Numerical simulation of hot forming of aluminum-carbon fiber reinforced polypropylene hybrid hat-shaped rail
-
摘要: 铝合金(Aluminum alloy,Al)-碳纤维增强聚丙烯(Carbon fiber reinforced polypropylene,CF/PP)混合材料通过热模压工艺可快速成形为车身薄壁构件,在汽车轻量化设计中应用前景广阔。然而,在热模压中Al主要以塑性变形为主,而CF/PP则以织物拉伸/剪切变形为主;此外,Al-CF/PP混合材料具有明显的热力耦合力学特性,为其数值模型的发展及热成形特性的研究带来了巨大挑战。本文首先通过热模压工艺制备8层(Al与CF/PP交替对称铺放)Al-CF/PP混合帽型梁试样,并采用X射线扫描断层(X-ray computed tomography,X-ray CT)手段对纤维夹角变化进行逐层表征。结果表明:Al-CF/PP中织物发生了明显的剪切变形;然后分别对Al片材和CF/PP片材在不同温度条件下开展单轴拉伸和偏轴拉伸实验,并构建了与温度相关的Al-CF/PP材料本构模型;在ABAQUS中构建了Al-CF/PP帽型梁的热模压有限元模型,仿真预测的纤维夹角变化与实验结果基本吻合;结果表明热模压过程中所有Al片材均出现了厚度减薄,CF/PP片材均经历了明显的剪切变形,Al-CF/PP层间材料则发生了显著的失效损伤。Abstract: Aluminum alloy (Al)-carbon fiber reinforced polypropylene (CF/PP) hybrid materials can be quickly formed into thin-walled components of the vehicle body by the hot press molding technology, and has broad application prospects in the lightweight design of automobiles. However, the Al mainly exhibits plastic deformation while the CF/PP mainly exhibits fabric tensile/shear deformations during the hot pressing process; In addition, the Al-CF/PP hybrid materials exhibit significant thermo-mechanical coupling characteristics, which bring huge challenges to numerical model developments and hot forming characteristic studies. The 8-layer (Al and CF/PP are alternately and symmetrically laid) Al-CF/PP hybrid hat-shaped rail specimen was prepared by the hot pressing technology, and the fiber angle variations were characterized through the X-ray computed tomography (X-ray CT) layer-by-layer, and the results indicate that the fabrics in Al-CF/PP undergo significant shear deformations; Then, the uniaxial and biaxial tensile experiments were conducted for Al sheets and CF/PP sheets under different temperature conditions, and the temperature-dependent material constitutive model of Al-CF/PP was constructed; And the hot press molding finite element model of the Al-CF/PP hat-shaped rail was developed in ABAQUS, and the predicted fiber angle variations by the simulation are basically consistent with the experimental results. The results indicate that all Al sheets occur thickness reductions, all CF/PP sheets undergo obvious shear deformations and interlayer materials between Al and CF/PP occur significant failure damages during the hot press molding process.
