Preparation and properties of 4D printed magneto responsive shape memory epoxy resin-based composites
-
摘要: 以环氧树脂(EP51)为基体,乙炔炭黑(ACB)和镍粉(Ni)为填料,聚醚多元醇(PPG)为增韧剂共混制成打印墨水,利用直写3D打印机制备ACB-Ni/EP51复合材料。通过流变仪、直写3D打印机对墨水的流变性能和可打印性进行表征;通过拉力实验机(UTM)、扫描电镜(SEM)、动态热机械分析仪(DMA)、差示扫描量热仪(DSC) 对材料力学性能、微观形貌、动态力学性能、差热性能和形状记忆效应进行表征,探究了填料含量对墨水和材料性能的影响。结果表明:ACB含量达到12wt%时,墨水具有良好的可打印性;当Ni粉含量达到16wt%时,打印针头堵塞造成打印不连续、不均匀。固化后生成的“海岛”增韧结构使材料拉伸强度明显提高(60 MPa以上)。随着Ni粉含量增加,对拉伸强度的影响由促进变为削弱。当Ni粉含量从6wt%增加至14wt%,形状固定率(Rf)从99.4%降至94.2%。在300 kHz交变磁场作用下,形状发生回复,Ni粉含量增加使形状回复率(Rr)和回复速率升高,Rr从94.8%提升至99.1%,回复时间从39 s缩短至17 s。Ni-ACB/EP51复合材料具有较好的形状记忆性能,在空间可展开结构、驱动器及4D打印等方面有一定的应用前景。Abstract: ACB-Ni/EP51 composites were prepared by using direct-write 3D printer with ink that was blended from epoxy resin (EP51) as the matrix, acetylene black (ACB) and nickel powder (Ni) as fillers, and polyether polyol (PPG) as toughening agent. Rheological properties and printability of ink were characterized by rheometer and direct-write 3D printer, mechanical properties, microscopic morphology, thermal properties, and shape memory properties of the material were characterized by universal tensile testing machine (UTM), scanning electron microscope (SEM), dynamic thermomechanical analyzer (DMA), and differential scanning calorimeter (DSC). The effects of fillers on properties of the ink and material were investigated. The results show that the ink can be printed well when the ACB content reaches 12wt%. Clogging of the printer nozzle causes discontinuous and uneven printing when Ni content reaches 16wt%. The toughened structure of the "island" formed after solidification significantly improves the tensile strength of the material (above 60 MPa). As Ni content increases, the effect of Ni on tensile strength changes from promoting to weakening. The shape fixation rate (Rf) decreases from 99.4% to 94.2% when Ni content increases 6wt% increases to 14wt%. Under the action of a 300 kHz alternating magnetic field, the shape recovery occurs, and an increase in Ni content results in higher shape recovery rate (Rr) and recovery rate, Rr increases from 94.8% to 99.1%, and the recovery time shortens from 39 s to 17 s. The ACB-Ni/EP51 composites exhibits excellent shape memory performance and has promising application prospects in areas such as deployable structures in space, actuators, and 4D printing.
