留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纤维/聚合物复合材料热导率近十年研究进展

谢世红 高洁 宁来元 郑可 马永 于盛旺 贺志勇

谢世红, 高洁, 宁来元, 等. 碳纤维/聚合物复合材料热导率近十年研究进展[J]. 复合材料学报, 2024, 41(2): 561-571. doi: 10.13801/j.cnki.fhclxb.20230714.001
引用本文: 谢世红, 高洁, 宁来元, 等. 碳纤维/聚合物复合材料热导率近十年研究进展[J]. 复合材料学报, 2024, 41(2): 561-571. doi: 10.13801/j.cnki.fhclxb.20230714.001
XIE Shihong, GAO Jie, NING Laiyuan, et al. Research progress on thermal conductivity of carbon fiber/polymer composites in recent ten years[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 561-571. doi: 10.13801/j.cnki.fhclxb.20230714.001
Citation: XIE Shihong, GAO Jie, NING Laiyuan, et al. Research progress on thermal conductivity of carbon fiber/polymer composites in recent ten years[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 561-571. doi: 10.13801/j.cnki.fhclxb.20230714.001

碳纤维/聚合物复合材料热导率近十年研究进展

doi: 10.13801/j.cnki.fhclxb.20230714.001
基金项目: 国家自然科学基金(51901154);山西省高等学校科技成果转化培育资助项目(2020CG011);山西省自然科学基金项目(202103021223096);山西省“1331 工程”提质增效项目
详细信息
    通讯作者:

    高洁,博士,副教授,硕士生导师,研究方向为金刚石热管理、金刚石耐磨工具 E-mail: gaojie01@tyut.edu.cn

  • 中图分类号: TB333;TB34

Research progress on thermal conductivity of carbon fiber/polymer composites in recent ten years

Funds: National Natural Science Foundation of China (51901154); Science and Technology Achievement Transformation and Cultivation Project of Shanxi (2020CG011); Shanxi Provincial Natural Science Foundation (202103021223096); Fund for Shanxi "1331 Project"
  • 摘要: 本文综述了过去十年间在提升碳纤维增强聚合物(CFRP)复合材料热导性能方面取得的进展。具体从聚合物复合材料的导热原理入手,重点分析了碳纤维(CFs)自身对CFRP复合材料热导率的影响,包括含量、长度、取向等。此外,综述了提升CFRP复合材料热导率的4种方法,包括CFs表面改性、CFs定向处理、加入导热填料及构建三维连续导热通道等策略对改善CFRP复合材料热导率的作用。最后进行了展望,将CFs同向排列并与多种形状尺寸的高热导率填料耦合构建连续的导热通道,制备低负载填料、高热导率的CFRP复合材料将成为未来的研究方向,为下一代导热材料的开发和优化提供指导。

     

  • 图  1  材料内部热流分布:(a) 纯聚合物;(b) 加入导热填料的碳纤维增强聚合物(CFRP)复合材料;(c) 碳纤维(CFs)与其他填料构成三维连续导热通路的CFRP复合材料;(d) CFs同向排列的CFRP复合材料;(e) 部分聚合物和导热填料的热导率[13, 19];(f) 不同类型填料CFRP复合材料热导率;(g) 构建三维导热网络CFRP复合材料热导率与未构建连续导热通路的CFRP复合材料热导率增长率对比;(h) CFs同向排列的CFRP复合材料热导率与CFs随机分散的CFRP复合材料热导率提升率对比

    G—Graphene; CNT—Carbon nanotube; BN—Boron nitride; AlN—Aluminium nitride; GP—Graphite; PP—Polypropylene; PDMS—Polydimethylsiloxane; EP—Epoxy resin; PF—Phenolic resin; PMMA—Polymethyl methacrylate; CE—Cyanate ester resin; PA-6—Polyamide-6; LDPE—Low density polyethylene; HDPE—High density polyethylene; CC—Carbon felt; C—Carbon; GO—Graphene oxide; PBO—Poly-p-phenylene benzobisoxazole; 3D-CFs/EP—Three dimensional and vertically aligned CFs/EP; o-MCFs/SR—Oriented magnetic carbon fibers/silicone rubber

