留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GO/环氧丙烯酸涂层的制备及其在混凝土耐除冰盐腐蚀防护领域的应用

宋莉芳 赵丽轲 李开元 夏慧芸 牛艳辉

宋莉芳, 赵丽轲, 李开元, 等. GO/环氧丙烯酸涂层的制备及其在混凝土耐除冰盐腐蚀防护领域的应用[J]. 复合材料学报, 2024, 41(3): 1300-1315. doi: 10.13801/j.cnki.fhclxb.20230714.004
引用本文: 宋莉芳, 赵丽轲, 李开元, 等. GO/环氧丙烯酸涂层的制备及其在混凝土耐除冰盐腐蚀防护领域的应用[J]. 复合材料学报, 2024, 41(3): 1300-1315. doi: 10.13801/j.cnki.fhclxb.20230714.004
SONG Lifang, ZHAO Like, LI Kaiyuan, et al. Preparation of GO/epoxy acrylic coating and application in corrosion resistance of concrete to deicing salt[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1300-1315. doi: 10.13801/j.cnki.fhclxb.20230714.004
Citation: SONG Lifang, ZHAO Like, LI Kaiyuan, et al. Preparation of GO/epoxy acrylic coating and application in corrosion resistance of concrete to deicing salt[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1300-1315. doi: 10.13801/j.cnki.fhclxb.20230714.004

GO/环氧丙烯酸涂层的制备及其在混凝土耐除冰盐腐蚀防护领域的应用

doi: 10.13801/j.cnki.fhclxb.20230714.004
基金项目: 陕西省重点研发计划(2023-YBGY-496);国家自然科学基金(52278427);长安大学中央高校基本科研业务费专项(300102310301;300102311404)
详细信息
    通讯作者:

    牛艳辉,博士,教授,博士生导师,研究方向为绿色与智能道路材料 E-mail: niuyh@chd.edu.cn

  • 中图分类号: TB332

Preparation of GO/epoxy acrylic coating and application in corrosion resistance of concrete to deicing salt

Funds: Key Research and Development Program of Shaanxi Province (2023-YBGY-496); National Natural Science Foundation of China (52278427); Special Funds for Basic Scientific Research of Central Colleges and Universities of Chang'an University (300102310301; 300102311404)
  • 摘要: 以环氧树脂E-44和3种丙烯酸类单体为原料,采用原位聚合法引入不同掺量的改性氧化石墨烯(GO) (KH560-GO (KGO)和A151-GO (AGO)),得到GO改性环氧丙烯酸(WEP)乳液,加入适量填料及助剂制得KGO/WEP和AGO/WEP防腐涂料并制成复合涂层。结果表明:加入KGO或AGO均可提高WEP涂层的热稳定性;其中0.05wt%KGO/WEP的综合性能较优,该复合涂层的铅笔硬度为5H,冲击强度≥50 cm,粘结强度1.79 MPa,吸水率1.06%,接触角78.05°;紫外老化1000 h后,色差变化较小为0.75,光泽度保持较好为9.7;液体化学介质腐蚀240 h后,涂层形貌仍保持良好;涂层氯离子渗透量为0.34×10−3 mg/(cm2·d)。将GO/WEP涂层涂装于混凝土砂浆试块表面,进行耐除冰盐冻融循环40次后,涂层和混凝土试块的测试结果表明:0.05wt%KGO/WEP涂层综合性能较好,腐蚀后的涂层粘结强度最大为1.91 MPa;砂浆试块的质量增长率为1.46%,6 h氯离子电通量为532 C,抗压强度损失率为18.2%。该复合涂层可有效提高混凝土基材表面的耐除冰盐腐蚀性,对道路养护水平的提升具有重要的研究意义。

     

  • 图  1  硅烷改性氧化石墨烯(GO)的制备

    Figure  1.  Preparation of silane-modified graphene oxide (GO)

    T—Temperature

    图  2  原位聚合GO/环氧丙烯酸(WEP)乳液的制备

    Figure  2.  Preparation of in-situ polymerization GO/epoxy acrylic (WEP) emulsion

