留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

针刺/缝合多尺度联锁复合材料II型层间力学行为

苏星兆 陈小明 郑宏伟 吴凯杰 辛世纪 郭东升

苏星兆, 陈小明, 郑宏伟, 等. 针刺/缝合多尺度联锁复合材料II型层间力学行为[J]. 复合材料学报, 2024, 41(3): 1567-1576. doi: 10.13801/j.cnki.fhclxb.20230711.001
引用本文: 苏星兆, 陈小明, 郑宏伟, 等. 针刺/缝合多尺度联锁复合材料II型层间力学行为[J]. 复合材料学报, 2024, 41(3): 1567-1576. doi: 10.13801/j.cnki.fhclxb.20230711.001
SU Xingzhao, CHEN Xiaoming, ZHENG Hongwei, et al. Mode II interlaminar mechanical behavior of needled/stitched multiscale interlocking composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1567-1576. doi: 10.13801/j.cnki.fhclxb.20230711.001
Citation: SU Xingzhao, CHEN Xiaoming, ZHENG Hongwei, et al. Mode II interlaminar mechanical behavior of needled/stitched multiscale interlocking composites[J]. Acta Materiae Compositae Sinica, 2024, 41(3): 1567-1576. doi: 10.13801/j.cnki.fhclxb.20230711.001

针刺/缝合多尺度联锁复合材料II型层间力学行为

doi: 10.13801/j.cnki.fhclxb.20230711.001
基金项目: 先进功能复合材料技术重点实验室基金(6142906210406);航空发动机及燃气轮机基础科学中心项目(P2022-B-IV-014-001)
详细信息
    通讯作者:

    陈小明,博士,高级实验师,研究方向为纺织复合材料结构与性能 E-mail: chenxiaoming@tiangong.edu.cn

  • 中图分类号: TB332

Mode II interlaminar mechanical behavior of needled/stitched multiscale interlocking composites

Funds: Key Laboratory of Advanced Functional Composite Technology (6142906210406); Aero Engine and Gas Turbine Basic Science Center Project (P2022-B-IV-014-001)
  • 摘要: 针刺/缝合多尺度联锁复合材料具有优异的层间性能,在航天热结构复合材料中得到越来越多的应用,然而,缝合工艺对于针刺复合材料双切口层间剪切(DNS)性能的影响还不清楚。以石英缎纹基布、石英斜纹半切布为原料,设计制备了3种缝合矩阵、4种缝合纤维束的石英纤维增强树脂基针刺/缝合多尺度联锁复合材料,测试并分析了复合材料的DNS性能。采用Micro-CT对织物内部结构进行表征,同时通过扫描电镜(SEM)观察试样断口形貌,阐明层间增强机制。使用内聚力模型(Cohesive zone model,CZM)结合Abaqus软件进一步探究针刺/缝合多尺度联锁复合材料的DNS行为,预测材料的极限破坏强度。研究结果表明:缝合工艺的引入极大地改善了复合材料的层间性能,其DNS的破坏载荷最大可达到32.73 MPa,相比针刺复合材料提升了86.46%。针刺/缝合多尺度联锁复合材料DNS的主要破坏方式是基体开裂、纤维束的脆性断裂和拔出。同时,模拟结果和针刺/缝合多尺度联锁复合材料的DNS实验结果吻合较好,误差最大不超过8%,证明本文建立的内聚力模型能够有效预测针刺/缝合多尺度联锁复合材料的层间剪切性能。

     

  • 图  1  针刺/缝合多尺度联锁织物制备流程图

    CNC—Computer numerical control

    Figure  1.  Schematic of needled/stitched dual-scale interlocking preform manufacturing process

    图  2  针刺/缝合多尺度联锁织物CT表征过程与结果

    Figure  2.  Process and results of CT characterization of needled/stitched composite

    D—Diameter of stitched fiber; d—Diameter of needled fiber

    图  3  纤维束直径:(a) 针刺纤维束;(b) 线密度为100 tex缝合纤维束

    Davg—Abbreviation for diameter average

    Figure  3.  Diameter of fiber bundle: (a) Needled fiber bundle; (b) Stitched fiber bundle with a linear density of 100 tex