    Figure  1.  Internal heat flux of pure polymers (a), carbon fiber-reinforced polymer (CFRP) composites with added thermally conductive fillers (b), CFRP composites composed of 3D continuous heat conduction channels formed by carbon fiber (CFs) and other fillers (c) and CFRP composites with CFs arranged in the same direction (d); (e) Thermal conductivity of a part of the polymers and thermally conductive fillers[13, 19]; (f) Thermal conductivity of CFRP composites with different types of fillers; (g) Comparison of the growth rate of thermal conductivity in CFRP composites with a 3D thermal conductivity network versus CFRP composites lacking a continuous thermal conductivity path; (h) Thermal conductivity of CFRP composites arranged in the same direction and improvement rate compared with randomly distributed CFs

    图  2  (a) CFs含量对CFRP复合材料热导率的影响;(b)不同表面改性方法处理的CFRP复合材料热导率与没有表面改性的CFRP热导率增长百分比对比

    Figure  2.  (a) Effect of CFs content on the thermal conductivity of CFRP composites; (b) Percentage increase in thermal conductivity of CFRP composites treated with different surface modification methods compared to CFRP without surface modification

    图  3  颗粒填料(a)、线状填料(b)、片状填料(c)和混合填料(d)增强CFRP复合材料热传导机制

    Figure  3.  Illustrates the enhanced heat conduction mechanism of CFRP composites through the incorporation of particulate fillers (a), one-dimensional fillers (b), two-dimensional fillers (c), and mixed fillers (d)

