式(4)~(6)、式(12)代入式(11)得到位移形式的运动控制方程为

    {E_{i1}}{u_0} + {E_{i2}}{v_0} + {E_{i3}}{w_0} + {E_{i4}}{\phi _x} + {E_{i5}}{\phi _y} = 0,\; i = 1\sim5 (13)

    其中:

    {E_{11}} = {A_{11}}\frac{{{\partial ^2}}}{{\partial {x^2}}} + {A_{66}}\frac{{{\partial ^2}}}{{\partial {y^2}}} - {I_0}\frac{{{\partial ^2}}}{{\partial {t^2}}}
    {E_{22}} = {A_{22}}\frac{{{\partial ^2}}}{{\partial {y^2}}} + {A_{66}}\frac{{{\partial ^2}}}{{\partial {x^2}}} - {I_0}\frac{{{\partial ^2}}}{{\partial {t^2}}}
    {E_{12}}{\rm{ = }}{E_{21}} = ({A_{21}} + {A_{66}})\frac{{{\partial ^2}}}{{\partial x\partial y}}
    \begin{split} {E_{33}} =& - {G_{11}}\frac{{{\partial ^4}}}{{{x^4}}} - ({G_{12}} + {G_{21}} + 4{G_{66}})\frac{{{\partial ^4}}}{{\partial {x^2}\partial {y^2}}} - \\ &{G_{22}}\frac{{{\partial ^4}}}{{{y^4}}} + {I_2}{\nabla ^2}(\frac{{{\partial ^2}}}{{\partial {t^2}}}) - {I_0}\frac{{{\partial ^2}}}{{\partial {t^2}}} \\ \end{split}
    {E_{44}} = {R_{11}}\frac{{{\partial ^2}}}{{\partial {x^2}}} + {R_{66}}\frac{{{\partial ^2}}}{{\partial {y^2}}} + {V_{55}} - {J_2}\frac{{{\partial ^2}}}{{{t^2}}}
    {E_{55}} = {R_{22}}\frac{{{\partial ^2}}}{{\partial {y^2}}} + {R_{66}}\frac{{{\partial ^2}}}{{\partial {x^2}}} + {V_{44}} - {J_2}\frac{{{\partial ^2}}}{{\partial {t^2}}}
    {E_{13}} = {E_{31}} = {B_{11}}\frac{{{\partial ^3}}}{{{x^3}}} + ({B_{21}} + 2{B_{66}})\frac{{{\partial ^3}}}{{\partial x\partial {y^2}}} - {I_1}\frac{{{\partial ^3}}}{{\partial x\partial {t^2}}}
    {E_{14}} = {E_{41}} = {D_{11}}\frac{{{\partial ^2}}}{{\partial {x^2}}} + {D_{66}}\frac{{{\partial ^2}}}{{\partial {y^2}}} - {J_1}\frac{{{\partial ^2}}}{{\partial {t^2}}}
    {E_{15}} = {E_{51}} = {E_{24}} = {E_{42}} = ({D_{21}} + {D_{66}})\frac{{{\partial ^2}}}{{\partial x\partial y}}
    {E_{23}} = {E_{32}} = - {B_{22}}\frac{{{\partial ^3}}}{{\partial {y^3}}} - ({B_{21}} + 2{B_{66}})\frac{{{\partial ^2}}}{{\partial {x^2}\partial y}} + {I_1}\frac{{{\partial ^3}}}{{\partial y\partial {t^2}}}
    {E_{25}} = {E_{52}} = {D_{22}}\frac{{{\partial ^2}}}{{\partial {y^2}}} + {D_{66}}\frac{{{\partial ^2}}}{{\partial {x^2}}} - {J_1}\frac{{{\partial ^2}}}{{\partial {t^2}}}
    {E_{34}} = {E_{43}} = {L_{11}}\frac{{{\partial ^3}}}{{{x^3}}} + ({L_{21}} + 2{B_{66}})\frac{{{\partial ^3}}}{{\partial x\partial {y^2}}} - {K_2}\frac{{{\partial ^3}}}{{\partial x\partial {t^2}}}
    {E_{35}} = {E_{53}} = ({L_{12}} + 2{L_{66}})\frac{{{\partial ^3}}}{{\partial {x^2}\partial y}} + {L_{22}}\frac{{{\partial ^3}}}{{{y^3}}} - {K_2}\frac{{{\partial ^3}}}{{\partial y\partial {t^2}}}
    {E_{45}} = {E_{54}} = ({R_{11}} + {R_{66}})\frac{{{\partial ^2}}}{{\partial x\partial y}}
    \begin{split} &[{A_{ij}},{B_{ij}},{D_{ij}},{G_{ij}},{L_{ij}},{R_{ij}},{V_{ij}}] \\ &= \sum\limits_{k = 1}^3 {\int_{{\zeta _k}}^{{\zeta _{k + 1}}} {{Q^{(k)}}_{ij}[1,{\textit{z}},f,{{\textit{z}}^2},{\textit{z}}f} ,} {f^2},{(f')^2})]{\rm{d}}{\textit{z}} \end{split}

    假设位移分量为双三角函数,则{u_0}{v_0}{w_0}{\phi _x}{\phi _y}可表示为

    \begin{split} &\left\{ {{u_0},{\phi _x}} \right\} = \displaystyle\sum\limits_{m = 1}^\infty {\displaystyle\sum\limits_{n = 1}^\infty {\left\{ {{U_{mn}},{\Phi _{xmn}}} \right\}\frac{{\partial {X_m}(x)}}{{\partial x}}{Y_n}(y)} } {{\rm{e}}^{{\rm{i}}\omega t}}, \\ &\left\{ {{v_0},{\phi _y}} \right\} = \displaystyle\sum\limits_{m = 1}^\infty {\displaystyle\sum\limits_{n = 1}^\infty {\left\{ {{V_{mn}},{\Phi _{ymn}}} \right\}} } {X_m}(x)\frac{{\partial {Y_n}(y)}}{{\partial y}}{{\rm{e}}^{{\rm{i}}\omega t}}, \\ &\left\{ {{w_0}} \right\} = \displaystyle\sum\limits_{m = 1}^\infty {\displaystyle\sum\limits_{n = 1}^\infty {\left\{ {{W_{0mn}}} \right\}} } {X_m}(x){Y_n}(y){{\rm{e}}^{{\rm{i}}\omega t}} \end{split} (14)