    SDBS—Sodium dodecyl benzene sulfonate; OP-10—Octyl phenol polyoxyethylene ether-10; MMA—Methyl methacrylate; MAA—Methacrylic acid; BA—Butyl acrylate; E-44—E-44 epoxy resin; APS—Ammonium persulfate

    图  3  混凝土单面法盐冻测试装置图

    Figure  3.  Concrete single-sided method salt freezing test device drawing

    图  4  GO改性前后的红外图谱

    Figure  4.  Infrared spectra of GO before and after modification

    KGO—KH560-GO; AGO—A151-GO

    图  5  GO改性前后的XRD图谱

    Figure  5.  XRD patterns of GO before and after modification

    图  6  GO、KGO和AGO的TG (a)和DTG (b)曲线

    Figure  6.  TG (a) and DTG (b) curves of GO, KGO and AGO

    图  7  GO (a)、KGO (b)、AGO (c)的SEM图像和EDS图谱

    Figure  7.  SEM images and EDS spectra of GO (a), KGO (b) and AGO (c)

    图  8  WEP涂层、KGO/WEP复合涂层、AGO/WEP复合涂层的TG (a)和DTG (b)曲线

    Figure  8.  TG (a) and DTG (b) curves of WEP coating, KGO/WEP and AGO/WEP composite coating

    图  9  不同掺量KGO/AGO对GO/WEP涂层粘结强度的影响

    Figure  9.  Effect of different KGO/AGO dosages on the bonding strength of GO/WEP coating

    图  10  不同掺量KGO/AGO对GO/WEP涂层吸水率(a)、疏水性(b)的影响

    Figure  10.  Effect of different KGO/AGO dosages on water absorption (a) and hydrophobicity (b) of GO/WEP coating

    图  11  KGO/WEP复合涂层在紫外老化箱每间隔200 h的色差(a)和光泽度变化(b)

    Figure  11.  Color difference (a) and gloss change (b) of KGO/WEP composite coating in UV aging chamber every 200 h

    ΔE—Color difference; GU—Gloss units

    图  12  AGO/WEP复合涂层在紫外老化箱每间隔200 h的色差(a)和光泽度变化(b)

    Figure  12.  Color difference (a) and gloss change (b) of AGO/WEP composite coating in UV aging chamber every 200 h

    图  13  不同掺量KGO/WEP涂层在不同介质中腐蚀后的SEM图像:(a) 0wt%;(b) 0.025wt%;(c) 0.05wt%;(d) 0.075wt%;(e) 0.1wt%

    Figure  13.  SEM images of the coatings with different dosages the KGO/WEP after corrosion in different media: (a) 0wt%; (b) 0.025wt%; (c) 0.05wt%; (d) 0.075wt%; (e) 0.1wt%

    图  14  不同掺量AGO/WEP涂层在不同介质中腐蚀后的SEM图像:(a) 0.025wt%;(b) 0.05wt%;(c) 0.075wt%;(d) 0.1wt%

    Figure  14.  SEM images of the coatings with different dosages the AGO/WEP after corrosion in different media: (a) 0.025wt%; (b) 0.05wt%; (c) 0.075wt%; (d) 0.1wt%

    图  15  不同添加量GO下GO/WEP涂层的氯离子渗透量

    Figure  15.  Chloride permeability of GO/WEP coatings with different GO addition amounts

    图  16  盐冻循环前后混凝土涂层的粘结强度变化

    Figure  16.  Change of bond strength of concrete coating before and after salt-freeze cycle

    图  17  KGO/WEO防腐涂层的防护机制

    Figure  17.  Protective mechanism of KGO/WEP anti-corrosion coating

    表  1  砂浆配合比

    Table  1.   Concrete mortar mix ratio

    WaterCementSandGravel
    160 g445 g640 g1185 g
    下载: 导出CSV

    表  2  不同掺量的GO对GO/WEP涂层的铅笔硬度与冲击强度的影响

    Table  2.   Effects of different dosages of GO on pencil hardness and impact strength of GO/WEP coating