  • [1] YU G C, WU L Z, FENG L J, et al. Thermal and mechanical properties of carbon fiber polymer-matrix composites with a 3D thermal conductive pathway[J]. Composite Structures,2016,149:213-219. doi: 10.1016/j.compstruct.2016.04.010
    [2] PHUA E J R, LIU M, CHO B, et al. Novel high temperature polymeric encapsulation material for extreme environment electronics packaging[J]. Materials & Design,2018,141:202-209.
    [3] SHEN D, ZHAN Z, LIU Z, et al. Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires[J]. Scientific Reports,2017,7(1):2606. doi: 10.1038/s41598-017-02929-0
    [4] ZHANG G, XUE S, CHEN F, et al. An efficient thermal interface material with anisotropy orientation and high through-plane thermal conductivity[J]. Composites Science and Technology,2023,231:109784. doi: 10.1016/j.compscitech.2022.109784
    [5] ZHANG X, XIE B, ZHOU S, et al. Radially oriented functional thermal materials prepared by flow field-driven self-assembly strategy[J]. Nano Energy,2022,104:107986. doi: 10.1016/j.nanoen.2022.107986
    [6] YAN Q, ALAM F E, GAO J, et al. Soft and self-adhesive thermal interface materials based on vertically aligned, covalently bonded graphene nanowalls for efficient microelectronic cooling[J]. Advanced Functional Materials,2021,31(36):2104062. doi: 10.1002/adfm.202104062
    [7] ZHANG C, ZHANG X, LING Y, et al. Chitosan-doped carbon nanotubes encapsulating spread carbon fiber composites with superior mechanical, thermal, and electrical properties[J]. Composites Science and Technology,2022,230:109755. doi: 10.1016/j.compscitech.2022.109755
    [8] ZHAO Y, WU Z, GUO S, et al. Hyperbranched graphene oxide structure-based epoxy nanocomposite with simultaneous enhanced mechanical properties, thermal conductivity, and superior electrical insulation[J]. Compo-sites Science and Technology,2022,217:109082. doi: 10.1016/j.compscitech.2021.109082
    [9] ZHOU W, KOU Y, YUAN M, et al. Polymer composites filled with core@double-shell structured fillers: Effects of multiple shells on dielectric and thermal properties[J]. Composites Science and Technology,2019,181:107686. doi: 10.1016/j.compscitech.2019.107686
    [10] JIN S W, JIN Y J, CHOI Y J, et al. Eco-friendly preparation and characterization of highly thermally conductive polyimide/boron nitride composites[J]. Composites Part A: Applied Science and Manufacturing,2023,166:107396. doi: 10.1016/j.compositesa.2022.107396
    [11] ZHAN C, CUI W, LI L, et al. Dual-aligned carbon nanofiber scaffolds as heat conduction path to enhance thermal conductivity of polymer composites[J]. Composites Science and Technology,2023,231:109823. doi: 10.1016/j.compscitech.2022.109823
    [12] YAO Y, SUN J, ZENG X, et al. Construction of 3D skeleton for polymer composites achieving a high thermal conduc-tivity[J]. Small,2018,14(13):1704044. doi: 10.1002/smll.201704044
    [13] HAN Z, FINA A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review[J]. Progress in Polymer Science,2011,36(7):914-944. doi: 10.1016/j.progpolymsci.2010.11.004
    [14] KIM G H, LEE D, SHANKER A, et al. High thermal conductivity in amorphous polymer blends by engineered interchain interactions[J]. Nature Materials,2015,14(3):295-300. doi: 10.1038/nmat4141
    [15] WATTANAKUL K, MANUSPIYA H, YANUMET N. Thermal conductivity and mechanical properties of BN-filled epoxy composite: Effects of filler content, mixing conditions, and BN agglomerate size[J]. Journal of Composite Materials,2011,45(19):1967-1980. doi: 10.1177/0021998310393297
    [16] CHOI S W, YOON K H, JEONG S S. Morphology and thermal conductivity of polyacrylate composites containing aluminum/multi-walled carbon nanotubes[J]. Composites Part A: Applied Science and Manufacturing,2013,45:1-5. doi: 10.1016/j.compositesa.2012.09.008
    [17] LI C, ZENG X L, TAN L Y, et al. Three-dimensional interconnected graphene microsphere as fillers for enhancing thermal conductivity of polymer[J]. Chemical Engineering Journal,2019,368:79-87. doi: 10.1016/j.cej.2019.02.110
    [18] GUO H, LI X, LI B, et al. Thermal conductivity of graphene/poly(vinylidene fluoride) nanocomposite membrane[J]. Materials and Design,2017,114:355-363. doi: 10.1016/j.matdes.2016.11.010
    [19] JASMEE S, OMAR G, OTHAMAN S S C, et al. Interface thermal resistance and thermal conductivity of polymer composites at different types, shapes, and sizes of fillers: A review[J]. Polymer Composites,2021,42(6):2629-2652. doi: 10.1002/pc.26029
    [20] JIANG T, WANG Y, XU K, et al. Highly thermally conductive and negative permittivity epoxy composites by constructing the carbon fiber/carbon networks[J]. Composites Communications,2023,39:101560. doi: 10.1016/j.coco.2023.101560
    [21] KEITH J M, KING J A, MILLER M G, et al. Thermal conduc-tivity of carbon fiber/liquid crystal polymer composites[J]. Journal of Applied Polymer Science,2006,102(6):5456-5462. doi: 10.1002/app.25102
    [22] WEI J, LIAO M, MA A, et al. Enhanced thermal conducti-vity of polydimethylsiloxane composites with carbon fiber[J]. Composites Communications,2020,17:141-146. doi: 10.1016/j.coco.2019.12.004
    [23] WANG Z, LIU J, GUO J, et al. The study of thermal, mechanical and shape memory properties of chopped carbon fiber-reinforced TPI shape memory polymer composites[J]. Polymers (Basel),2017,9(11):594. doi: 10.3390/polym9110594
    [24] CHO J, LEE S K, EEM S H, et al. Enhanced mechanical and thermal properties of carbon fiber-reinforced thermoplastic polyketone composites[J]. Composites Part A: Applied Science and Manufacturing,2019,126:105599. doi: 10.1016/j.compositesa.2019.105599
    [25] AGARI Y, UEDA A, NAGAI S. Thermal conductivity of a polyethylene filled with disoriented short-cut carbon fibers[J]. Journal of Applied Polymer Science, 1991, 43: 1117-1124.
    [26] GHOSH A, GOSWAMI P, MAHANTA P, et al. Effect of carbon fiber length and graphene on carbon-polymer composite bipolar plate for PEMFC[J]. Journal of Solid State Electrochemistry,2014,18(12):3427-3436. doi: 10.1007/s10008-014-2573-1
    [27] FU S Y, MAI Y W. Thermal conductivity of misaligned short-fiber-reinforced polymer composites[J]. Journal of Applied Polymer Science, 2003, 88: 1498-1505.