    其中:{\rm{i}} = \sqrt { - 1} \omega 为波纹夹芯板系统自由振动下的固有频率。满足波纹夹芯板在4种边界条件下的位移分量形式可以用表2的函数表示。

    表  2  不同边界条件下的函数Xm(x) 和 Yn(y)
    Table  2.  Functions Xm(x) and Yn(y) for different boundary conditions
    Boundary conditionsFunction Xm(x)Function Yn(y)
    SSSS \sin \alpha x \sin \beta x
    CCCC 1 - \cos 2\alpha x 1 - \cos 2\beta x
    CCSS 1 - \cos 2\alpha x \sin \beta x
    CSSS \sin \alpha x(\cos \alpha x - 1) \sin \beta x
    Notes: SSSS—Four sides simply supported; CCCC—Four sides clamped; CCSS—Opposite sides simply supported and clamped; CSSS—One side fixed and three edges clamped; { {\alpha = m{\text{π}}} / a}; { {\beta = n{\text{π}} } / b}; m, n—Half-wave numbers in two orthogonal coordinate directions respectively.
    下载: 导出CSV 
    | 显示表格

    将式(14)代入式(13)可得系统的特征方程,简写为

    \left\{ {{{K}} - {\omega ^2}{{M}}} \right\}\left\{ {{\delta}} \right\} = 0 (15)

    其中:MK分别为波纹夹芯板系统的质量矩阵和刚度矩阵;{\left\{ {\bf{\delta }} \right\}^{\bf{T}}} = \left\{ {{U_{mn}},{V_{mn}},{\Phi _x}_{mn},{\Phi _y}_{mn},{W_{0mn}}} \right\}为系统的振动幅值。由于它们的取值是任意性的,因此令该特征方程的系数行列式为0,求解该代数方程,即可得到波纹夹芯板自由振动时的固有频率。

    根据以上理论模型,编写程序计算波纹夹芯板在不同板理论下的固有频率,并且与ABAQUS有限元仿真结果进行对比,验证理论模型的正确性。此外,计算了不同边界条件下波纹夹芯板的基频,分析边界条件对波纹夹芯板振动特性的影响。同时,研究在四种不同边界条件下波纹夹芯板材料参数及结构几何参数的变化对波纹夹芯板基频的影响。

    设波纹夹芯板的长a=240 mm,宽b=188.3 mm,上、下面板厚度hf=1 mm,波纹与面板的夹角θ=45°,波纹壁厚tc=1 mm,芯层厚度hc=8 mm。波纹夹芯板三层所采用的基体均为铝材料,其材料参数为:杨氏模量Es=71 GPa,泊松比νs=0.3,剪切模量Gs=Es/2(1+νs),密度ρs=2 810 kg/m3

    对波纹夹芯板系统进行无量纲化,无量纲化的频率可以定义为

    \varpi = \frac{{\omega {a^2}}}{h}\sqrt {\frac{{12{\rho _{\rm{s}}}(1 - \nu_{\rm{s}}^2)}}{{{E_{\rm{s}}}}}} (16)

    表3为5种不同板理论所求得的波纹夹芯板在四边简支边界条件下的前五阶固有频率。可以看出,采用SSDT、TSDT、ESDT理论所求得的固有频率与有限元误差较小,全部小于3%,FSDT由于需要剪切修正因子,所求结果误差比以上三个理论略偏大,CLPT由于未考虑横向剪切变形,高估了固有频率,所求结果相比其余4种剪切变形理论,误差要大很多。其中,在基频处,波纹夹芯板的运动和变形相对稳定,剪切应力对板变形的影响相对较小,因此在五种理论中,所求基频与ABAQUS有限元仿真相比误差较小。随着固有频率的增加,波纹夹芯板的变形越来越大,运动也愈加剧烈,因此剪切应力影响变大,考虑剪切变形且满足上下表面处面力自由的SSDT、TSDT和ESDT相对于CLPT和FSDT所求结果更准确。

    表  3  四边简支波纹夹芯板在不同理论下的固有频率理论解与有限元仿真结果
    Table  3.  Theoretical solutions and finite element simulation results of natural frequency of simply supported corrugated sandwich plates using different theories
    ModeABAQUSCLPTFSDTSSDTTSDTESDT
    ResultError/%ResultError/%ResultError/%ResultError/%ResultError/%
    (1,1) 31.18 31.72 1.75 31.41 0.77 31.00 −0.57 31.01 −0.54 30.99 −0.58
    (2,1) 65.39 69.52 6.32 68.09 4.13 65.82 0.66 65.88 0.75 65.79 0.61
    (1,2) 86.48 88.51 2.36 86.23 −0.29 83.74 −3.16 83.78 −3.12 83.74 −3.17
    (2,2) 116.13 125.70 8.24 121.21 4.38 115.60 −0.45 115.72 −0.35 115.57 −0.48
    (3,1) 118.46 132.06 11.48 127.11 7.30 119.24 0.66 119.45 0.84 119.12 0.56
    下载: 导出CSV 
    | 显示表格

    在四边简支边界条件下,波纹夹芯板前五阶振型模态如图3所示。

    图  3  波纹夹芯板前五阶振型图
    Figure  3.  The first five mode shapes of the corrugated sandwich plates

    在四种不同边界条件下,由不同板理论计算的波纹夹芯板在自由振动时的基频与有限元仿真结果如表4所示。可以看到,理论解与有限元仿真结果相比,CLPT由于忽略横向剪切应力导致所求结果稍微偏大,考虑横向剪切变形且满足上下表面处面力自由的SSDT、TSDT、ESDT所求结果比FSDT和CLPT的误差小。因为基频处波纹夹芯板的变形相对高频小,剪应力的影响有限,所以5种板理论所求结果误差都在工程允许的误差范围之内,由此也可验证四种边界条件下所假设的位移函数的正确性。比较四种边界条件下所得到的固有频率可以发现,波纹夹芯板在CCCC边界条件下的基频最大,SSSS边界条件下的基频最小,CCCC边界条件下的基频基本可以达到SSSS的1倍左右,CCSS和CSSS边界条件下的固有频率介于上述二者之间,并且两者相差较小,即四种边界条件下波纹夹芯板的基频的关系为CCCC>CCSS>CSSS>SSSS,由此可以得知,固支边界条件会使波纹夹芯板系统在自由振动时的基频增大。同样这也说明了波纹夹芯板边界的约束越多,系统结构整体刚度越大,导致整个系统频率特征值增大。因此,可以通过设置不同的边界条件来调整波纹夹芯板的固有振动频率。

