留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

4D打印磁响应形状记忆环氧树脂基复合材料制备与性能

邓攀 吴志 孙纪烨 鲁麟蛟 单熠莲 杜建科 张明华

邓攀, 吴志, 孙纪烨, 等. 4D打印磁响应形状记忆环氧树脂基复合材料制备与性能[J]. 复合材料学报, 2024, 41(3): 1226-1234. doi: 10.13801/j.cnki.fhclxb.20230714.002
引用本文: 邓攀, 吴志, 孙纪烨, 等. 4D打印磁响应形状记忆环氧树脂基复合材料制备与性能[J]. 复合材料学报, 2024, 41(3): 1226-1234. doi: 10.13801/j.cnki.fhclxb.20230714.002
DENG Pan, WU Zhi, SUN Jiye, et al. Preparation and properties of 4D printed magneto responsive shape memory epoxy resin-based composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1226-1234. doi: 10.13801/j.cnki.fhclxb.20230714.002
Citation: DENG Pan, WU Zhi, SUN Jiye, et al. Preparation and properties of 4D printed magneto responsive shape memory epoxy resin-based composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1226-1234. doi: 10.13801/j.cnki.fhclxb.20230714.002

4D打印磁响应形状记忆环氧树脂基复合材料制备与性能

doi: 10.13801/j.cnki.fhclxb.20230714.002
基金项目: 国家自然科学基金项目(11972199;12072167);浙江省自然科学基金重点项目(LZ22A020001);宁波市自然科学基金项目(2019A610132)
详细信息
    通讯作者:

    张明华,博士,教授,博士生导师,研究方向为智能材料与器件力学 E-mail: zhangminghua@nbu.edu.cn

  • 中图分类号: TB381;TB332

Preparation and properties of 4D printed magneto responsive shape memory epoxy resin-based composites

Funds: National Natural Science Foundation of China (11972199; 12072167); Key Project of Zhejiang Natural Science Foundation (LZ22A020001); Natural Science Foundation of Ningbo (2019A610132)
  • 摘要: 以环氧树脂(EP51)为基体,乙炔炭黑(ACB)和镍粉(Ni)为填料,聚醚多元醇(PPG)为增韧剂共混制成打印墨水,利用直写3D打印机制备ACB-Ni/EP51复合材料。通过流变仪、直写3D打印机对墨水的流变性能和可打印性进行表征;通过拉力实验机(UTM)、扫描电镜(SEM)、动态热机械分析仪(DMA)、差示扫描量热仪(DSC) 对材料力学性能、微观形貌、动态力学性能、差热性能和形状记忆效应进行表征,探究了填料含量对墨水和材料性能的影响。结果表明:ACB含量达到12wt%时,墨水具有良好的可打印性;当Ni粉含量达到16wt%时,打印针头堵塞造成打印不连续、不均匀。固化后生成的“海岛”增韧结构使材料拉伸强度明显提高(60 MPa以上)。随着Ni粉含量增加,对拉伸强度的影响由促进变为削弱。当Ni粉含量从6wt%增加至14wt%,形状固定率(Rf)从99.4%降至94.2%。在300 kHz交变磁场作用下,形状发生回复,Ni粉含量增加使形状回复率(Rr)和回复速率升高,Rr从94.8%提升至99.1%,回复时间从39 s缩短至17 s。Ni-ACB/EP51复合材料具有较好的形状记忆性能,在空间可展开结构、驱动器及4D打印等方面有一定的应用前景。

     

  • 图  1  形状固定及回复角度示意图

    θ2—Recovery angle; θ1—Fixed angle; r—Bend radius

    Figure  1.  Diagram illustrating the shape fixation and angle restoration

    图  2  墨水的黏度随剪切速率变化

    Figure  2.  Viscosity-shear rate variation curves of ink

    图  3  10%ACB/EP51 (a)、12%ACB/EP51 (b)、12%ACB-6%Ni/EP51 (c)、12%ACB-10%Ni/EP51 (d)、12%ACB-14%Ni/EP51 (e)和12%ACB-16%Ni/EP51 (f)的打印测试效果图

