Preparation of GO/epoxy acrylic coating and application in corrosion resistance of concrete to deicing salt
-
摘要: 以环氧树脂E-44和3种丙烯酸类单体为原料,采用原位聚合法引入不同掺量的改性氧化石墨烯(GO) (KH560-GO (KGO)和A151-GO (AGO)),得到GO改性环氧丙烯酸(WEP)乳液,加入适量填料及助剂制得KGO/WEP和AGO/WEP防腐涂料并制成复合涂层。结果表明:加入KGO或AGO均可提高WEP涂层的热稳定性;其中0.05wt%KGO/WEP的综合性能较优,该复合涂层的铅笔硬度为5H,冲击强度≥50 cm,粘结强度1.79 MPa,吸水率1.06%,接触角78.05°;紫外老化1000 h后,色差变化较小为0.75,光泽度保持较好为9.7;液体化学介质腐蚀240 h后,涂层形貌仍保持良好;涂层氯离子渗透量为0.34×10−3 mg/(cm2·d)。将GO/WEP涂层涂装于混凝土砂浆试块表面,进行耐除冰盐冻融循环40次后,涂层和混凝土试块的测试结果表明:0.05wt%KGO/WEP涂层综合性能较好,腐蚀后的涂层粘结强度最大为1.91 MPa;砂浆试块的质量增长率为1.46%,6 h氯离子电通量为532 C,抗压强度损失率为18.2%。该复合涂层可有效提高混凝土基材表面的耐除冰盐腐蚀性,对道路养护水平的提升具有重要的研究意义。Abstract: AGO/WEP and KGO/WEP anti-corrosion coating was prepared, using epoxy resin E-44 and three acrylic monomers as raw materials, modified by different dosages of graphene oxide (KH560/GO (KGO), A151/GO (AGO)) under in-situ polymerization method. The results show that the addition of KGO or AGO can both improve the thermal performance of the composite coating. The comprehensive performance of 0.05wt%KGO/WEP is better, the pencil hardness of the composite coating is 5H, the impact strength is more than 50 cm, the bonding strength is 1.79 MPa, the water absorption rate is 1.06%, the contact angle is 78.05°, the color difference after 1000 h UV aging is 0.75, the gloss is maintained well at 9.7, the coating morphology is maintained well after 240 h of chemical resistance, and the chloride ion permeability of the coating is 0.34×10−3 mg/(cm2·d). The results show that the 0.05wt%KGO/WEP coating has good comprehensive performance and a maximum bond strength is 1.91 MPa after 40 salt freeze cycles. The mass growth rate is 1.46%, the chloride ion flux at 6 h is 532 C, the compressive strength loss is 18.2%. The composite coating can effectively improve the corrosion resistance of snow melting salt on the surface of concrete substrate, and has important research significance for improving the maintenance level of roads.