    表  4  不同边界条件和板理论下波纹夹芯板的基频理论解与有限元仿真结果
    Table  4.  Theoretical solutions and finite element simulation results of fundamental frequency of corrugated sandwich plates with different boundary conditions and plate theories
    Boundary conditonsABAQUSCLPTFSDTSSDTTSDTESDT
    ResultError/%ResultError/%ResultError/%ResultError/%ResultError/%
    SSSS 31.18 31.72 1.75 31.41 0.77 31.00 −0.57 31.01 −0.54 30.99 −0.58
    CCCC 56.42 60.46 7.17 58.90 4.40 56.99 1.01 57.03 1.08 56.98 0.99
    CCSS 40.47 43.19 6.71 42.44 4.87 41.23 1.88 41.26 1.96 41.22 1.84
    CSSS 39.50 42.14 6.70 41.56 5.22 40.66 2.94 40.68 2.99 40.65 2.91
    下载: 导出CSV 
    | 显示表格

    4种不同边界条件下的波纹夹芯板的一阶振型模态如图4所示。

    图  4  不同边界条件下波纹夹芯板一阶振型图
    Figure  4.  The first mode shapes of corrugated sandwich plates under different boundary conditions

    波纹夹芯板的材料参数和结构几何参数对其振动有着重要的影响,通过进一步研究波纹夹芯板的振动特性,为其在工程应用方面提供足够的依据。本节将基于ESDT,研究四种不同边界条件下,波纹夹芯板材料参数和结构几何参数的变化对系统基频的影响。

    波纹夹芯板的上面板、下面板、波纹芯层选用不同的基体材料:Ti和Al,研究不同材料组合对波纹夹芯板固有频率的影响。Al的物理参数在前文已给出,Ti的材料参数为弹性模量Et=177 GPa,泊松比vt = 0.32,密度ρt=4 540 kg/m3。波纹夹芯板的组合方式为Ti-Al-Ti、Ti-Ti-Ti、Al-Al-Al和Al-Ti-Al。板的其它尺寸与上述算例一致,得到四种边界条件下不同材料组合的波纹夹芯板的基频如表5所示。可知,对于每一种边界条件,基于ESDT理论计算所得的四种材料组合下波纹夹芯板的基频大小依次为Ti-Al-Ti> Ti-Ti-Ti> Al-Al-Al> Al-Ti-Al,其中不同材料组合的频率在CCCC边界条件下变化稍大一些,但几种边界条件下的变化趋势基本一致。由式(15)可知,增大材料的弹性模量,即抗变形能力增强,波纹夹芯板结构的刚度增大,系统整体的频率会增大;增大材料的密度,波纹夹芯板的质量增大,波纹夹芯板的频率会降低,但对于波纹夹芯板的上、下面板,弹性模量的影响更显著;对于芯层,密度影响起主导作用。在工程应用中可以选取适当的材料组合以提高波纹夹芯板的固有频率。

    表  5  不同材料组合下波纹夹芯板的基频
    Table  5.  Fundamental frequencies of corrugated sandwich panels with different material combinations
    Boundary conditonAl-Al-AlTi-Ti-TiAl-Ti-AlTi-Al-Ti
    SSSS 30.99 38.72 29.07 40.53
    CCCC 56.98 71.16 54.31 71.99
    CCSS 41.22 51.46 39.96 52.38
    CSSS 40.65 50.76 39.03 52.17
    下载: 导出CSV 
    | 显示表格

    作为一种复合结构材料,波纹夹芯板的结构参数对其振动同样有着重要的影响,为了更好地观察波纹夹芯板的基频随结构几何参数的变化趋势,以下计算不再对系统固有频率进行无量纲化,波纹夹芯板各层采用的材料均为铝。

    保持波纹夹芯板的基本尺寸和芯层高度及总高度不变,波纹夹芯板在四种边界条件下的基频随波纹与面板夹角θ的变化如图5所示。可以看出,随着波纹与面板夹角θ的增大,在四种边界条件下,波纹夹芯板基频的变化趋势基本接近,都随着夹角θ的增大呈缓慢下降的趋势。由式(1)可知,波纹与面板夹角从30^\circ 变化到80^\circ 度时,芯层弹性模量E1和剪切模量G13增大,等效密度增大,其它等效参数变化相对较小,波纹夹芯板系统的刚度虽有一定的增大,但等效密度增大更明显,导致波纹夹芯板的基频呈下降趋势。另外,四种边界条件下,CCCC和SSSS边界条件下基频相差较大,且CCCC>SSSS;CSSS和CCSS边界条件下所得到的基频位于CCCC和SSSS之间,CCSS稍大于CSSS,但随着夹角的增大两者对应的波纹夹芯板的基频差值增大。波纹与面板的夹角θ越大,即波纹折皱密度越大,铝制波纹夹芯板越接近实体铝板。由此也可以得知,铝制波纹夹芯板的固有频率大于相同尺寸的实体铝板。

    图  5  波纹与面板夹角对波纹夹芯板基频的影响
    Figure  5.  Influence of the angle between corrugation and panel on the fundamental frequency of corrugated sandwich panel

    波纹芯层高度对波纹夹芯板基频的影响如图6所示。可知,随着芯层高度占比hc/h的增大,即芯层厚度增大,上、下面板厚度减小,4种边界条件下波纹夹芯板基频的变化趋势基本接近。由式(1)可知,随着波纹芯层高度hc的增大,波纹的结构参数(斜边长lc、半底边长p)增大,波纹芯层各个方向的弹性模量和剪切模量减小,导致系统的刚度减小,从而使基频降低,但是随着芯层高度占比hc/h的增大,波纹芯层的等效密度减小,使系统基频增大。因为在hc/h≤0.8时芯层等效密度的影响起主导作用,之后弹性模量和剪切模量的影响起主导作用,所以导致波纹夹芯板的基频先增大后减小。在hc/h=0.8附近,基频达到最大值,在hc/h>0.8时,波纹夹芯板的基频迅速下降。因此可以得知,在实际工程应用中选取适当的芯层占比可以提高波纹夹芯板的固有频率。

    图  6  波纹芯层高度占比对波纹夹芯板基频的影响
    Figure  6.  Influence of corrugated core height ratio on the fundamental frequency of corrugated sandwich panel