-
Key words:
- 4D printing /
- epoxy resin /
- shape memory polymer /
- magnetic response /
- direct ink writing /
- toughening
-
表 1 Ni-乙炔炭黑(ACB)/环氧树脂(EP51)复合材料配方
Table 1. Formula of Ni-acetylene black (ACB)/epoxy resin (EP51) composites
Ink EP51/g MHHPA/g PPG/g BDMA/g ACB/g Ni/g 10%ACB/EP51 20 9.2 0.6 0.2 2.0 0.0 12%ACB/EP51 20 9.2 0.6 0.2 2.4 0.0 12%ACB-6%Ni/EP51 20 9.2 0.6 0.2 2.4 1.2 12%ACB-8%Ni/EP51 20 9.2 0.6 0.2 2.4 1.6 12%ACB-10%Ni/EP51 20 9.2 0.6 0.2 2.4 2.0 12%ACB-12%Ni/EP51 20 9.2 0.6 0.2 2.4 2.4 12%ACB-14%Ni/EP51 20 9.2 0.6 0.2 2.4 2.8 12%ACB-16%Ni/EP51 20 9.2 0.6 0.2 2.4 3.2 Notes: MHHPA—Methyl hexahydrophthalic anhydride HE600; PPG—Polyether glycol; BDMA—N, N-dimethylbenzylamine. -
[1] XIA Y, HE Y, ZHANG F, et al. A review of shape memory polymers and composites: Mechanisms, materials, and applications[J]. Advanced Materials,2021,33(6):2000713. doi: 10.1002/adma.202000713 [2] 曾成均, 刘立武, 边文凤, 等. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8):1-13. doi: 10.11868/j.issn.1001-4381.2020.000211ZENG Chengjun, LIU Liwu, BIAN Wenfeng, et al. Progress in 4D printing of stimulus-responsive composites and its applications[J]. Journal of Materials Engineering,2020,48(8):1-13(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000211 [3] HAO Y F, ZHANG S X, FANG B, et al. A review of smart materials for the boost of soft actuators, soft sensors, and robotics applications[J]. Chinese Journal of Mechanical Engineering,2022,35(1):1-16. doi: 10.1186/s10033-021-00666-0 [4] MICHAUD F, DALIR H, JONCAS S. Structural design and optimization of an aircraft morphing wing: Composite skin[J]. Journal of Aircraft,2018,55(1):195-211. doi: 10.2514/1.C034340 [5] 张豆, 刘彦菊, 冷劲松. 纤维增强形状记忆聚合物复合材料及其航天应用[J]. 复合材料学报, 2021, 38(3):698-711. doi: 10.13801/j.cnki.fhclxb.20201224.002ZHANG Dou, LIU Yanju, LENG Jinsong. Fiber reinforced shape memory polymer composites and their applications in aerospace[J]. Acta Materiae Compositae Sinica,2021,38(3):698-711(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201224.002 [6] MA B, ZHANG Y, WEI Y, et al. Graphene oxide-modified microcapsule self-healing system for 4D printing[J]. Frontiers in Materials,2021,8:657777. doi: 10.3389/fmats.2021.657777 [7] 王艺璇, 曲萌菲, 张杭, 等. 醛基化透明质酸/羟丙基壳聚糖自愈合水凝胶的制备与性能[J]. 复合材料学报, 2023, 40(10):5884-5891. doi: 10.13801/j.cnki.fhclxb.20230207.001WANG Yixuan, QU Mengfei, ZHANG Hang, et al. Preparation and properties of oxidized hyaluronic acid-hydroxypropyl chitosan self-healing hydrogel[J]. Acta Materiae Compositae Sinica,2023,40(10):5884-5891(in Chinese). doi: 10.13801/j.cnki.fhclxb.20230207.001 [8] LENDLEIN A, LANGER R. Biodegradable, elastic shape-memory polymers for potential biomedical applications[J]. Science,2002,296(5573):1673-1676. doi: 10.1126/science.1066102 [9] BOOTH R E, KHANNA C, SCHRICKX H M, et al. Electrothermally actuated semitransparent shape memory polymer composite with application as a wearable touch sensor[J]. ACS Applied Materials & Interfaces,2022,14(47):53129-53138. [10] REN Z Y, HU W Q, DONG X G, et al. Multi-functional soft-bodied jelly fish-like swimming[J]. Nature Communications,2019,10(1):2703. doi: 10.1038/s41467-019-10549-7 [11] PILZ D A, CUNHA M, AMBERGEN S, et al. A soft transporter robot fueled by light[J]. Advanced Science,2020,7(5):1902842. doi: 10.1002/advs.201902842 [12] MIAO W S, ZOU W K, LUO Y W, et al. Structural tuning of polycaprolactone based