-
Key words:
- concrete /
- salt freezing corrosion /
- graphene oxide /
- water-based acrylic paint /
- anticorrosion coating
-
图 2 原位聚合GO/环氧丙烯酸(WEP)乳液的制备
Figure 2. Preparation of in-situ polymerization GO/epoxy acrylic (WEP) emulsion
SDBS—Sodium dodecyl benzene sulfonate; OP-10—Octyl phenol polyoxyethylene ether-10; MMA—Methyl methacrylate; MAA—Methacrylic acid; BA—Butyl acrylate; E-44—E-44 epoxy resin; APS—Ammonium persulfate
表 1 砂浆配合比
Table 1. Concrete mortar mix ratio
Water Cement Sand Gravel 160 g 445 g 640 g 1185 g 表 2 不同掺量的GO对GO/WEP涂层的铅笔硬度与冲击强度的影响
Table 2. Effects of different dosages of GO on pencil hardness and impact strength of GO/WEP coating
Different dosages of GO/wt% Pencil hardness Impact strength/cm KGO/WEP AGO/WEP KGO/WEP AGO/WEP 0 3H 3H 45 45 0.025 4H 3H ≥50 ≥50 0.05 5H 4H ≥50 ≥50 0.075 4H 4H ≥50 ≥50 0.1 4H 4H ≥50 ≥50 表 3 混凝土盐冻循环(40次)后的质量增长率
Table 3. Quality growth rate after concrete salting cycles (40 times)
Type of coating Quality growth rate/% Uncoated 5.33 WEP 2.36 0.05wt%KGO/WEP 1.46 表 4 氯离子渗透电通量评价标准
Table 4. Evaluation criteria for chloride ion permeation flux
6 h electrical flux/C Chloride permeability >4000 High 2000-4000 Medium 1000-2000 Low 100-1000 Very low <100 Ignore 表 5 混凝土抗氯离子渗透性能
Table 5. Resistance of concrete to chloride ion permeability
Type of coating 6 h electrical
flux/CChloride
permeabilityUncoated 2016 Medium WEP 1387 Low 0.05wt%KGO/WEP 532 Very low 表 6 混凝土盐冻循环(40次)前后的抗压强度变化
Table 6. Change in compressive strength of concrete before and after the salt-freezing cycle (40 times)
Type of coating Compressive strength before the
salt-freezing cycle/MPaCompressive strength after the
salt-freezing cycle/MPaStrength loss rate/% Uncoated 44 22 50.0 WEP 27 38.6 0.05wt%KGO/WEP 36 18.2 -
[1] 许艳平, 黎鹏平, 李安, 等. 公路桥梁混凝土防腐涂层研究进展[J]. 电镀与涂饰, 2020, 39(24):1758-1762. doi: 10.19289/j.1004-227x.2020.24.013XU Yanping, LI Pengping, LI An, et al. Research progress of concrete anti-corrosion coating for highway bridges[J]. Electroplating and Finishing,2020,39(24):1758-1762(in Chinese). doi: 10.19289/j.1004-227x.2020.24.013 [2] 张婷. 纳米改性含氟混凝土防腐涂料的制备及性能[D]. 西安: 长安大学, 2021.ZHANG Ting. Preparation and properties of nano-modified fluorine-containing concrete anti-corrosion coatings[D]. Xi'an: Chang'an University, 2021(in Chinese). [3] 刘小亮. SiO2-PDMS复合耐腐蚀涂层制备与性能研究[D]. 杭州: 浙江大学, 2014.LIU Xiaoliang. Preparation and properties of SiO2-PDMS composite corrosion-resistant coating[D]. Hangzhou: Zhejiang University, 2014(in Chinese). [4] 齐玉宏, 张国梁, 池金锋, 等. 混凝土防腐涂料的研究进展[J]. 涂料工业, 2018, 48(11):63-71, 78. doi: 10.12020/j.issn.0253-4312.2018.11.63QI Yuhong, ZHANG Guoliang, CHI Jinfeng, et al. Research progress of concrete anticorrosive coatings[J]. Coatings Industry,2018,48(11):63-71, 78(in Chinese). doi: 10.12020/j.issn.0253-4312.2018.11.63 [5] 郑铮. 钢筋混凝土桥梁耐久性退化机制及防护措施研究[J]. 福建交通科技, 2021(2):90-94, 125.ZHENG Zheng. Research on durability degradation mechanism and protective measures of reinforced concrete bridge[J]. Fujian Communications Science and Technology,2021(2):90-94, 125(in Chinese). [6] 李荣涛, TUAN Christopher Y. 干湿交替对混凝土中氯离子分布影响的多相耦合数值分析[J]. 