    波纹夹芯板的基频随波纹壁厚的变化如图7所示。由等效参数计算式(1),随着壁厚的增加,波纹芯层的剪切模量和弹性模量增大,且E12呈直线增大,系统刚度增大,同样芯层的等效密度也呈直线增大,导致系统的基频减小。因为等效密度的影响起主导作用,所以波纹夹芯板的基频持续减小。另外,CCSS和CSSS两种边界条件下的基频的差值略微增大,且4种边界条件下,CCCC边界条件下波纹夹芯板的基频相对于其他3种边界条件在壁厚tc≤3 mm时下降速度略快一些,其余边界条件下,波纹夹芯板基频的下降趋势基本一致。

    图  7  波纹壁厚度对波纹夹芯板基频的影响
    Figure  7.  Influence of corrugated wall thickness on the fundamental frequency of corrugated sandwich panel

    波纹夹芯板厚度 h对波纹夹芯板基频的影响如图8所示。可见,波纹夹芯板芯层在各方向的弹性模量和剪切模量在h≤30时迅速减小,芯层刚度随之减小,之后几乎保持不变,导致系统的固有频率减小。但是由式(1)可知,芯层的等效密度同样在h≤30时迅速减小,之后几乎保持不变,且等效密度的影响起着主导作用。当波纹夹芯板的总厚度h<30 mm时,四种边界条件下波纹夹芯板系统的基频呈现明显增大的趋势,CCCC边界条件下的基频增长速率最快,CSSS和CCSS边界条件所对应的基频曲线接近重合,在h=15 mm附近CSSS条件下所求的基频开始高于CCSS边界条件下所求的基频。当h>30 mm时,四条曲线都趋于平稳,波纹夹芯板基频变化波动很小,此时板的宽厚比b/h<6,波纹夹芯板由薄板逐渐变为厚板。根据以上分析可以得知,在工程应用中适当提高波纹夹芯板的厚度可以提高系统的固有频率。

    图  8  波纹夹芯板厚度h对波纹夹芯板基频的影响
    Figure  8.  Influence of corrugated plate thickness on the fundamental frequency of corrugated sandwich panel

    k为变化比例因子,将波纹夹芯板结构的所有几何尺寸分别乘以比例因子k,即波纹夹芯板结构整体变大或者缩小,得到的波纹夹芯板基频的变化曲线如图9所示。随着k的变化,波纹夹芯板芯层的弹性模量、剪切模量和密度保持不变。由于波纹夹芯板长和宽的增大,导致整个系统质量增加,因此系统的固有频率将减小。图中所取变化比例因子k为0.2~3,四种边界下波纹夹芯板的基频在k\!\leqslant\!1时急剧下降,CCSS和CSSS曲线基本重合;在k \!\geqslant\!1时,四种边界条件下的波纹夹芯板系统的基频越来越接近。由此可知,当波纹夹芯板尺寸无限大时,四种边界条件下波纹夹芯板系统的基频会接近相等,且波纹夹芯板尺寸越大系统的基频就越小。

    图  9  比例因子k对波纹夹芯板基频的影响
    Figure  9.  Influence of scale factor on the fundamental frequency of corrugated sandwich panel

    研究了波纹夹芯板在四种边界条件下的自由振动特性,对比了不同板理论所求得的固有频率,并与有限元仿真结果进行了对比。此外,基于指数剪切变形理论(ESDT)分析了波纹夹芯板材料参数和结构几何参数的变化对系统固有频率的影响。

    (1)对于基尔霍夫经典板理论(CLPT)、一阶剪切变形理论(FSDT)、正弦剪切变形理论(SSDT)、三阶剪切变形理论(TSDT)、ESDT五种板理论,其中CLPT由于不考虑板的横向剪切变形,因此求得系统自由振动的固有频率误差最大,FSDT所求固有频率次之,SSDT、TSDT、ESDT所求固有频率相近,且与有限元仿真结果相比,误差最小。

    (2)四种边界条件下波纹夹芯板自由振动的基频大小依次为:四边固支(CCCC)>对边简支和固支(CCSS)>一边固支三边简支(CSSS)>四边简支(SSSS),且CCCC的基频比SSSS的基频约大1倍, 即波纹夹芯板结构的边界约束越多,系统的固有频率越大。

    (3)增大波纹夹芯板材料的弹性模量会导致其刚度变大,进而使系统的基频增大;增大材料密度会导致波纹夹芯板的质量增大,进而使系统的基频减小,对于上、下面板,弹性模量的影响较显著,而对于夹芯层,密度的影响起主导作用。

    (4)波纹夹芯板的结构几何参数对系统的振动有着重要影响。随着波纹与面板的夹角\theta 或波纹壁厚tc的增大,波纹夹芯板的基频变小;随着芯层占比hc/h的增大,波纹夹芯板的基频先增大后减小;保持hc/h、面板占比hf/h不变,随着波纹夹芯板厚度h的增大,波纹夹芯板的基频增大明显;随着波纹夹芯板尺寸的增大其基频下降,且四种边界条件下波纹夹芯板的基频趋近相等。

  • 图  1   煤矸石重金属沉淀和自燃对生态环境的影响

    Figure  1.   Effects of heavy metal precipitation and spontaneous combustion of coal gangue on ecological environment

    图  2   2011~2021年中国煤矸石产量、使用量及利用率[18]

    Figure  2.   Production, utilization amount and rates of coal gangue in China from 2011 to 2021[18]

    图  3   反击式破碎机对煤矸石的破碎过程

    Figure  3.   Breaking process for coal gangue with counterattack crusher

    图  4   煤矸石的外观

    Figure  4.   Appearance of coal gangue

    图  5   煤矸石矿物组成和粒度分布

    Figure  5.   Mineral composition and particle size distribution of coal gangue

    图  6   改性材料及分散装置

    Figure  6.   Modified materials and dispersing devices

    PPF—Polypropylene fiber

    图  7   力学试验

    Figure  7.   Mechanical experimental test

    F—Vertical force

    图  8   不同纳米SiO2和PPF掺量混凝土的抗压强度

    Figure  8.   Compressive strength of concrete with different nano-SiO2 and PPF contents

    图  9   不同纳米SiO2和PPF掺量混凝土在压缩试验中的破坏模式

    Figure  9.   Failure patterns of concrete with different nano-SiO2 and PPF contents during compressive test

    图  10   不同纳米SiO2和PPF掺量混凝土的抗折强度

    Figure  10.   Flexural strength of concrete with different nano-SiO2 and PPF contents

    图  11   不同纳米SiO2和PPF掺量混凝土在弯曲试验中的断裂

    Figure  11.   Fracture of concrete with different nano-SiO2 and PPF contents during flexural test