    Different dosages of GO/wt%Pencil hardnessImpact strength/cm
    KGO/WEPAGO/WEPKGO/WEPAGO/WEP
    03H3H4545
    0.0254H3H≥50≥50
    0.055H4H≥50≥50
    0.0754H4H≥50≥50
    0.14H4H≥50≥50
    下载: 导出CSV

    表  3  混凝土盐冻循环(40次)后的质量增长率

    Table  3.   Quality growth rate after concrete salting cycles (40 times)

    Type of coatingQuality growth rate/%
    Uncoated5.33
    WEP2.36
    0.05wt%KGO/WEP1.46
    下载: 导出CSV

    表  4  氯离子渗透电通量评价标准

    Table  4.   Evaluation criteria for chloride ion permeation flux

    6 h electrical flux/CChloride permeability
    >4000High
    2000-4000Medium
    1000-2000Low
    100-1000Very low
    <100Ignore
    下载: 导出CSV

    表  5  混凝土抗氯离子渗透性能

    Table  5.   Resistance of concrete to chloride ion permeability

    Type of coating6 h electrical
    flux/C
    Chloride
    permeability
    Uncoated2016Medium
    WEP1387Low
    0.05wt%KGO/WEP 532Very low
    下载: 导出CSV

    表  6  混凝土盐冻循环(40次)前后的抗压强度变化

    Table  6.   Change in compressive strength of concrete before and after the salt-freezing cycle (40 times)

    Type of coatingCompressive strength before the
    salt-freezing cycle/MPa
    Compressive strength after the
    salt-freezing cycle/MPa
    Strength loss rate/%
    Uncoated442250.0
    WEP2738.6
    0.05wt%KGO/WEP3618.2
    下载: 导出CSV
  • [1] 许艳平, 黎鹏平, 李安, 等. 公路桥梁混凝土防腐涂层研究进展[J]. 电镀与涂饰, 2020, 39(24):1758-1762. doi: 10.19289/j.1004-227x.2020.24.013

    XU Yanping, LI Pengping, LI An, et al. Research progress of concrete anti-corrosion coating for highway bridges[J]. Electroplating and Finishing,2020,39(24):1758-1762(in Chinese). doi: 10.19289/j.1004-227x.2020.24.013
    [2] 张婷. 纳米改性含氟混凝土防腐涂料的制备及性能[D]. 西安: 长安大学, 2021.

    ZHANG Ting. Preparation and properties of nano-modified fluorine-containing concrete anti-corrosion coatings[D]. Xi'an: Chang'an University, 2021(in Chinese).
    [3] 刘小亮. SiO2-PDMS复合耐腐蚀涂层制备与性能研究[D]. 杭州: 浙江大学, 2014.

    LIU Xiaoliang. Preparation and properties of SiO2-PDMS composite corrosion-resistant coating[D]. Hangzhou: Zhejiang University, 2014(in Chinese).
    [4] 齐玉宏, 张国梁, 池金锋, 等. 混凝土防腐涂料的研究进展[J]. 涂料工业, 2018, 48(11):63-71, 78. doi: 10.12020/j.issn.0253-4312.2018.11.63

    QI Yuhong, ZHANG Guoliang, CHI Jinfeng, et al. Research progress of concrete anticorrosive coatings[J]. Coatings Industry,2018,48(11):63-71, 78(in Chinese). doi: 10.12020/j.issn.0253-4312.2018.11.63
    [5] 郑铮. 钢筋混凝土桥梁耐久性退化机制及防护措施研究[J]. 福建交通科技, 2021(2):90-94, 125.

    ZHENG Zheng. Research on durability degradation mechanism and protective measures of reinforced concrete bridge[J]. Fujian Communications Science and Technology,2021(2):90-94, 125(in Chinese).
    [6] 李荣涛, TUAN Christopher Y. 干湿交替对混凝土中氯离子分布影响的多相耦合数值分析[J]. 硅酸盐通报, 2021, 40(2):480-484.