    图  4  DNS实验:(a) 试样;(b) 实验过程示意图

    Figure  4.  DNS experiment: (a) Sample; (b) Schematic diagram of the experimental process

    a—Stitch spacing; DIC—Digital image correlation method

    图  5  DNS数值模拟示意图:(a)针刺复合材料;(b)针刺/缝合多尺度联锁复合材料

    Tmax—Maximum shear stress; KII—Cohesive stiffness; GII needling—Critical fracture energy of needling composite; GII stitching—Critical fracture energy of stitching composite; δ0—Displacement of the specimen damaged; δf—Displacement of the specimen failure

    Figure  5.  Schematic diagram of DNS numerical simulation: (a) Needled composite; (b) Needled/stitched composite

    图  6  有限元模型与网格划分:(a)针刺复合材料;(b)针刺/缝合多尺度联锁复合材料

    Figure  6.  Finite element model and meshing: (a) Needled composite; (b) Needled/stitched composite

    图  7  DNS的载荷-位移曲线: (a) 1#;(b) 2#;(c) 3#;(d) 4#;(e) 5#;(f)实验应变云图

    Figure  7.  Load-displacement curves of DNS: (a) 1#; (b) 2#; (c) 3#; (d) 4#; (e) 5#; (f) Experimental strain nephogram

    图  8  DNS的强度对比:(a) 不同缝合纤维植入量;(b) 不同缝合矩阵

    Figure  8.  Intensity comparison of DNS: (a) Different volume of stitched fiber bundle; (b) Different stitch pattern

    图  9  DNS实验典型断裂形貌:(a)多尺度联锁复合材料;(b)针刺复合材料

    Figure  9.  Typical fracture morphology of DNS experiment: (a) Needled/stitched composite; (b) Needled composite

    图  10  实验与模拟的DNS载荷-位移曲线对比:(a) 1#;(b) 2#;(c) 3#;(d) 4#;(e) 5#;(f) 有限元模拟应变云图

    EXP—Experiment; FEM—Finite element method

    Figure  10.  DNS load-displacement curve comparison between EXP and FEM: (a) 1#; (b) 2#; (c) 3#; (d) 4#; (e) 5#; (f) Finite element simulation strain nephogram

    表  1  原材料属性

    Table  1.   Material parameters

    MaterialStructureDensityThickness/mmTensile strength/MPaTensile modulus/GPa
    Quartz base clothSatin460 g/m20.5217.5726.71
    Quartz half cut clothTwill285 g/m20.4208.5021.72
    Quartz yarn50 tex600.0078.00
    下载: 导出CSV

    表  2  实验参数

    Table  2.   Experimental parameters

    SampleFabric structureVolume of stitched fiber bundle/texStitch spacing/mmStitch pattern/stitch
    1#Needled
    2#Needled/Stitched50×142×2
    3#Needled/Stitched50×241×2
    4#Needled/Stitched50×41×1
    5#Needled/Stitched50×81×1
    下载: 导出CSV

    表  3  材料力学性能参数

    Table  3.   Mechanical properties of material

    MaterialTII/MPaKII/(N·mm−3)GII/(N·mm−1)
    TDE-86 resin 141700 1
    Needled fiber4851729 50
    Stitched fiber7621839162
    Notes: TII—Sheer stress; GII—Critical fracture energy.
    下载: 导出CSV