-
Key words:
- Al-CF/PP rail /
- hot press molding /
- formability /
- constitutive model /
- numerical simulation
-
图 7 纤维剪切变形示意图
Figure 7. Schematic diagram of the fiber yarn shear deformation
$ {\theta _1} $, $ {\theta _2} $—Shear angles of the weft yarn and warp yarns, respectively; $ \alpha $—Shear angle between the weft and warp yarns; $({\underline e _1},{\underline e _2}) $ is the current local orthogonal coordinate system; $({ }^1 \underline{\boldsymbol{f}}_\alpha, { }^2 \underline{\boldsymbol{f}}_\alpha , \alpha=1,2$) is the current fiber coordinate system; $(\underline e _1^0,\underline e _2^0) $ is the initial local orthogonal coordinate system; $(\underline{\boldsymbol{f}}_1^0, \underline{\boldsymbol{f}}_2^0) $ is the initial fiber coordinate system
表 1 铝合金片材的主要化学成分 (wt%)
Table 1. Major chemical composition of the alloy sheet (wt%)
Element Si Fe Cu Mn Mg Cr Zn Value 0.59 0.12 0.24 0.11 1.02 0.24 0.07 表 2 Al片材的Johnson-Cook (JC)模型材料参数
Table 2. Johnson-Cook (JC) model material properties of the Al sheet
Parameter A B n Tmelt /K Value 126.23 22.42 0.054 923.15 Notes: A, B, n are undetermined parameters in JC model, which can be calibrated at reference temperature and reference rate; Tmelt—Melting temperature. 表 3 CF/PP预浸料的次弹性模型参数
Table 3. Hypoelastic model parameters of the CF/PP prepreg
Parameter $ {a_1} $ $ {a_2} $ $ {a_3} $ $ {a_4} $ $ {a_5} $ A Value 2.08 −4.93 5.45 −2.88 0.97 −2.16 Note: a1, a2, a3, a4 and a5 are fitting parameters for shear stiffness C33. 表 4 Al片材与CF/PP片材界面材料的粘胶参数
Table 4. Cohesive parameters of the interface material between Al sheets and CF/PP sheets
Cohesive $ {K_{{\text{nn}}}} $/(GPa·m−1) $ {K_{{\text{ss}}}} $/(GPa·m−1) $ {K_{{\text{tt}}}} $/(GPa·m−1) $ \delta _{\text{n}}^{\text{0}} $/MPa $ \delta _{\text{s}}^{\text{0}} $/MPa $ \delta _{\text{t}}^{\text{0}} $/MPa $ \delta _{\text{m}}^{{\text{max}}} $/mm Value 8.0 8.0 8.0 0.001 0.001 0.001 0.001 Notes: $ {K_{{\text{nn}}}} $,$ {K_{{\text{ss}}}} $,$ {K_{{\text{tt}}}} $—Normal and shear stiffness parameters, respectively; $ \delta _{\text{n}}^{\text{0}} $, $ \delta _{\text{s}}^{\text{0}} $and $ \delta _{\text{t}}^{\text{0}} $—Normal and shear strength parameters, respectively; $ \delta _{\text{m}}^{{\text{max}}} $—Effective separation at damage initiation. 表 5 CT测试和FEA预测中第4层和第5层中不同点处的纤维角变化对比
Table 5. Comparisons in fiber angle variations in different points of 4th and 5th layers between CT test and FEA prediction
Layer CT Shear angle/(°) FEA Shear angle/(°) |Error|/% Ply-4
(CF/PP)A 98.5 a 95.8 2.74 D 99.5 d 97.5 2.01 G 99.5 g 98.8 0.70 E 99.0 e 95.1 3.94 F 100.0 f 115.3 15.30 I 97.0 i 111.4 14.80 Ply-5
(CF/PP)A' 99.0 a' 97.4 1.61 D' 100.5 d' 98.8 1.69 G' 99.0 g' 96.4 2.63 E' 100.0 e' 97.8 2.20 F' 99.0 f' 98.4 0.60 I' 99.0 i' 98.0 1.01 -