    LI Rongtao, TUAN Christopher Y. Multiphase coupling numerical analysis of the influence of wet and dry alternation on chloride ion distribution in concrete[J]. Bulletin of the Chinese Ceramics,2021,40(2):480-484(in Chinese).
    [7] 崔彩花, 高静, 康田田. 有机盐融雪剂应用现状及发展趋势[J]. 化工管理, 2020(4):103-104. doi: 10.3969/j.issn.1008-4800.2020.04.065

    CUI Caihua, GAO Jing, KANG Tiantian. Application status and development trend of organic salt snow melting agent[J]. Chemical Industry Management,2020(4):103-104(in Chinese). doi: 10.3969/j.issn.1008-4800.2020.04.065
    [8] FIGUEIRA R B, SADOVSKI A, MELO A P, et al. Chloride threshold value to initiate reinforcement corrosion in simulated concrete pore solutions: The influence of surface finishing and pH[J]. Construction and Building Materials,2017,141:183-200. doi: 10.1016/j.conbuildmat.2017.03.004
    [9] IRASSAR E F, BONAVETT V L, GONZALEZ M. Microstructural study of sulfate attack on ordinary and limestone portland cements at ambient temperature[J]. Cement and Concrete Research,2003,33(1):31-41. doi: 10.1016/S0008-8846(02)00914-6
    [10] 孟祥玲, 高延敏. 水性环氧树脂的研究进展[J]. 材料导报, 2006(S2):384-386. doi: 10.3321/j.issn:1005-023X.2006.z2.113

    MENG Xiangling, GAO Yanmin. Research progress of waterborne epoxy resins[J]. Materials Reports,2006(S2):384-386(in Chinese). doi: 10.3321/j.issn:1005-023X.2006.z2.113
    [11] 官仕龙, 陈协, 胡登华, 等. 水性丙烯酸乳液的合成[J]. 武汉工程大学学报, 2013, 35(4):30-34. doi: 10.3969/j.issn.1674-2869.2013.04.007

    GUAN Shilong, CHEN Xie, HU Denghua, et al. Synthesis of aqueous acrylic emulsion[J]. Journal of Wuhan Institute of Technology,2013,35(4):30-34(in Chinese). doi: 10.3969/j.issn.1674-2869.2013.04.007
    [12] JING S, ZHANG Q H, CHEN P, et al. Thermal reduced graphene oxide/polyimide nanocomposite coating: Fabrication and anticorrosive property[J]. Journal of Inorganic Materials,2017,32(12):1257-1263. doi: 10.15541/jim20160699
    [13] LIU Q B, LI Z L, XIE C Y. Graphite nanoplatelets-epoxy composites for anti-corrosion coatings[J]. Fresenius Environ Bull,2020,29(2):1003-1011.
    [14] MA Y, DI H H, YU Z X, et al. Fabrication of silica-decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research[J]. Applied Surface Science,2016,360:936-945. doi: 10.1016/j.apsusc.2015.11.088
    [15] YU Z X, DI H H, MA Y, et al. Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings[J]. Surface and Coatings Technology,2015,276:471-478. doi: 10.1016/j.surfcoat.2015.06.027
    [16] HUANG Y J, QIN Y W, ZHOU Y, et al. Polypropylene/graphene oxide nanocomposites prepared by in situ ziegler-natta polymerization[J]. Chemistry of Materials,2010,22(13):4096-4102. doi: 10.1021/cm100998e
    [17] HAYATGEIB Y, RAMEZANZADEH B, KARDAR P, et al. A comparative study on fabrication of a highly effective corrosion protective system based on graphene oxide-polyaniline nanofibers/epoxy composite[J]. Corrosion Science,2018,133:358-373. doi: 10.1016/j.corsci.2018.01.046
    [18] ZHANG R, YU X, YANG Q, et al. The role of graphene in anti-corrosion coatings: A review[J]. Construction and Building Materials,2021,294(10):123613. doi: 10.1016/J.CONBUILDMAT.2021.123613
    [19] WANG X, WANG J, LI Q, et al. Synthesis and characterization of waterborne epoxy-acrylic corrosion-resistant coatings[J]. Journal of Macromolecular Science:Part B,2013,52(5):751-761. doi: 10.1080/00222348.2012.730351
    [20] MAO H N, WANG X G. Use of in-situ polymerization in the preparation of graphene/polymer nanocomposites[J]. New Carbon Materials,2020,35(4):336-343.
    [21] ZHOU X, HUANG H, ZHU R, et al. Facile modification of graphene oxide with Lysine for improving anti-corrosion performances of water-borne epoxy coatings[J]. Progress in Organic Coatings,2019,136:105200. doi: 10.1016/j.porgcoat.2019.06.046
    [22] CUI M J, REN S M, ZHAO H C, et al. Polydopamine coated graphene oxide for anticorrosive reinforcement of water-borne epoxy coating[J]. Chemical Engineering Journal, 2018, 335: 255-266.
    [23] 中华人民共和国交通运输部. 公路工程水泥及水泥混凝土试验规程: JTG 3420—2020[S]. 北京: 人民交通出版社, 2020.