    表  4  实验与有限元的DNS最大破坏载荷对比

    Table  4.   Comparison of DNS maximum failure load between experiment and FEM

    SampleEXP/NFEM/NError rate/%
    1# (Needled)
    2# (Needled/Stitched 200 tex 2×2 stitches)
    1123.33
    1254.64
    1115.48
    1300.54
    0.70
    3.66
    3# (Needled/Stitched 200 tex 1×2 stitches)1451.251512.004.18
    4# (Needled/Stitched 200 tex 1×1 stitch)1748.751887.077.91
    5# (Needled/Stitched 400 tex 1×1 stitch)2094.582194.914.79
    下载: 导出CSV
  • [1] LIM H J, CHOI H, LEE M J, et al. An efficient multi-scale model for needle-punched Cf/SiCm composite materials with experimental validation[J]. Composites Part B: Engi-neering,2021,217:108890. doi: 10.1016/j.compositesb.2021.108890
    [2] XIE W, YANG F, MENG S, et al. Perforation of needle-punched carbon-carbon composites during high-temperature and high-velocity ballistic impacts[J]. Composite Structures,2020,245:112224.
    [3] HAN M, ZHOU C, ZHANG H. A mesoscale beam-spring combined mechanical model of needle-punched carbon/carbon composite[J]. Composites Science and Technology,2018,168(10):371-380.
    [4] 陈小明, 李晨阳, 李皎, 等. 三维针刺技术研究进展[J]. 纺织学报, 2021, 42(5):185-192. doi: 10.13475/j.fzxb.20200503408

    CHEN Xiaoming, LI Chenyang, LI Jiao, et al. Research progress of 3D needling[J]. Journal of Textile Research,2021,42(5):185-192(in Chinese). doi: 10.13475/j.fzxb.20200503408
    [5] SHARMA A, PATNAIK A. Experimental investigation on mechanical and thermal properties of marble dust particulate-filled needle-punched nonwoven jute fiber/epoxy composite[J]. Jom,2018,70(7):1284-1288. doi: 10.1007/s11837-018-2828-x
    [6] SHARMA A, CHOUDHARY M, AGARWAL P, et al. Effect of micro-sized marble dust on mechanical and thermo-mechanical properties of needle-punched nonwoven jute fiber reinforced polymer composites[J]. Polymer Composites,2021,42(2):881-898. doi: 10.1002/pc.25873
    [7] CHEN X, CHEN L, ZHANG C, et al. Three-dimensional needle-punching for composites–A review[J]. Composites Part A: Applied Science and Manufacturing,2016,85:12-30. doi: 10.1016/j.compositesa.2016.03.004
    [8] 焦浩文, 陈冰, 左彬. C/SiC复合材料的制备及加工技术研究进展[J]. 航空材料学报, 2021, 41(1):19-34. doi: 10.11868/j.issn.1005-5053.2020.000067

    JIAO Haowen, CHEN Bing, ZUO Bin. Research progress inpreparation and processing technology of C/SiC composites[J]. Journal of Aeronautical Materials,2021,41(1):19-34(in Chinese). doi: 10.11868/j.issn.1005-5053.2020.000067
    [9] 张鹏飞, 张立同, 殷小玮, 等. 三维针刺碳毡增强碳/氮化硼复合材料的力学和介电性能[J]. 复合材料学报, 2010, 27(4):15-20. doi: 10.13801/j.cnki.fhclxb.2010.04.027

    ZHANG Pengfei, ZHANG Litong, YIN Xiaowei, et al. Mechanical and dielectric properties of carbon/boron nitride composites reinforced by three-dimensional needled carbon felt[J]. Acta Materiae Compositae Sinica,2010,27(4):15-20(in Chinese). doi: 10.13801/j.cnki.fhclxb.2010.04.027
    [10] 陈国耀, 黄丰, 杨振宇, 等. 三维针刺复合材料参数化建模及力学性能仿真[J]. 复合材料学报, 2022, 39(9):4459-4470. doi: 10.13801/j.cnki.fhclxb.20220725.002