硅酸盐通报, 2021, 40(2):480-484.LI Rongtao, TUAN Christopher Y. Multiphase coupling numerical analysis of the influence of wet and dry alternation on chloride ion distribution in concrete[J]. Bulletin of the Chinese Ceramics,2021,40(2):480-484(in Chinese). [7] 崔彩花, 高静, 康田田. 有机盐融雪剂应用现状及发展趋势[J]. 化工管理, 2020(4):103-104. doi: 10.3969/j.issn.1008-4800.2020.04.065CUI Caihua, GAO Jing, KANG Tiantian. Application status and development trend of organic salt snow melting agent[J]. Chemical Industry Management,2020(4):103-104(in Chinese). doi: 10.3969/j.issn.1008-4800.2020.04.065 [8] FIGUEIRA R B, SADOVSKI A, MELO A P, et al. Chloride threshold value to initiate reinforcement corrosion in simulated concrete pore solutions: The influence of surface finishing and pH[J]. Construction and Building Materials,2017,141:183-200. doi: 10.1016/j.conbuildmat.2017.03.004 [9] IRASSAR E F, BONAVETT V L, GONZALEZ M. Microstructural study of sulfate attack on ordinary and limestone portland cements at ambient temperature[J]. Cement and Concrete Research,2003,33(1):31-41. doi: 10.1016/S0008-8846(02)00914-6 [10] 孟祥玲, 高延敏. 水性环氧树脂的研究进展[J]. 材料导报, 2006(S2):384-386. doi: 10.3321/j.issn:1005-023X.2006.z2.113MENG Xiangling, GAO Yanmin. Research progress of waterborne epoxy resins[J]. Materials Reports,2006(S2):384-386(in Chinese). doi: 10.3321/j.issn:1005-023X.2006.z2.113 [11] 官仕龙, 陈协, 胡登华, 等. 水性丙烯酸乳液的合成[J]. 武汉工程大学学报, 2013, 35(4):30-34. doi: 10.3969/j.issn.1674-2869.2013.04.007GUAN Shilong, CHEN Xie, HU Denghua, et al. Synthesis of aqueous acrylic emulsion[J]. Journal of Wuhan Institute of Technology,2013,35(4):30-34(in Chinese). doi: 10.3969/j.issn.1674-2869.2013.04.007 [12] JING S, ZHANG Q H, CHEN P, et al. Thermal reduced graphene oxide/polyimide nanocomposite coating: Fabrication and anticorrosive property[J]. Journal of Inorganic Materials,2017,32(12):1257-1263. doi: 10.15541/jim20160699 [13] LIU Q B, LI Z L, XIE C Y. Graphite nanoplatelets-epoxy composites for anti-corrosion coatings[J]. Fresenius Environ Bull,2020,29(2):1003-1011. [14] MA Y, DI H H, YU Z X, et al. Fabrication of silica-decorated graphene oxide nanohybrids and the properties of composite epoxy coatings research[J]. Applied Surface Science,2016,360:936-945. doi: 10.1016/j.apsusc.2015.11.088 [15] YU Z X, DI H H, MA Y, et al. Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings[J]. Surface and Coatings Technology,2015,276:471-478. doi: 10.1016/j.surfcoat.2015.06.027 [16] HUANG Y J, QIN Y W, ZHOU Y, et al. Polypropylene/graphene oxide nanocomposites prepared by in situ ziegler-natta polymerization[J]. Chemistry of Materials,2010,22(13):4096-4102. doi: 10.1021/cm100998e [17] HAYATGEIB Y, RAMEZANZADEH B, KARDAR P, et al. A comparative study on fabrication of a highly effective corrosion protective system based on graphene oxide-polyaniline nanofibers/epoxy composite[J]. Corrosion Science,2018,133:358-373. doi: 10.1016/j.corsci.2018.01.046 [18] ZHANG R, YU X, YANG Q, et al. The role of graphene in anti-corrosion coatings: A review[J]. Construction and Building Materials,2021,294(10):123613. doi: 10.1016/J.CONBUILDMAT.2021.123613 [19] WANG X, WANG J, LI Q, et al. Synthesis and characterization of waterborne epoxy-acrylic corrosion-resistant coatings[J]. Journal of Macromolecular Science:Part