    Ministry of Transport of the People's Republic of China. Testing methods of cement and concrete for highway engineering: JTG 3420—2020[S]. Beijing: People's Communications Press, 2020(in Chinese).
    [24] 中华人民共和国国家质量监督检验检疫总局. 色漆和清漆 铅笔法测定漆膜硬度: GB/T 6739—2006[S]. 北京: 中国标准出版社, 2006.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Paints and varnishes—Determination of film hardness by pencil test: GB/T 6739—2006[S]. Beijing: China Standards Press, 2006(in Chinese).
    [25] 中华人民共和国交通部. 混凝土桥梁结构表面涂层防腐技术条件: JT/T 695—2007[S]. 北京: 人民交通出版社, 2007.

    Ministry of Transport of the People's Republic of China. Specification of anti-corrosive coating for concrete brige structure: JT/T 695—2007[S]. Beijing: People's Communications Press, 2007(in Chinese).
    [26] 国家市场监督管理总局. 漆膜耐冲击测定法: GB/T 1732—2020[S]. 北京: 中国质检出版社, 2020.

    State Administration for Market Regulation. Determination of impact resistance of coating fil: GB/T 1732—2020[S]. Beijing: China Quality Inspection Press, 2020(in Chinese).
    [27] 国家技术监督局. 漆膜耐水性测定法: GB/T 1733—1993[S]. 北京: 中国质检出版社, 1993.

    The State Bureau of Quality and Technical Supervision. Determination of resistance to water of films: GB/T 1733—1993[S]. Beijing: China Quality Inspection Press, 1993(in Chinese).
    [28] 中国国家标准化管理委员会. 色漆和清漆 人工气候老化人工和人工辐射暴露(滤过的氙弧辐射): GB/T 1865—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Paints and varnishes—Artificial weathering and exposure to artificial radiation—Filtered xenon-arc radiation: GB/T 1865—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [29] 中国国家标准化管理委员会. 色漆和清漆 耐液体介质的测定: GB/T 9274—1988[S]. 北京: 中国标准出版社, 1988.