thermadapt shape memory polymer[J]. Polymer Chemistry,2020,11(7):1369-1374. doi: 10.1039/C9PY01891C [13] JIN X, LI X W, LIU X, et al. Simple lignin-based, light-driven shape memory polymers with excellent mechanical properties and wide range of glass transition temperatures[J]. International Journal of Biological Macromolecules,2023,228:528-536. doi: 10.1016/j.ijbiomac.2022.12.098 [14] REN H P, HUANG Y, XU W L, et al. Electro-activated shape memory behavior of a three-dimensional lightweight knitted tubular composite[J]. Composites Communications,2023,38:101517. doi: 10.1016/j.coco.2023.101517 [15] VAKIL A U, RAMEZANI M, MONROE M B B. Magnetically actuated shape memory polymers for on-demand drug delivery[J]. Materials,2022,15(20):7279. doi: 10.3390/ma15207279 [16] ZHANG Z X, QI X D, LI S T, et al. Water-actuated shape-memory and mechanically-adaptive poly(ethylene vinyl acetate) achieved by adding hydrophilic poly(vinyl alcohol)[J]. European Polymer Journal,2018,98:237-245. doi: 10.1016/j.eurpolymj.2017.11.031 [17] LIN C, LYU J X, LI Y S, et al. 4D-printed biodegradable and remotely controllable shape memory occlusion devices[J]. Advanced Functional Materials,2019,29(51):1906569. doi: 10.1002/adfm.201906569 [18] WEI H Q, ZHANG Q W, YAO Y T, et al. Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite[J]. ACS Applied Materials & interfaces,2017,9(1):876-883. [19] ZHU H L, WANG Y, GE Y W, et al. Kirigami-inspired programmable soft magneto responsive actuators with versatile morphing modes[J]. Advanced Science,2022,9(32):2203711. doi: 10.1002/advs.202203711 [20] QI S, FU J, XIE Y P, et al. Versatile magnetorheological plastomer with 3D printability, switchable mechanics, shape memory, and self-healing capacity[J]. Composites Science and Technology,2019,183:107817. doi: 10.1016/j.compscitech.2019.107817 [21] GUO Y F, LIU Y Y, LIU J C, et al. Shape memory epoxy composites with high mechanical performance manufactured by multi-material direct ink writing[J]. Composites Part A: Applied Science and Manufacturing,2020,135:168-176. [22] 马博文. 自愈合形状记忆环氧树脂的4D打印及其性能研究[D]. 长春: 吉林大学, 2022.MA Bowen. Study on 4D printing and properties of self-healing shape memory epoxy resin[D]. Changchun: Jilin University, 2022(in Chinese). [23] SHANG J, LI X, WANG Z, et al. Rheological and printable behavior of resin-class materials for 3D printing applications[J]. Rapid Prototyping Journal,2019,25(5):801-808. doi: 10.1108/RPJ-11-2016-0183 [24] WU T, LIU Y, LI N, et al. Cryogenic mechanical properties of epoxy resin toughened by hydroxyl-terminated polyurethane[J]. Polymer Testing,2019,74:45-56. doi: 10.1016/j.polymertesting.2018.11.048 [25] 舒亦婷, 祝亮, 彭永利. 聚醚胺和聚醚多元醇对环氧/酸酐体系的原位增韧作用[J]. 胶体与聚合物, 2022, 40(3):134-138. doi: 10.13909/j.cnki.1009-1815.2022.03.008SHU Yiting, ZHU Liang, PENG Yongli. In-situ toughening of epoxy/anhydride system by polyether amines and polyether polyols[J]. Chinese Journal of Colloid & Polymer,2022,40(3):134-138(in Chinese). doi: 10.13909/j.cnki.1009-1815.2022.03.008 [26] RAZZAQ M Y, ANHALT M, FRORMANN L, et al. Mechanical spectroscopy of magnetite filled polyurethane shape memory polymers[J]. Materials Science and Engineering: A,2007,471(1-2):57-62. doi: 10.1016/j.msea.2007.03.059 [27] LIU Y Y, ZHAO J, ZHAO L Y, et al. High performance shape memory epoxy/carbon nanotube nanocomposites[J]. ACS Applied Materials & Interfaces,2016,8(1):156-165.