    CHEN Guoyao, HUANG Feng, YANG Zhenyu, et al. Parametric modeling and mechanical properties simulation of three-dimensional needled composites[J]. Acta Materiae Compositae Sinica,2022,39(9):4459-4470(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220725.002
    [11] LU L, FAN W, MENG X, et al. Modal analysis of 3D needled waste cotton fiber/epoxy composites with experimental and numerical methods[J]. Textile Research Journal,2021,91(3-4):358-372. doi: 10.1177/0040517520944477
    [12] ZHAO W, YU R, DONG W, et al. The influence of long carbon fiber and its orientation on the properties of three-dimensional needle-punched CF/PEEK composites[J]. Composites Science and Technology,2021,203:108565. doi: 10.1016/j.compscitech.2020.108565
    [13] DONG Y, SHI X, ZHANG Z, et al. In-situ bending behavior and failure characterization of 3D needle-punched C/SiC composites[J]. Materials Today Communications,2017,13:378-385. doi: 10.1016/j.mtcomm.2017.11.002
    [14] XIE J, CHEN X, ZHANG Y. Experimental and numerical investigation of the needling process for quartz fibers[J]. Composites Science and Technology,2018,165:115-123. doi: 10.1016/j.compscitech.2018.06.009
    [15] JIN X C, HOU C, LI C L, et al. Strain rate effect on mechanical properties of 3D needle-punched C/C composites at different temperatures[J]. Composites Part B: Engineering,2019,160:140-146. doi: 10.1016/j.compositesb.2018.10.044
    [16] JIA Y Z, LIAO D M, CUI H, et al. Modelling the needling effect on the stress concentrations of laminated C/C composites[J]. Materials & Design,2016,104:19-26.
    [17] SONG L, LI J, ZHAO Y, et al. Effect of prefabricated structure on thermal conductivity of acupuncture quartz fiber/epoxy composites[J]. Journal of Composites,2016,5:955-961.
    [18] ZHENG J, LI H, CUI H, et al. Study on the correlation between the tensile strength of C/C composites and the parameters of needle punching[J]. Journal of Inorganic Materials,2017,11:30-36.
    [19] 吴小军, 杨杰, 郑蕊, 等. 烧蚀型面结构对CVI+HPIC工艺制备针刺C/C喉衬等离子烧蚀性能的影响[J]. 无机材料学报, 2020, 35(6):654-660.

    WU Xiaojun, YANG Jie, ZHENG Rui, et al. Effect of ablative surface structure on plasma ablative properties of needled C/C throat lining prepared by CVI+HPIC process[J]. Journal of Inorganic Materials,2020,35(6):654-660(in Chinese).
    [20] YAO T, CHEN X, LI J, et al. Significantly improve the interlayer and in-plane properties of needled fabrics by novel none-felt needling technology[J]. Composite Structures,2021,274:114303. doi: 10.1016/j.compstruct.2021.114303
    [21] YAO T, CHEN X, LI J, et al. Experimental and numerical study of interlaminar shear property and failure mechanism of none-felt needled composites[J]. Composite Structures,2022,290:115507. doi: 10.1016/j.compstruct.2022.115507
    [22] XUE L, CHEN Z, LIAO J, et al. Compressive strength and damage mechanisms of 3D needle-punched Cf/SiC-Al composites[J]. Journal of Alloys and Compounds,2021,853:156934. doi: 10.1016/j.jallcom.2020.156934
    [23] CHEN X M, ZHENG H W, WEI Y Y, et al. Effect of tufting on the interlaminar bonding behavior of needled composite[J]. Polymer Composites, 2022, 44(1): 229-240.
    [24] CHEN X, ZHAO Y, ZHANG C. Robot needle-punching for manufacturing composite preforms[J]. Robotics and Computer-Integrated Manufacturing, 2018, 50: 132-139.
    [25] CHEN X, ZHANG Y, XIE J. Robot needle-punching path planning for complex surface preforms[J]. Robotics and Computer-Integrated Manufacturing, 2018, 52: 24-34.
    [26] American Society for Testing and Materials. Standard test method for in-plane shear strength of reinforced plastics: ASTM D3846-08(2015)[S]. West Conshohocken: ASTM International, 2015.
    [27] ALMANSOUR F A, DHAKAL H N, ZHANG Z Y, et al. Effect of hybridization on the mode II fracture toughness properties of flax/vinyl ester composites[J]. Polymer Composites, 2017, 38(8): 1732-1740.
    [28] TAPULLIMA J, SONG S H, KWEON J H, et al. Characterization of mode II specimen using I-fiber stitching process[J]. Composite Structures, 2021, 255: 112863.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  611
  • HTML全文浏览量:  242
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-05
  • 修回日期:  2023-06-10
  • 录用日期:  2023-06-28
  • 网络出版日期:  2023-07-11
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回