    Figure  3.  Printing effect images of 10%ACB/EP51 (a), 12%ACB /EP51(b), 12%ACB-6%Ni/EP51 (c), 12%ACB-10%Ni/EP51 (d), 12%ACB-14%Ni/EP51 (e) and 12%ACB-16%Ni/EP51 (f)

    图  4  墨水的储能模量随角频率变化

    Figure  4.  Storage modulus-angular frequency curves of ink

    图  5  未增韧12%ACB/EP51试样 (a)、增韧12%ACB/EP51试样(b)和基板粘连对比及哑铃型拉伸试样(c)

    Figure  5.  Comparison of adhesion between the unmodified 12%ACB/EP51 sample (a), 12%ACB/EP51 sample (b) and dumbbell-shaped tensile sample (c)

    图  6  (a) “海岛”结构增韧示意图;未增韧12%ACB/EP51 (b)、 12%ACB/EP51 (c)和12%ACB-6%Ni/EP51 (d)试样的SEM图像

    Figure  6.  (a) Schematic diagram of 'island' structure toughening; SEM images of the unmodified 12%ACB/EP51 sample (b), 12%ACB/EP51 sample (c) and 12%ACB-6%Ni/EP51 sample (d)

    图  7  ACB-Ni/EP51复合材料的拉伸应力-应变曲线

    Figure  7.  Tensile stress-strain curves of ACB-Ni/EP51 composites

    图  8  ACB-Ni/EP51复合材料储能模量随温度变化的DMA曲线

    Figure  8.  DMA curves showing the storage modulus of ACB-Ni/EP51 composites as a function of temperature

    图  9  ACB-Ni/EP51复合材料的损耗因子tanδ随温度变化

    Figure  9.  Temperature-dependent curves of loss factor tanδ of ACB-Ni/EP51 composites

    图  10  ACB-Ni/EP51复合材料热流随温度变化的DSC曲线

    Figure  10.  DSC curves of heat flow as a function of temperature for ACB-Ni/EP51 composites

    图  11  初始形状(a)、12%ACB-6%Ni/EP51的固定形状(b)、“U”形12%ACB-10%Ni/EP51回复过程图((c)~(g))及其折叠后展开过程图((h)~(k))

    Figure  11.  Initial shape (a), fixed shape of 12%ACB-6%Ni /EP51(b), 'U' shape recovery process diagram of 12%ACB-10%Ni /EP51((c)-(g)) and the unfolding process diagram after folding ((h)-(k))

    图  12  ACB-Ni/EP51复合材料的RfRr及回复时间

    Figure  12.  Rf, Rr and recovery time of ACB-Ni/EP51 composites

    表  1  Ni-乙炔炭黑(ACB)/环氧树脂(EP51)复合材料配方

    Table  1.   Formula of Ni-acetylene black (ACB)/epoxy resin (EP51) composites

    InkEP51/gMHHPA/gPPG/gBDMA/gACB/gNi/g
    10%ACB/EP51209.20.60.22.00.0
    12%ACB/EP51209.20.60.22.40.0
    12%ACB-6%Ni/EP51209.20.60.22.41.2
    12%ACB-8%Ni/EP51209.20.60.22.41.6
    12%ACB-10%Ni/EP51209.20.60.22.42.0
    12%ACB-12%Ni/EP51209.20.60.22.42.4
    12%ACB-14%Ni/EP51209.20.60.22.42.8
    12%ACB-16%Ni/EP51209.20.60.22.43.2
    Notes: MHHPA—Methyl hexahydrophthalic anhydride HE600; PPG—Polyether glycol; BDMA—N, N-dimethylbenzylamine.
    下载: 导出CSV
  • [1] XIA Y, HE Y, ZHANG F, et al. A review of shape memory polymers and composites: Mechanisms, materials, and applications[J]. Advanced Materials,2021,33(6):2000713. doi: 10.1002/adma.202000713
    [2] 曾成均, 刘立武, 边文凤, 等. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8):1-13. doi: 10.11868/j.issn.1001-4381.2020.000211