[1] 王振, 朱国华, 吴永强, 等. 铝合金/碳纤维混合前纵梁的轴向冲击吸能特性[J]. 复合材料学报, 2022, 39(10):5020-5031.WANG Zhen, ZHU Guohua, WU Yongqiang, et al. Axial impact energy absorption characteristics of the aluminum/carbon fiber reinforced plastic hybrid front rail[J]. Acta Materiae Compositae Sinica,2022,39(10):5020-5031(in Chinese). [2] ZHANG W, XU J. Advanced lightweight materials for automobiles: A review[J]. Materials & Design, 2022, 221: 110994. [3] 肇研, 孙铭辰, 张思益, 等. 连续碳纤维增强高性能热塑性复合材料的研究进展[J]. 复合材料学报, 2022, 39(9):4274-4285.ZHAO Yan, SUN Mingchen, ZHANG Siyi, et al. Advance in continuous carbon fiber reinforced high performance thermoplastic composites[J]. Acta Materiae Compositae Sinica,2022,39(9):4274-4285(in Chinese). [4] 何业茂, 焦亚男, 周庆, 等. 热塑性树脂基体对超高分子量聚乙烯纤维复合材料力学性能和抗弹道侵彻性能的影响[J]. 复合材料学报, 2022, 39(4):1570-1581.HE Yemao, JIAO Yanan, ZHOU Qing, et al. Effects of thermoplastic resin matrix on mechanical properties and anti-penetration performance of ultra-high molecular weight polyethylene fiber composite[J]. Acta Materiae Compositae Sinica,2022,39(4):1570-1581(in Chinese). [5] 马芳武, 杨猛, 蒲永锋, 等. 混杂比对碳纤维-玄武岩纤维混杂增强环氧树脂基复合材料弯曲性能的影响[J]. 复合材料学报, 2019, 36(2):362-369.MA Fangwu, YANG Meng, PU Yongfeng, et al. Effect of hybrid ratio on the flexural of carbon and basalt hybrid fibers reinforced epoxy resin composites[J]. Acta Materiae Compositae Sinica,2019,36(2):362-369(in Chinese). [6] 张辰, 饶云飞, 李倩倩, 等. 碳纤维-玻璃纤维混杂增强环氧树脂复合材料低速冲击性能及其模拟[J]. 复合材料学报, 2021, 38(1):165-176.ZHANG Chen, RAO Yunfei, LI Qianqian, et al. Low-velocity impact behavior and numerical simulation of carbon fiber-glass fiber hybrid reinforced epoxy composites[J]. Acta Materiae Compositae Sinica,2021,38(1):165-176(in Chinese). [7] 张铁, 郑兵, 王旭康, 等. 叠层结构对碳纤维增强聚醚醚酮复合材料热成形性能的影响[J]. 复合材料学报, 2023, 40(6):3322-3330.ZHANG Tie, ZHENG Bing, WANG Xukang, et al. Effect of laminated structures on thermo-formability of continuous CF/PEEK composites[J]. Acta Materiae Compositae Sinica,2023,40(6):3322-3330(in Chinese). [8] 赵乐, 陆承志, 王少飞, 等. 碳纤维增强聚苯硫醚复合材料结晶结构与性能调控[J]. 工程塑料应用, 2022, 50(1):72-77.ZHAO Le, LU Chengzhi, WANG Shaofei, et al. Control of crystal structure and performances of carbon fiber reinforced polyphenylene sulfide composite[J]. Engineering Plastics Application,2022,50(1):72-77(in Chinese). [9] WANG Z, LUO J, GONG Z, et al. On correlation of stamping process with fiber angle variation and structural performance of thermoplastic composites [J]. Composites Part B: Engineering, 2022, 247: 110270. [10] KIM D H, KIM H G, KIM H S. Design optimization and manufacture of hybrid glass/carbon fiber reinforced composite bumper beam for automobile vehicle[J]. Composite Structures,2015,131:742-752. doi: 10.1016/j.compstruct.2015.06.028 [11] KWON D, JANG Y, YANG S, et al. Investigation of impact resistance performance of carbon fiber reinforced polypropylene composites with different lamination to applicate fender parts[J]. Composites Part B: Engineering,2021,215:108767. doi: 10.1016/j.compositesb.2021.108767 [12] HARHASH M, FISCHER T, GRUBENMANN M, et al. Top-hat crashboxes of thermoplastic fibre-metal-lami-nates processed in one-step thermoforming: Experimental and numerical study[J]. Composites Part B: Engineering,2021,226:109367. doi: 10.1016/j.compositesb.2021.109367 [13] WOLLMANN T, HAHN M, WIEDEMNANN S, et al. Thermoplastic fibre metal laminates: Stiffness properties and forming behaviour by means of deep drawing[J]. Archives of Civil and Mechanical Engineering,2018,18(2):442-450. doi: 10.1016/j.acme.2017.09.001 [14] FISCHE T, GRUBENMANN M, HARHASH M, et al. Experimental and numerical investigations on the quasi-static structural properties of fibre metal laminates processed by thermoforming[J]. Composite Structures,2021,258:113418. doi: 10.1016/j.compstruct.2020.113418 [15] HEGGEMANN T, HOMBERG W. Deep drawing of fiber metal laminates for automotive lightweight structures[J]. Composite Structures,2019,216:53-57. [16] LIN Y, LI H, WANG Q, et al. Effect of plasma surface treatment of aluminum alloy sheet on the properties of Al/Gf/PP laminates[J]. Applied Surface Science,2020,507:145062. doi: 10.1016/j.apsusc.2019.145062 [17] 王健, 张亮亮, 秦浩, 等. 轧制制备碳纤 维/环氧树脂复合材料层合板及其成形性能[J]. 复合材料学报, 2018, 35(10):2601-2611.WANG Jian, ZHANG Liangliang, QIN Hao, et al. Preparation and forming properties of carbon fiber/epoxy composite laminates by rolling process[J]. Acta Materiae Compositae Sinica,2018,35(10):2601-2611(in Chinese). [18] 王健, 郑学丰, 付昌云, 等. 碳纤维/环氧树脂复合材料-铝合金层合板深拉成型特性[J]. 复合材料学报, 2019, 36(12):2786-2794.WANG Jian, ZHENG Xuefeng, FU Changyun, et al. Deep drawing characteristics of carbon fiber/epoxy resin composite-aluminum alloy laminates[J]. Acta Materiae Compositae Sinica,2019,36(12):2786-2794(in Chinese). [19] 王振, 朱国华. Al-碳纤维增强聚丙烯混合帽型梁的热模压成形特性及三点弯曲特性[J]. 复合材料学报, 2022, 39(12):6096-6108.WANG Zhen, ZHU Guohua. Hot press molding characteristics and three-point bending characteristics of Al-carbon fiber reinforced polypropylene hybrid hat-shaped rail[J]. Acta Materiae Compositae Sinica,2022,39(12):6096-6108(in Chinese). [20] 李光耀, 王琥, 杨旭静, 等. 板料冲压成形工艺与模具设计制造中的若干前沿技术[J]. 机械工程学报, 2010, 46(10):31-39. doi: 10.3901/JME.2010.10.031LI Guangyao, WANG Hu, YANG Xujing, et al. Some new topics on process design and mould manufacture for sheet metal forming[J]. Journal of Mechanical Engineering,2010,46(10):31-39(in Chinese). doi: 10.3901/JME.2010.10.031 [21] 钟志华, 李光耀. 冲压成形CAE技术中接触摩擦计算的新方法[J]. 机械工程学报, 2001, 37(2):33-37. doi: 10.3901/JME.2001.02.033ZHONG Zhihua, LI Guangyao. New methods for frictional contact in simulation of sheet metal forming[J]. Journal of Mechanical Engineering,2001,37(2):33-37(in Chinese). doi: 10.3901/JME.2001.02.033 [22] 贺斌, 胡平, 盈亮. 热冲压过程传热耦合研究[J]. 机械工程学报, 2016, 52(22):31-37. doi: 10.3901/JME.2016.22.031HE Bin, HU Ping, YING Liang. Coupling heat transfer study of hot stamping[J]. Journal of Mechanical Engineering,2016,52(22):31-37(in Chinese). doi: 10.3901/JME.2016.22.031 [23] 唐炳涛, 赵震, 陈军, 等. 多工步板料成形问题的多步反向模拟法[J]. 机械工程学报, 2006, 42(12):211-217. doi: 10.3901/JME.2006.12.211TANG Bingtao, ZHAO Zhen, CHEN Jun, et al. Development of multistage sheet metal forming simulation based on multi-step inverse analysis approach[J]. Journal of Mechanical Engineering,2006,42(12):211-217(in Chinese). doi: 10.3901/JME.2006.12.211 [24] 吴光辉. 