    Standardization Administration of the People's Republic of China. Paints and varnishes—Determination of resistance to liquids: GB/T 9274—1988[S]. Beijing: China Standards Press, 2008(in Chinese).
    [30] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture and Architecture Press, 2009(in Chinese).
    [31] MOSADEGH K, AMANOLLAH Z A, LUIGI V, et al. Non-covalent supported of L-proline on graphene oxide/FeO nanocomposite: A novel, highly efficient and superparamagnetically separable catalyst for the synthesis of bis-pyrazole derivatives[J]. Molecules,2018,23(2):330. doi: 10.3390/molecules23020330
    [32] ZHI M, LIU Q, CHEN H, et al. Thermal stability and flame retardancy properties of epoxy resin modified with functionalized graphene oxide containing phosphorus and silicon elements[J]. ACS Omega,2019,4(6):10975-10984. doi: 10.1021/acsomega.9b00852
    [33] CHEN Y, TIAN Q, DONG L, et al. Microstructure and dielectric properties of bismaleimide composite synergistically modified by graphene oxide and polyetheretherketone[J]. Journal of Materials Science: Materials in Electronics,2020,31:5368-5375. doi: 10.1007/s10854-020-03097-0
    [34] JZVIDPARVAR A A, NADERI R, RAMEZANZADEH B. Manipulating graphene oxide nanocontainer with benzimidazole and cerium ions: Application in epoxy-based nanocomposite for active corrosion protection[J]. Corrosion Science,2020,165:108379. doi: 10.1016/j.corsci.2019.108379
    [35] CUI J, SHAN W, XU J, et al. Effect of silane-bridging on the dispersion of polyetheramine-functionalized graphene oxide in waterborne epoxy composites[J]. Composites Science and Technology,2020,200(9):108438.
    [36] DONG R, LIU L. Preparation and properties of acrylic resin coating modified by functional graphene oxide[J]. Applied Surface Science,2016,368(15):378-387.
    [37] ZHANG S, LIU P, ZHAO X, et al. Preparation of poly (vinyl alcohol)-grafted graphene oxide/poly (vinyl alcohol) nanocomposites via in-situ low-temperature emulsion polymerization and their thermal and mechanical characterization[J]. Applied Surface Science,2016,396:1098-1107.
    [38] LIU H T, PANG X Y, DING W, et al. Preparation of nano-SiO2 modified graphene oxide and its application in polyacrylate emulsion[J]. Materials Today Communications,2021,27:102245. doi: 10.1016/j.mtcomm.2021.102245
    [39] LI S S, XU R, SONG G S, et al. Bio-inspired (GO+CNTs)-PU hydrophobic coating via replication of Lotus leaf and its enhanced mechanical and anti-corrosion properties[J]. Progress in Organic Coatings,2021,159:106414. doi: 10.1016/j.porgcoat.2021.106414
    [40] YANG Y K, GAO Y N, WANG X, et al. Preparation and properties of a self-crosslinking styrene acrylic emulsion using amino-functional graphene oxide as a crosslinking agent and anti-corrosion filler[J]. Journal of Materials Research and Technology,2022,16:1814-1823. doi: 10.1016/j.jmrt.2021.12.114
    [41] PRAK L, SUMRANWANICH T, TANGTERMISRIKUL S. Experimental investigation on the degradation of coating on concrete surfaces exposed to accelerated and natural UV in chloride environment[J]. Journal of Adhesion Science and Technology,2023,37(2):240-256. doi: 10.1080/01694243.2022.2026707
    [42] YU F Y, GAO J, LIU C P. Preparation and UV aging of nano-SiO2/fluorinated polyacrylate polyurethane hydrophobic composite coating[J]. Progress in Organic Coatings: An International Review Journal,2020,141(1):105556.
    [43] WANG H, FENG P, LYU Y, et al. A comparative study on UV degradation of organic coatings for concrete: Structure, adhesion, and protection performance[J]. Progress in Organic Coatings,2020,149:105892. doi: 10.1016/j.porgcoat.2020.105892
    [44] GENG Y, ZHOU P, LI S, et al. Superior corrosion resistance of mild steel coated with graphene oxide modified silane coating in chlorinated simulated concrete solution[J]. Progress in Organic Coatings: An International Review Journal,2022,164:106716. doi: 10.1016/j.porgcoat.2022.106716
  • 加载中
图(17) / 表(6)
计量
  • 文章访问数:  529
  • HTML全文浏览量:  301
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-18
  • 修回日期:  2023-06-26
  • 录用日期:  2023-07-06
  • 网络出版日期:  2023-07-17
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回