    ZENG Chengjun, LIU Liwu, BIAN Wenfeng, et al. Progress in 4D printing of stimulus-responsive composites and its applications[J]. Journal of Materials Engineering,2020,48(8):1-13(in Chinese). doi: 10.11868/j.issn.1001-4381.2020.000211
    [3] HAO Y F, ZHANG S X, FANG B, et al. A review of smart materials for the boost of soft actuators, soft sensors, and robotics applications[J]. Chinese Journal of Mechanical Engineering,2022,35(1):1-16. doi: 10.1186/s10033-021-00666-0
    [4] MICHAUD F, DALIR H, JONCAS S. Structural design and optimization of an aircraft morphing wing: Composite skin[J]. Journal of Aircraft,2018,55(1):195-211. doi: 10.2514/1.C034340
    [5] 张豆, 刘彦菊, 冷劲松. 纤维增强形状记忆聚合物复合材料及其航天应用[J]. 复合材料学报, 2021, 38(3):698-711. doi: 10.13801/j.cnki.fhclxb.20201224.002

    ZHANG Dou, LIU Yanju, LENG Jinsong. Fiber reinforced shape memory polymer composites and their applications in aerospace[J]. Acta Materiae Compositae Sinica,2021,38(3):698-711(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201224.002
    [6] MA B, ZHANG Y, WEI Y, et al. Graphene oxide-modified microcapsule self-healing system for 4D printing[J]. Frontiers in Materials,2021,8:657777. doi: 10.3389/fmats.2021.657777
    [7] 王艺璇, 曲萌菲, 张杭, 等. 醛基化透明质酸/羟丙基壳聚糖自愈合水凝胶的制备与性能[J]. 复合材料学报, 2023, 40(10):5884-5891. doi: 10.13801/j.cnki.fhclxb.20230207.001