B,2013,52(5):751-761. doi: 10.1080/00222348.2012.730351 [20] MAO H N, WANG X G. Use of in-situ polymerization in the preparation of graphene/polymer nanocomposites[J]. New Carbon Materials,2020,35(4):336-343. [21] ZHOU X, HUANG H, ZHU R, et al. Facile modification of graphene oxide with Lysine for improving anti-corrosion performances of water-borne epoxy coatings[J]. Progress in Organic Coatings,2019,136:105200. doi: 10.1016/j.porgcoat.2019.06.046 [22] CUI M J, REN S M, ZHAO H C, et al. Polydopamine coated graphene oxide for anticorrosive reinforcement of water-borne epoxy coating[J]. Chemical Engineering Journal, 2018, 335: 255-266. [23] 中华人民共和国交通运输部. 公路工程水泥及水泥混凝土试验规程: JTG 3420—2020[S]. 北京: 人民交通出版社, 2020.Ministry of Transport of the People's Republic of China. Testing methods of cement and concrete for highway engineering: JTG 3420—2020[S]. Beijing: People's Communications Press, 2020(in Chinese). [24] 中华人民共和国国家质量监督检验检疫总局. 色漆和清漆 铅笔法测定漆膜硬度: GB/T 6739—2006[S]. 北京: 中国标准出版社, 2006.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Paints and varnishes—Determination of film hardness by pencil test: GB/T 6739—2006[S]. Beijing: China Standards Press, 2006(in Chinese). [25] 中华人民共和国交通部. 混凝土桥梁结构表面涂层防腐技术条件: JT/T 695—2007[S]. 北京: 人民交通出版社, 2007.Ministry of Transport of the People's Republic of China. Specification of anti-corrosive coating for concrete brige structure: JT/T 695—2007[S]. Beijing: People's Communications Press, 2007(in Chinese). [26] 国家市场监督管理总局. 漆膜耐冲击测定法: GB/T 1732—2020[S]. 北京: 中国质检出版社, 2020.State Administration for Market Regulation. Determination of impact resistance of coating fil: GB/T 1732—2020[S]. Beijing: China Quality Inspection Press, 2020(in Chinese). [27] 国家技术监督局. 漆膜耐水性测定法: GB/T 1733—1993[S]. 北京: 中国质检出版社, 1993.The State Bureau of Quality and Technical Supervision. Determination of resistance to water of films: GB/T 1733—1993[S]. Beijing: China Quality Inspection Press, 1993(in Chinese). [28] 中国国家标准化管理委员会. 色漆和清漆 人工气候老化人工和人工辐射暴露(滤过的氙弧辐射): GB/T 1865—2009[S]. 北京: 中国标准出版社, 2009.Standardization Administration of the People's Republic of China. Paints and varnishes—Artificial weathering and exposure to artificial radiation—Filtered xenon-arc radiation: GB/T 1865—2009[S]. Beijing: China Standards Press, 2009(in Chinese). [29] 中国国家标准化管理委员会. 色漆和清漆 耐液体介质的测定: GB/T 9274—1988[S]. 北京: 中国标准出版社, 1988.Standardization Administration of the People's Republic of China. Paints and varnishes—Determination of resistance to liquids: GB/T 9274—1988[S]. Beijing: China Standards Press, 2008(in Chinese). [30] 中华人民共和国住房和城乡建设部. 普通混凝土长期性能和耐久性能试验方法标准: GB/T 50082—2009[S]. 北京: 中国建筑工业出版社, 2009.Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of long-term performance and durability of ordinary concrete: GB/T 50082—2009[S]. Beijing: China Architecture and Architecture Press, 2009(in Chinese). [31] MOSADEGH K, AMANOLLAH Z A, LUIGI V, et al. Non-covalent supported of L-proline on graphene oxide/FeO nanocomposite: A novel, highly efficient and superparamagnetically separable catalyst for the synthesis of bis-pyrazole derivatives[J]. Molecules,2018,23(2):330. doi: 10.3390/molecules23020330 [32] ZHI M, LIU Q, CHEN H, et al. Thermal stability and flame retardancy properties