    图  12   CGAC和1.5wt%N/CGAC断裂面图

    Figure  12.   Fracture surface diagram of CGAC and 1.5wt%N/CGAC

    图  13   纳米SiO2和PPF掺量对混凝土劈裂强度的影响

    Figure  13.   Splitting strength of concrete with different nano-SiO2 and PPF contents

    图  14   不同纳米SiO2和PPF掺量混凝土劈裂试验过程中的断裂裂缝

    Figure  14.   Fracture crack of concrete with different nano-SiO2 and PPF contents in the process of splitting test

    图  15   CGAC和1.5wt%N-0.6PPF/CGAC混凝土的孔隙分布

    Figure  15.   Pore distribution of CGAC and 1.5wt%N-0.6PPF/CGAC concrete

    图  16   不同掺量的纳米SiO2和PPF混凝土的XRD图谱

    Figure  16.   XRD patterns of concrete with different dosages of nano-SiO2 and PPF

    图  17   不同掺量的纳米SiO2和PPF混凝土在养护7天和28天后的SEM图像

    Figure  17.   SEM images of concrete with different dosages of nano-SiO2 and PPF after 7 days and 28 days curing

    AFt—Ettringite

    图  18   混凝土大孔与小孔径范围内lg(1-V)和lg(lk/L)的线性拟合关系

    Figure  18.   Concrete big hole and small aperture within the scope of lg(1-V) and lg(lk/L) of the linear fitting relationship

    lk/L—Number of parting holes remaining after k times removal processes; V—Total volume of the removed holes after k times removal processes

    表  1   水泥和粉煤灰的化学成分

    Table  1   Chemical composition of cement and fly ash

    CompositionNa2OMgOAl2O3SiO2SO3K2OCaOFe2O3Loss on ignitionCompressive
    strength/MPa
    Flexural
    strength/MPa
    3 d28 d3 d28 d
    Cement/wt%0.791.02 4.9317.633.010.4763.223.993.9521.246.75.78.3
    Fly ash/wt%0.330.2338.0146.440.690.88 7.53.122.79
    下载: 导出CSV

    表  2   煤矸石的物理性质

    Table  2   Physical properties of coal gangue

    Coal gangueBulk density/
    (kg·m−3)
    Performance
    density/(kg·m−3)
    Water
    absorption/wt%
    Poriness/
    wt%
    Moisture
    content/wt%
    Crushing
    value/wt%
    Coarse aggregate150727406.9452.022.4
    Fine aggregate147526202.7440.910.2
    下载: 导出CSV

    表  3   纳米SiO2活性试验结果

    Table  3   Activity testing results of the nano-SiO2

    CodeConcrete mix design/(kg·m−3)Compressive strength/MPaActivity index/%
    CementSandWaterNano-SiO27 d28 d7 d28 d
    MTB4501350225034.544.3
    2wt%N/MTB4411350225941.849.1121.1110.8
    Notes: MTB—Mortar test block; N—Nano-SiO2.
    下载: 导出CSV

    表  4   混凝土配合比设计

    Table  4   Concrete mix design kg·m−3

    CodeCementFly ashWaterSandAggregateWater reducerNano-SiO2PPF
    CGAC 400 100 240 720 880 15 0 0
    0.75wt%N/CGAC 400 100 240 720 880 15 3.75 0
    1.5wt%N/CGAC 400 100 240 720 880 20 7.5 0
    2.25wt%N/CGAC 400 100 240 720 880 22.5 11.25 0
    0.3PPF/CGAC 400 100 240 720 880 15 0 0.3
    0.75wt%N-0.3PPF/CGAC 400 100 240 720 880 15 3.75 0.3
    1.5wt%N-0.3PPF/CGAC 400 100 240 720 880 20 7.5 0.3
    2.25wt%N-0.3PPF/CGAC 400 100 240 720 880 22.5 11.25 0.3
    0.6PPF/CGAC 400 100 240 720 880 15 0 0.6
    0.75wt%N-0.6 PPF/CGAC 400 100 240 720 880 15 3.75 0.6
    1.5wt%N-0.6PPF/CGAC 400 100 240 720 880 20 7.5 0.6
    2.25wt%N-0.6PPF/CGAC 400 100 240 720 880 22.5 11.25 0.6
    0.9PPF/CGAC 400 100 240 720 880 15 0 0.9
    0.75wt%N-0.9PPF/CGAC 400 100 240 720 880 15 3.75 0.9
    1.5wt%N-0.9PPF/CGAC 400 100 240 720 880 20 7.5 0.9
    2.25wt%N-0.9PPF/CGAC 400 100 240 720 880 22.5 11.25 0.9
    Notes: CGAC—Coal gangue aggregate concrete; Example: 0.75wt%N-0.3PPF/CGAC is that the control group was added with 0.75wt% nano-SiO2 and 0.3 kg·m−3 PPF.
    下载: 导出CSV

    表  5   煤矸石混凝土孔隙特性参数

    Table  5   Pore characteristic parameters of coal gangue concrete

    CodeTotal pore
    area/(m2·g−1
    Median pore diameter
    (volume)/nm
    Median pore diameter
    (area)/nm
    Average pore
    diameter/nm
    Porosity/wt%
    CGAC16.12332.6810.0321.5117.58
    1.5wt%N-0.6PPF/CGAC10.84326.56 9.2318.9912.36
    下载: 导出CSV

    表  6   不同孔径范围内混凝土孔隙占比

    Table  6   Proportion of concrete pores in different pore size scopes wt%

    Code CGAC 1.5wt%N-0.6PPF/CGAC
    d≤20 nm 35.6 40.6
    20 nm≤d≤50 nm 25.2 28.8
    50 nm≤d≤200 nm 18.6 20.8
    d>200 nm 20.3 10.3
    下载: 导出CSV

    表  7   混凝土多孔结构的分形维数参数

    Table  7   Fractal dimension parameters of porous structures in concrete

    CodeDemarcation points/nmGreat poreSmall poreRMSE
    Fractal dimensionCorrelationFractal dimensionCorrelation
    CGAC102.402.99750.992.98520.990.00057
    1.5wt%N-0.6PPF/CGAC 64.702.99900.902.98270.970.00144
    Note: RMSE—Evaluation index of transition aperture.
    下载: 导出CSV
  • [1]

    LI J, WANG J. Comprehensive utilization and environmen-tal risks of coal gangue: A review[J]. Journal of Cleaner Production,2019,239(C):117946.