    WANG Yixuan, QU Mengfei, ZHANG Hang, et al. Preparation and properties of oxidized hyaluronic acid-hydroxypropyl chitosan self-healing hydrogel[J]. Acta Materiae Compositae Sinica,2023,40(10):5884-5891(in Chinese). doi: 10.13801/j.cnki.fhclxb.20230207.001
    [8] LENDLEIN A, LANGER R. Biodegradable, elastic shape-memory polymers for potential biomedical applications[J]. Science,2002,296(5573):1673-1676. doi: 10.1126/science.1066102
    [9] BOOTH R E, KHANNA C, SCHRICKX H M, et al. Electrothermally actuated semitransparent shape memory polymer composite with application as a wearable touch sensor[J]. ACS Applied Materials & Interfaces,2022,14(47):53129-53138.
    [10] REN Z Y, HU W Q, DONG X G, et al. Multi-functional soft-bodied jelly fish-like swimming[J]. Nature Communications,2019,10(1):2703. doi: 10.1038/s41467-019-10549-7
    [11] PILZ D A, CUNHA M, AMBERGEN S, et al. A soft transporter robot fueled by light[J]. Advanced Science,2020,7(5):1902842. doi: 10.1002/advs.201902842
    [12] MIAO W S, ZOU W K, LUO Y W, et al. Structural tuning of polycaprolactone based thermadapt shape memory polymer[J]. Polymer Chemistry,2020,11(7):1369-1374. doi: 10.1039/C9PY01891C
    [13] JIN X, LI X W, LIU X, et al. Simple lignin-based, light-driven shape memory polymers with excellent mechanical properties and wide range of glass transition temperatures[J]. International Journal of Biological Macromolecules,2023,228:528-536. doi: 10.1016/j.ijbiomac.2022.12.098
    [14] REN H P, HUANG Y, XU W L, et al. Electro-activated shape memory behavior of a three-dimensional lightweight knitted tubular composite[J]. Composites Communications,2023,38:101517. doi: 10.1016/j.coco.2023.101517
    [15] VAKIL A U, RAMEZANI M, MONROE M B B. Magnetically actuated shape memory polymers for on-demand drug delivery[J]. Materials,2022,15(20):7279. doi: 10.3390/ma15207279
    [16] ZHANG Z X, QI X D, LI S T, et al. Water-actuated shape-memory and mechanically-adaptive poly(ethylene vinyl acetate) achieved by adding hydrophilic poly(vinyl alcohol)[J]. European Polymer Journal,2018,98:237-245. doi: 10.1016/j.eurpolymj.2017.11.031
    [17] LIN C, LYU J X, LI Y S, et al. 4D-printed biodegradable and remotely controllable shape memory occlusion devices[J]. Advanced Functional Materials,2019,29(51):1906569. doi: 10.1002/adfm.201906569
    [18] WEI H Q, ZHANG Q W, YAO Y T, et al. Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite[J]. ACS Applied Materials & interfaces,2017,9(1):876-883.
    [19] ZHU H L, WANG Y, GE Y W, et al. Kirigami-inspired programmable soft magneto responsive actuators with versatile morphing modes[J]. Advanced Science,2022,9(32):2203711. doi: 10.1002/advs.202203711
    [20] QI S, FU J, XIE Y P, et al. Versatile magnetorheological plastomer with 3D printability, switchable mechanics, shape memory, and self-healing capacity[J]. Composites Science and Technology,2019,183:107817. doi: 10.1016/j.compscitech.2019.107817
    [21] GUO Y F, LIU Y Y, LIU J C, et al. Shape memory epoxy composites with high mechanical performance manufactured by multi-material direct ink writing[J]. Composites Part A: Applied Science and Manufacturing,2020,135:168-176.
    [22] 马博文. 自愈合形状记忆环氧树脂的4D打印及其性能研究[D]. 长春: 吉林大学, 2022.

    MA Bowen. Study on 4D printing and properties of self-healing shape memory epoxy resin[D]. Changchun: Jilin University, 2022(in Chinese).
    [23] SHANG J, LI X, WANG Z, et al. Rheological and printable behavior of resin-class materials for 3D printing applications[J]. Rapid Prototyping Journal,2019,25(5):801-808. doi: 10.1108/RPJ-11-2016-0183
    [24] WU T, LIU Y, LI N, et al. Cryogenic mechanical properties of epoxy resin toughened by hydroxyl-terminated polyurethane[J]. Polymer Testing,2019,74:45-56. doi: 10.1016/j.polymertesting.2018.11.048
    [25] 舒亦婷, 祝亮, 彭永利. 聚醚胺和聚醚多元醇对环氧/酸酐体系的原位增韧作用[J]. 胶体与聚合物, 2022, 40(3):134-138. doi: 10.13909/j.cnki.1009-1815.2022.03.008

    SHU Yiting, ZHU Liang, PENG Yongli. In-situ toughening of epoxy/anhydride system by polyether amines and polyether polyols[J]. Chinese Journal of Colloid & Polymer,2022,40(3):134-138(in Chinese). doi: 10.13909/j.cnki.1009-1815.2022.03.008
    [26] RAZZAQ M Y, ANHALT M, FRORMANN L, et al. Mechanical spectroscopy of magnetite filled polyurethane shape memory polymers[J]. Materials Science and Engineering: A,2007,471(1-2):57-62. doi: 10.1016/j.msea.2007.03.059
    [27] LIU Y Y, ZHAO J, ZHAO L Y, et al. High performance shape memory epoxy/carbon nanotube nanocomposites[J]. ACS Applied Materials & Interfaces,2016,8(1):156-165.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  434
  • HTML全文浏览量:  261
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-24
  • 修回日期:  2023-06-28
  • 录用日期:  2023-07-01
  • 网络出版日期:  2023-07-17
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回