of epoxy resin modified with functionalized graphene oxide containing phosphorus and silicon elements[J]. ACS Omega,2019,4(6):10975-10984. doi: 10.1021/acsomega.9b00852 [33] CHEN Y, TIAN Q, DONG L, et al. Microstructure and dielectric properties of bismaleimide composite synergistically modified by graphene oxide and polyetheretherketone[J]. Journal of Materials Science: Materials in Electronics,2020,31:5368-5375. doi: 10.1007/s10854-020-03097-0 [34] JZVIDPARVAR A A, NADERI R, RAMEZANZADEH B. Manipulating graphene oxide nanocontainer with benzimidazole and cerium ions: Application in epoxy-based nanocomposite for active corrosion protection[J]. Corrosion Science,2020,165:108379. doi: 10.1016/j.corsci.2019.108379 [35] CUI J, SHAN W, XU J, et al. Effect of silane-bridging on the dispersion of polyetheramine-functionalized graphene oxide in waterborne epoxy composites[J]. Composites Science and Technology,2020,200(9):108438. [36] DONG R, LIU L. Preparation and properties of acrylic resin coating modified by functional graphene oxide[J]. Applied Surface Science,2016,368(15):378-387. [37] ZHANG S, LIU P, ZHAO X, et al. Preparation of poly (vinyl alcohol)-grafted graphene oxide/poly (vinyl alcohol) nanocomposites via in-situ low-temperature emulsion polymerization and their thermal and mechanical characterization[J]. Applied Surface Science,2016,396:1098-1107. [38] LIU H T, PANG X Y, DING W, et al. Preparation of nano-SiO2 modified graphene oxide and its application in polyacrylate emulsion[J]. Materials Today Communications,2021,27:102245. doi: 10.1016/j.mtcomm.2021.102245 [39] LI S S, XU R, SONG G S, et al. Bio-inspired (GO+CNTs)-PU hydrophobic coating via replication of Lotus leaf and its enhanced mechanical and anti-corrosion properties[J]. Progress in Organic Coatings,2021,159:106414. doi: 10.1016/j.porgcoat.2021.106414 [40] YANG Y K, GAO Y N, WANG X, et al. Preparation and properties of a self-crosslinking styrene acrylic emulsion using amino-functional graphene oxide as a crosslinking agent and anti-corrosion filler[J]. Journal of Materials Research and Technology,2022,16:1814-1823. doi: 10.1016/j.jmrt.2021.12.114 [41] PRAK L, SUMRANWANICH T, TANGTERMISRIKUL S. Experimental investigation on the degradation of coating on concrete surfaces exposed to accelerated and natural UV in chloride environment[J]. Journal of Adhesion Science and Technology,2023,37(2):240-256. doi: 10.1080/01694243.2022.2026707 [42] YU F Y, GAO J, LIU C P. Preparation and UV aging of nano-SiO2/fluorinated polyacrylate polyurethane hydrophobic composite coating[J]. Progress in Organic Coatings: An International Review Journal,2020,141(1):105556. [43] WANG H, FENG P, LYU Y, et al. A comparative study on UV degradation of organic coatings for concrete: Structure, adhesion, and protection performance[J]. Progress in Organic Coatings,2020,149:105892. doi: 10.1016/j.porgcoat.2020.105892 [44] GENG Y, ZHOU P, LI S, et al. Superior corrosion resistance of mild steel coated with graphene oxide modified silane coating in chlorinated simulated concrete solution[J]. Progress in Organic Coatings: An International Review Journal,2022,164:106716. doi: 10.1016/j.porgcoat.2022.106716