    [28] DONG K, GU B, SUN B. Comparisons of thermal conduc-tive behaviors of epoxy resin in unidirectional composite materials[J]. Journal of Thermal Analysis and Calorimetry,2015,124(2):775-789.
    [29] LI M, ALI Z, WEI X, et al. Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites[J]. Composites Part B: Engineering,2021,208:108599. doi: 10.1016/j.compositesb.2020.108599
    [30] MA J, SHANG T, REN L, et al. Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material[J]. Chemical Engineering Journal,2020,380:122550. doi: 10.1016/j.cej.2019.122550
    [31] DING D, HUANG R, WANG X, et al. Thermally conductive silicone rubber composites with vertically oriented carbon fibers: A new perspective on the heat conduction mechanism[J]. Chemical Engineering Journal,2022,441:136104. doi: 10.1016/j.cej.2022.136104
    [32] WU B, LI J, LI X, et al. Gravity driven ice-templated oriental arrangement of functional carbon fibers for high in-plane thermal conductivity[J]. Composites Part A: Applied Science and Manufacturing,2021,150:106623. doi: 10.1016/j.compositesa.2021.106623
    [33] HOU X, CHEN Y, DAI W, et al. Highly thermal conductive polymer composites via constructing micro-phragmites communis structured carbon fibers[J]. Chemical Engineering Journal,2019,375:121921. doi: 10.1016/j.cej.2019.121921
    [34] DONG K, LIU K, ZHANG Q, et al. Experimental and numerical analyses on the thermal conductive behaviors of carbon fiber/epoxy plain woven composites[J]. International Journal of Heat and Mass Transfer,2016,102:501-517. doi: 10.1016/j.ijheatmasstransfer.2016.06.035
    [35] DONG K, ZHANG J, JIN L, et al. Multi-scale finite element analyses on the thermal conductive behaviors of 3D braided composites[J]. Composite Structures,2016,143:9-22. doi: 10.1016/j.compstruct.2016.02.029
    [36] GOU J J, FANG W Z, DAI Y J, et al. Multi-size unit cells to predict effective thermal conductivities of 3D four-directional braided composites[J]. Composite Structures,2017,163:152-167. doi: 10.1016/j.compstruct.2016.12.034
    [37] ZHAO Y, JIAO Y, SONG L, et al. Influence of fabric architecture and weaving parameter on the thermal conductivities of 3D woven composites[J]. Journal of Composite Materials,2016,51(21):3041-3051.
    [38] XU N, LU C, ZHENG T, et al. Enhanced mechanical properties of carbon fibre/epoxy composites via in situ coating-carbonisation of micron-sized sucrose particles on the fibre surface[J]. Materials & Design,2021,200:109458.
    [39] ZHANG J, DU Z, ZOU W, et al. MgO nanoparticles-decorated carbon fibers hybrid for improving thermal conductive and electrical insulating properties of Nylon 6 composite[J]. Composites Science and Technology,2017,148:1-8. doi: 10.1016/j.compscitech.2017.05.008
    [40] ZHENG X, KIM S, PARK C W. Enhancement of thermal conductivity of carbon fiber-reinforced polymer composite with copper and boron nitride particles[J]. Composites Part A: Applied Science and Manufacturing,2019,121:449-456. doi: 10.1016/j.compositesa.2019.03.030
    [41] WANG T, SONG Q, ZHANG S, et al. Simultaneous enhancement of mechanical and electrical/thermal properties of carbon fiber/polymer composites via SiC nanowires/graphene hybrid nanofillers[J]. Composites Part A: Applied Science and Manufacturing,2021,145:106404. doi: 10.1016/j.compositesa.2021.106404
    [42] LI J, QI S, ZHANG M, et al. Thermal conductivity and electromagnetic shielding effectiveness of composites based on Ag-plating carbon fiber and epoxy[J]. Journal of Applied Polymer Science,2015,132(33):42306.
    [43] YU S, PARK B I, PARK C, et al. RTA-treated carbon fiber/copper core/shell hybrid for thermally conductive composites[J]. ACS Applied Materials& Interfaces,2014,6(10):7498-7503. doi: 10.1021/am500871b
    [44] CHENG C, ZHANG M, WANG S, et al. Improving interfacial properties and thermal conductivity of carbon fiber/epoxy composites via the solvent-free GO@Fe3O4 nanofluid modified water-based sizing agent[J]. Composites Science and Technology,2021,209:108788. doi: 10.1016/j.compscitech.2021.108788
    [45] LEE E, CHO C H, HWANG S H, et al. Improving the vertical thermal conductivity of carbon fiber-reinforced epoxy composites by forming layer-by-layer contact of inorganic crystals[J]. Materials (Basel),2019,12(19):3092. doi: 10.3390/ma12193092
    [46] WU X, SHI S, TANG B, et al. Achieving highly thermal conductivity of polymer composites by adding hybrid silver-carbon fiber fillers[J]. Composites Communications,2022,31:101129. doi: 10.1016/j.coco.2022.101129
    [47] LEE W, LEE J, YANG W, et al. Fabrication of biobased advanced phase change material and multifunctional composites for efficient thermal management[J]. ACS Sustainable Chemistry & Engineering,2023,11(3):1178-1189.
    [48] XU Z, LIN G, SUI G. The synergistic effects on enhancing thermal conductivity and mechanical strength of hBN/CF/PE composite[J]. Journal of Applied Polymer Science,2020,137(40):49212. doi: 10.1002/app.49212
    [49] KUMAR S, PANDA B P, MOHANTY S, et al. Effect of silicon carbide on the mechanical and thermal properties of ethylene propylene diene monomer-based carbon fiber composite material for heat shield application[J]. Journal of Applied Polymer Science,2020,137(37):4909.
    [50] WANG H, LI L, CHEN Y, et al. Efficient thermal transport highway construction within epoxy matrix via hybrid carbon fibers and alumina particles[J]. ACS Omega,2020,5(2):1170-1177. doi: 10.1021/acsomega.9b03465
    [51] ZHAO Y H, ZHANG Y F, BAI S L, et al. Carbon fibre/graphene foam/polymer composites with enhanced mechanical and thermal properties[J]. Composites Part B: Engineering,2016,94:102-108. doi: 10.1016/j.compositesb.2016.03.056
    [52] SENIS E C, GOLOSNOY I O, DULIEU-BARTON J M, et al. Enhancement of the electrical and thermal properties of unidirectional carbon fibre/epoxy laminates through the addition of graphene oxide[J]. Journal of Materials Science,2019,54:8955-8970. doi: 10.1007/s10853-019-03522-8
    [53] 朱帅甫, 吴海宏, 张显果, 等. 碳纤维/碳纳米管混杂填充聚合物复合材料导热性能研究[J]. 塑料科技, 2015, 43(8):28-32. doi: 10.15925/j.cnki.issn1005-3360.2015.08.002