    [2]

    HU L. Coal gangue and its application research in building materials[J]. Materials Science Forum,2016,4269(873):90-104.

    [3]

    HAN J, LIU X, YANG W, et al. Research of comprehensive utilization of coal gangue [C]//DEStech Transactions on Engineering and Technology Research. Lancaster: DEStech Pulications Inc, 2018: 24927.

    [4]

    WU H, WEN Q, HU L, et al. Feasibility study on the application of coal gangue as landfill liner material[J]. Waste Management,2017,63:161-171. DOI: 10.1016/j.wasman.2017.01.016

    [5]

    TAN W, WANG L, HUANG C. Environmental effects of coal gangue and its utilization[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,2016,38(24):3716-3721. DOI: 10.1080/15567036.2012.700997

    [6]

    ZHANG Y, ZHANG Y, SHI X, et al. Investigation of thermal behavior and hazards quantification in spontaneous combustion fires of coal and coal gangue[J]. The Science of the Total Environment,2022,843:157072. DOI: 10.1016/j.scitotenv.2022.157072

    [7]

    LI A, LEI P, CHEN C, et al. A simplified model for SO2 ge-neration during spontaneous combustion of coal gangue[J]. Energy Engineering,2021,118(5):1469-1482. DOI: 10.32604/EE.2021.015413

    [8]

    GUO W, CHEN B, LI G, et al. Ambient PM2.5 and related health impacts of spontaneous combustion of coal and coal gangue[J]. Environmental Science & Technology,2021,55(9):5763-5771.

    [9]

    HUANG Y, LI J, MA D, et al. Triaxial compression behaviour of gangue solid wastes under effects of particle size and confining pressure[J]. Science of the Total Environment,2019,693(C):133607.

    [10]

    QI C, FOURIE A. Cemented paste backfill for mineral tailings management: Review and future perspectives[J]. Mi-nerals Engineering,2019,144(C):106025.

    [11]

    MA D, DUAN H, LIU J, et al. The role of gangue on the mi-tigation of mining-induced hazards and environmental pollution: An experimental investigation[J]. Science of the Total Environment,2019,664:436-448. DOI: 10.1016/j.scitotenv.2019.02.059

    [12]

    LI S, LIBER K. Influence of different revegetation choices on plant community and soil development nine years after initial planting on a reclaimed coal gob pile in the Shanxi mining area, China[J]. Science of the Total Environment,2018,618:1314-1323. DOI: 10.1016/j.scitotenv.2017.09.252

    [13]

    LI H, CHENG R, LIU Z, et al. Waste control by waste: Fenton-like oxidation of phenol over Cu modified ZSM-5 from coal gangue[J]. Science of the Total Environment,2019,683:638-647. DOI: 10.1016/j.scitotenv.2019.05.242

    [14]

    BAIC I, WITKOWSKA-KITA B. Hard coal mining waste management technologies-diagnosis of current development, innovativeness evaluation and SWOT analysis[J]. Rocznik Ochrona Srodowiska,2011,13(1):1315-1325.

    [15]

    YU L, FENG Y, YAN W. The current situation of comprehensive utilization of coal gangue in China[J]. Advanced Materials Research,2012,524-527:915-918. DOI: 10.4028/www.scientific.net/AMR.524-527.915

    [16]

    BIAN Z, INYANG H, DANIELS J, et al. Environmental issues from coal mining and their solutions[J]. Mining Science and Technology (China),2010,20(2):215-223. DOI: 10.1016/S1674-5264(09)60187-3

    [17]

    HAO Y, GUO X, YAO X, et al. Using chinese coal gangue as an ecological aggregate and its modification: A review[J]. Materials,2022,15(13):4495. DOI: 10.3390/ma15134495

    [18] 常纪文, 杜根杰, 杜建磊, 等. 我国煤矸石综合利用的现状、问题与建议[J]. 中国环保产业, 2022(8):13-17. DOI: 10.3969/j.issn.1006-5377.2022.08.024

    CHANG Jiwen, DU Genjie, DU Jianlei, et al. Current situation of the comprehensive utilization of coal gangue in China and the related problems and recommendations[J]. China Environmental Protection Industry,2022(8):13-17(in Chinese). DOI: 10.3969/j.issn.1006-5377.2022.08.024

    [19]

    LI M, ZHANG J, LI A, et al. Reutilisation of coal gangue and fly ash as underground backfill materials for surface subsidence control[J]. Journal of Cleaner Production,2020,254:120113. DOI: 10.1016/j.jclepro.2020.120113

    [20]

    LUO L, LI K, FU W, et al. Preparation, characteristics and mechanisms of the composite sintered bricks produced from shale, sewage sludge, coal gangue powder and iron ore tailings[J]. Construction and Building Materials,2019,232:117250.

    [21]

    ZHAN X, FANG W, SONG Z, et al. Development model of circular eco-industrial park for comprehensive utilization of coal gangue in coal enterprise[J]. Materials Science Forum,2014,787:71-75. DOI: 10.4028/www.scientific.net/MSF.787.71

    [22]

    HAN R, GUO X, GUAN J, et al. Activation mechanism of coal gangue and its impact on the properties of geopolymers: A review[J]. Polymers,2022,14(18):3861. DOI: 10.3390/polym14183861

    [23]

    GUO Y, ZHAN Q, YAN K, et al. Novel process for alumina extraction via the coupling treatment of coal gangue and bauxite red mud[J]. Industrial & Engineering Chemistry Research,2014,53(11):4518-4521.

    [24]

    ZHOU M, DOU Y, ZHANG Y, et al. Effects of the variety and content of coal gangue coarse aggregate on the mechani-cal properties of concrete[J]. Construction and Building Materials,2019,220:386-395. DOI: 10.1016/j.conbuildmat.2019.05.176

    [25]

    WANG C, NI W, ZHANG S, et al. Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings[J]. Construction and Building Materials,2016,104:109-115. DOI: 10.1016/j.conbuildmat.2015.12.041

    [26]

    LIU H, BAI G, GU Y, et al. The influence of coal gangue coarse aggregate on the mechanical properties of concrete columns[J]. Case Studies in Construction Materials,2022,17:e01315. DOI: 10.1016/j.cscm.2022.e01315

    [27]

    WANG Q, LI Z, ZHANG Y, et al. Influence of coarse coal gangue aggregates on elastic modulus and drying shrinkage behaviour of concrete[J]. Journal of Building Engineering,2020,32:101748.