基于AutoForm的汽车后门外板拉延分析与工艺参数优化[J]. 锻压技术, 2021, 46(7): 90-95.WU Guanghui. Drawing analysis and process parameter optimization on automobile rear door outer panel based on AutoForm[J]. Forging & Stamping Technology, 2021, 46(7): 90-95(in Chinese). [25] 彭雄奇, 堵同亮, 郭早阳. 机织复合材料各向异性超弹性本构模型[J]. 机械工程学报, 2012, 48(20):45-50. doi: 10.3901/JME.2012.20.045PENG Xiongqi, DU Tongliang, GUO Zaoyang. Anisotropic hyperelastic constitutive model for woven composite fabrics under large deformation[J]. Journal of Mechanical Engineering,2012,48(20):45-50(in Chinese). doi: 10.3901/JME.2012.20.045 [26] PENG X, CAO J. A dual homogenization and finite element approach for material characterization of textile composites[J]. Composites Part B: Engineering,2002,33(1):45-56. doi: 10.1016/S1359-8368(01)00052-X [27] GONG Y, PENG X, YAO Y, et al. An anisotropic hyperelastic constitutive model for thermoplastic woven composite prepregs[J]. Composites Science and Technology,2016,128:17-24. doi: 10.1016/j.compscitech.2016.03.005 [28] WANG Z, ZHU G. Development of the temperature-dependent constitutive model of glass fiber reinforced polypropylene composites[J]. Materials and Manufacturing Processes,2023,38(3):295-305. doi: 10.1080/10426914.2021.2016817 [29] 鲍益东, 何瑞, 宋云鹤, 等. 二维编织碳纤维增强树脂复合材料一步法铺层展开[J]. 复合材料学报, 2022, 39(7):3144-3155.BAO Yidong, HE Rui, SONG Yunhe, et al. One-step spreading for 2D woven carbon fiber reinforced plastics[J]. Acta Materiae Compositae Sinica,2022,39(7):3144-3155(in Chinese). [30] LIANG B, GAO S, ZHANG W. An integrated preforming-performance model for high-fidelity performance analysis of cured woven composite part with non-orthogonal yarn angles[J]. Chinese Journal of Aeronautics,2022,35(6):367-378. doi: 10.1016/j.cja.2021.09.019 [31] 孔令国, 王继辉, 陈宏达, 等. 压边力对非平衡平纹机织物预制体成型作用规律[J]. 复合材料学报, 2022, 39(4):1798-1812.KONG Lingguo, WANG Jihui, CHEN Hongda, et al. Influence of blank-holder force on the draping process of unbalanced plain woven fabric[J]. Acta Materiae Compo-sitae Sinica,2022,39(4):1798-1812(in Chinese). [32] 吕柄熠, 王时玉, 校金友, 等. 基于非正交本构模型的热塑性机织物预浸料宽温域赋形褶皱缺陷仿真方法[J]. 复合材料学报, 2023, 40(4):2355-2364.LYU Bingyi, WANG Shiyu, XIAO Jinyou, et al. A simulation method of forming wrinkle defects in thermoplastic woven fabric prepregs in a wide temperature range based on non-orthogonal constitutive model[J]. Acta Materiae Compositae Sinica,2023,40(4):2355-2364(in Chinese). [33] SCHWE L. Optional strain-rate forms for the johnson cook constitutive model and the role of the parameter epsilon_0[C]//6th European LS_DYNA Users' Conference. Anwenderforum: Frankenthal, 2007: 1-17. [34] BAUMARD T, MENARY G, DE ALMEIDA O, et al. Experimental characterization and modeling of the temperature and rate-dependent shear behaviour of powder-impregnated glass fiber/PA66 woven semipregs[J]. Composites Science and Technology,2019,180:23-32. doi: 10.1016/j.compscitech.2019.05.011 [35] Version A 6.13. Analysis user's manual [M]. Providence: Dassault Systemes Simulia Corp., 2013.