    ZHU Shuaifu, WU Haihong, ZHANG Xianguo, et al. Thermal conductivity of carbon fiber/carbon nanotube hybrid filled polymer composites[J]. Plastics Science and Technology,2015,43(8):28-32(in Chinese). doi: 10.15925/j.cnki.issn1005-3360.2015.08.002
    [54] MAZOV I, BURMISTROV I, IL'INYKH I, et al. Anisotropic thermal conductivity of polypropylene composites filled with carbon fibers and multiwall carbon nanotubes[J]. Polymer Composites,2015,36:1951-1957. doi: 10.1002/pc.23104
    [55] WU X, TANG B, CHEN J, et al. Epoxy composites with high cross-plane thermal conductivity by constructing all-carbon multidimensional carbon fiber/graphite networks[J]. Composites Science and Technology,2021,203:108610. doi: 10.1016/j.compscitech.2020.108610
    [56] WANG Y, TANG B, GAO Y, et al. Epoxy composites with high thermal conductivity by constructing three-dimensional carbon fiber/carbon/nickel networks using an electroplating method[J]. ACS Omega,2021,6(29):19238-19251. doi: 10.1021/acsomega.1c02694
    [57] ZHU Y J, SHEN X S, DI B, et al. Nano SiC enhancement in the BN micro structure for high thermal conductivity epoxy composite[J]. Journal of Polymer Research,2021,28(10):1-10.
    [58] XU T L, ZHOU S S, JIANG F, et al. Polyamide composites with improved thermal conductivity for effective thermal management: The three-dimensional vertically aligned carbon network[J]. Composites Part B: Engineering,2021,224:109205. doi: 10.1016/j.compositesb.2021.109205
    [59] HAO M Y, QIAN X, ZHANG Y G, et al. Thermal conductivity enhancement of carbon fiber/epoxy composites via constructing three-dimensionally aligned hybrid thermal conductive structures on fiber surfaces[J]. Composites Science and Technology,2022,231:109800.
  • 加载中
图(3)
计量
  • 文章访问数:  1228
  • HTML全文浏览量:  902
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-10
  • 修回日期:  2023-06-23
  • 录用日期:  2023-07-06
  • 网络出版日期:  2023-07-17
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回