    [28]

    YU L, XIA J, XIA Z, et al. Study on the mechanical behavior and micro-mechanism of concrete with coal gangue fine and coarse aggregate[J]. Construction and Building Materials,2022,338:127626. DOI: 10.1016/j.conbuildmat.2022.127626

    [29]

    QIU J, ZHOU Y, VATIN N, et al. Damage constitutive model of coal gangue concrete under freeze-thaw cycles[J]. Construction and Building Materials,2020,264:120720. DOI: 10.1016/j.conbuildmat.2020.120720

    [30]

    MAHMOUD A K, KRISHNA K P, SHEIK M M J, et al. Influence of coarse coal gangue aggregates on properties of structural concrete with nano silica[J]. Materials Today: Proceedings,2023,72(P4):2089-2095.

    [31]

    TANG Y, CHEN Z, FENG W, et al. Combined effects of nano-silica and silica fume on the mechanical behavior of recycled aggregate concrete[J]. Nanotechnology Reviews,2021,10(1):819-838. DOI: 10.1515/ntrev-2021-0058

    [32]

    FENG W, TANG Y, ZHANG Y, et al. Partially fly ash and nano-silica incorporated recycled coarse aggregate based concrete: Constitutive model and enhancement mecha-nism[J]. Journal of Materials Research and Technology,2022,17:192-210. DOI: 10.1016/j.jmrt.2021.12.135

    [33]

    ZHU M, QIU J, CHEN J. Effect and mechanism of coal gangue concrete modification by basalt fiber[J]. Construction and Building Materials, 2022, 328: 123563.

    [34] 周梅, 朱涵, 汪振双. 钢纤维增强自燃煤矸石轻集料混凝土试验研究[J]. 建筑材料学报, 2008, 11(6):715-720. DOI: 10.3969/j.issn.1007-9629.2008.06.017

    ZHOU Mei, ZHU Han, WANG Zhenshuang, et al. Study of spontaneous combustion coal gangue steel fiber reinforced lightweight aggregate concrete[J]. Journal of Building Materials,2008,11(6):715-720(in Chinese). DOI: 10.3969/j.issn.1007-9629.2008.06.017

    [35] 中国建筑材料科学研究总院. 水泥比表面积测定方法-勃氏法: GB/T 8074—2008[S]. 北京: 中国标准出版社, 2008: 12.

    China Academy of Building Materials Science. Method for the determination of specific surface area of cement-Brinell method: GB/T 8074—2008 [S]. Beijing: China Standards Press, 2008: 12(in Chinese).

    [36] 中国建筑材料科学研究院. 用于水泥混合材的工业废渣活性试验方法: GB/T 12957—2005[S]. 北京: 中国标准出版社, 2005: 8.

    China Academy of Building Materials Science. Test method for activity of industrial waste slag used in cement mixture: GB/T 12957—2005 [S]. Beijing: China Standards Press, 2005: 8(in Chinese).

    [37] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese)

    [38] 中国国家标准化管理委员会. 水泥胶砂强度检验方法(ISO 法): GB/T 17671—2021[S]. 北京: 中国标准出版社, 2021.

    Standardization Administration of the People's Republic of China. Test method of cement mortar strength (ISO method): GB/T 17671—2021[S]. Beijing: China Standards Press, 2021(in Chinese).

    [39] 宿晓萍, 王清. 复合盐浸-冻融-干湿多因素作用下的混凝土腐蚀破坏[J]. 吉林大学学报(工学版), 2015, 45(1):112-120. DOI: 10.13229/j.cnki.jdxbgxb201501017

    SU Xiaoping, WANG Qing. Corrosion damage of concrete under multi-salt soaking, freezing-thawing and dry-wet cycles[J]. Journal of Jilin University (Engineering and Technology Edition),2015,45(1):112-120(in Chinese). DOI: 10.13229/j.cnki.jdxbgxb201501017

    [40] 张利, ZHU Wenzhong, 宿晓萍, 等. 盐浸条件下引气混凝土的盐类腐蚀破坏研究[J]. 建筑科学, 2015, 31(5): 36-43.

    ZHANG Li, ZHU Wenzhong, SU Xiaoping, et al. Study on salt corrosion damage of air-entraining concrete under the condition of salt soaking[J]. Building Science, 2015, 31(5): 36-43(in Chinese).

    [41]

    WANG L, ZENG X, YANG H, et al. Investigation and application of fractal theory in cement-based materials: A review[J]. Fractal and Fractional,2021,5(4):247. DOI: 10.3390/fractalfract5040247

    [42] 张韦, 刘超, 刘化威, 等. 基于孔体积分形维数的稻壳灰混凝土冻融损伤劣化机理[J]. 复合材料学报, 2022, 40(8):4738-4749. DOI: 10.13801/j.cnki.fhclxb.20221014.004

    ZHANG Wei, LIU Chao, LIU Huawei, et al. Freeze-thaw damage deterioration mechanism of rice husk ash concrete based on pore volume fractal dimension[J]. Acta Materiae Compositae Sinica,2022,40(8):4738-4749(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20221014.004

    [43]

    JAIAI F, XU Y, IQBAL M, et al. Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP[J]. Journal of Environmental Management,2021,289:112420. DOI: 10.1016/j.jenvman.2021.112420

    [44] 屠艳平, 程子扬, 陈旭勇, 等. 纳米二氧化硅对橡胶粉再生混凝土坍落度和抗压性能的影响[J]. 工业建筑, 2022, 52(2):126-132.

    TU Yanping, CHENG Ziyang, CHEN Xuyong, et al. Effect of nano-SiO2 on slump and compressive properties of recycled concrete with rubber powder[J]. Industrial Construction,2022,52(2):126-132(in Chinese).

    [45] 卢京宇, 王林, 雍涵, 等. 复掺膨胀剂和纤维对混凝土性能的影响[J]. 材料导报, 2020, 34(S2):1618-1622.

    LU Jingyu, WANG Lin, YONG Han, et al. Influence of composite expansive agent and fiber on the performance of concrete[J]. Materials Reports,2020,34(S2):1618-1622(in Chinese).

    [46]

    WANG K, GUO J, YANG L. Effect of dry-wet ratio on sulfate transport-reaction mechanism in concrete[J]. Construction and Building Materials, 2021, 302: 124418.

    [47]

    BELIE N, TITTELBOOM K. Self-healing in cementitious materials—A review[J]. Materials,2013,6(6):2182-2217. DOI: 10.3390/ma6062182

    [48]

    WANG K, GUO J, ZHANG P, et al. The counterbalance of the adverse effect of abrasion on the properties of concrete incorporating nano-SiO2 and polypropylene fiber based on pore structure fractal characteristics[J]. Fractal and Fractional,2022,6(7):392. DOI: 10.3390/fractalfract6070392

  • 期刊类型引用(4)

    1. 于丹. 聚氯乙烯/碳纳米管复合材料的制备和性能研究. 塑料科技. 2024(01): 36-39 . 百度学术
    2. 余澎,涂操,郭博森,王闻达,赵航,彭玉婷,罗卫华. 木质素基碳纳米管/炭复合材料的制备及电化学性能研究. 现代化工. 2023(02): 92-97 . 百度学术
    3. 冀佳帅,杜佳琪,陈俊琳,张新民,刘伟,宋朝霞. Co-Fe普鲁士蓝/多壁碳纳米管复合材料的超电容性能. 材料科学与工艺. 2023(04): 1-8 . 百度学术
    4. 张开砚. 电感耦合等离子体发射光谱法测定普鲁士蓝类正极材料中铁和钠. 化学分析计量. 2022(08): 26-30 . 百度学术

    其他类型引用(5)

  • 目的 

    煤矸石作为工业固体废弃物,替换全部骨料制备混凝土,是对煤矸石二次利用的有效途径。并且随着纳米材料和纤维材料逐渐应用于混凝土的性能研究中,展现出更加优异的改善性能,利用纳米材料与纤维制备全煤矸石骨料混凝土,是为了提高煤矸石的利用率。

    方法 

    本文采用煤矸石粗细骨料百分之百替换混凝土骨料,掺入纳米SiO和聚丙烯纤维(PPF)进行改性,将两种改性材料分别设计4种掺量,得到16组配合比。然后对混凝土进行了混凝土抗压强度、抗折强度与劈裂抗拉强度等力学性能试验,并采用X射线衍射(XRD)、电子扫描电镜(SEM)和压汞仪(MIP)等设备研究微观结构,最后利用分形维数分析孔结构发展规律。

    结果 

    随着纳米SiO单独掺量的增加,混凝土的抗压强度、抗折强度和抗劈裂强度先升高后降低,对混凝土的抗压强度影响最大,同样,随着PPF单独掺量的增加,混凝土抗折强度和抗劈裂强度先升高后降低,对混凝土抗压强度变化较小,当PPF和纳米SiO掺量分别为0.6kg·m和1.5%wt时混凝土力学性能最好,对比参照组、单掺0.6kg·mPPF组和单掺1.5%wt纳米SiO组的混凝土,其28d抗压强度分别提高20.0%、17.7%和2.6%,其28d抗折强度分别提高44.9%、10.3%和36.7%,其28d抗劈裂强度分别提高43.6%、8.2%和34.2%。此外通过微观分析,混凝土中掺入0.6kg·mPPF和1.5%wt纳米SiO,与参照组相比孔隙率降低了29.7%,同时内部氢氧化钙晶体含量下降,针状钙矾石增加,加速了C-S-H凝胶的形成,混凝土大孔的分形维数从2.9975提高至2.9990,而小孔的分形维数从2.9852降低至2.9827,分界点从102.4mm降至64.7mm。

    结论 

    通过实验测定了复掺纳米SiO和PPF全煤矸石骨料混凝土的力学性能和微观结构变化,并利用分形维数分析孔结构发展规律,发现纳米SiO比表面积大,化学活性高,有效促进C-S-H凝胶的形成,并且在养护初期为水泥水化提供成核点,加速初期水化速度,随着纳米SiO单独掺量的增加,混凝土的抗压强度、抗折强度和抗劈裂强度先升高后降低。而PPF在混凝土中起到桥接的作用,主要是辅助混凝土共同承担剪应力,因此,随着PPF单独掺量的增加,混凝土抗折强度和抗劈裂强度先升高后降低。此外纳米SiO具有高活性,火山灰效应消耗大量松散的Ca(OH),增加了C-S-H凝胶与针状钙矾石的含量,减少界面过渡区的孔隙,生成的胶凝材料有效阻断连通孔隙,使得结构更加密实。同时,致密的PPF网络结构使C-S-H凝胶的填充形貌更加致密,有效减少混凝土自收缩所产生的裂缝,降低混凝土的孔隙率。纳米SiO引入为混凝土起到了成核效应和火山灰效应,导致小孔孔径的分形维数减小(2.9852降低至2.9827),而大孔孔径的分形维数增大(2.9975增大至2.9990),表明纳米SiO的加入,使混凝土的空间分布形态更加复杂,空间填充能力更强,内部孔隙更少,因而造成转折孔径值减少。

  • 煤矸石作为工业固体废弃物,堆积处理会使内部温度过高而引起自燃,释放出SO2、CO与细颗粒物(PM2.5)严重污染大气,填埋处理会通过雨水的渗透释放出重金属元素污染地下水。因此,响应国家发改委针对煤矸石综合利用管理办法,近年来我国的利用率增加到75%,但是堆存量却依然在大幅增加。替换全部骨料制备混凝土,是对煤矸石二次利用的有效途径。

    现有研究对于煤矸石的利用率较低。因此本文采用煤矸石粗细骨料百分之百替换混凝土骨料,利用不同掺量的纳米SiO2和PPF对其改性,改性后的混凝土不仅提高其力学性能,同时减少其内部裂缝与孔隙,大大提高煤矸石的利用率。根据结果,将纳米SiO2和PPF加入煤矸石混凝土,其28d抗压强度、抗折强度和劈裂强度分别提高20%、44.9%和43.6%。煤矸石混凝土孔隙率减少,水化过程加速,混凝土中大孔的分形维数从2.9975提高至2.9990,而小孔的分形维数从2.9852降低至2.9827,小孔分形维数降低,大孔的分形维数增加,使空间填充能力越强,内部孔隙越少。

    :(a) 不同纳米SiO2和PPF掺量的混凝土抗压强度 (b)改性后的混凝土分形维数模型

图(18)  /  表(7)
计量
  • 文章访问数:  782
  • HTML全文浏览量:  321
  • PDF下载量:  56
  • 被引次数: 9
出版历程
  • 收稿日期:  2023-05-21
  • 修回日期:  2023-06-26
  • 录用日期:  2023-07-04
  • 网络出版日期:  2023-07-16
  • 刊出日期:  2024-02-29

目录

/

返回文章
返回