Mode II interlaminar mechanical behavior of needled/stitched multiscale interlocking composites
-
摘要: 针刺/缝合多尺度联锁复合材料具有优异的层间性能,在航天热结构复合材料中得到越来越多的应用,然而,缝合工艺对于针刺复合材料双切口层间剪切(DNS)性能的影响还不清楚。以石英缎纹基布、石英斜纹半切布为原料,设计制备了3种缝合矩阵、4种缝合纤维束的石英纤维增强树脂基针刺/缝合多尺度联锁复合材料,测试并分析了复合材料的DNS性能。采用Micro-CT对织物内部结构进行表征,同时通过扫描电镜(SEM)观察试样断口形貌,阐明层间增强机制。使用内聚力模型(Cohesive zone model,CZM)结合Abaqus软件进一步探究针刺/缝合多尺度联锁复合材料的DNS行为,预测材料的极限破坏强度。研究结果表明:缝合工艺的引入极大地改善了复合材料的层间性能,其DNS的破坏载荷最大可达到32.73 MPa,相比针刺复合材料提升了86.46%。针刺/缝合多尺度联锁复合材料DNS的主要破坏方式是基体开裂、纤维束的脆性断裂和拔出。同时,模拟结果和针刺/缝合多尺度联锁复合材料的DNS实验结果吻合较好,误差最大不超过8%,证明本文建立的内聚力模型能够有效预测针刺/缝合多尺度联锁复合材料的层间剪切性能。Abstract: Needled/stitched multi-scale interlocking composites have excellent interlaminar properties and are increasingly used in aerospace thermal structure composites. However, the effect of stitch technology on double incision interlaminar shear (DNS) performance of needle composites remains unclear. Using quartz satin fabric and quartz twill half-cut fabric as materials, quartz fiber-reinforced resin-based needle/stitch multi-scale interlocking composites with three kinds of stitch pattern and four kinds of stitch fiber bundles were designed and prepared. The DNS performance of the composite was tested and analyzed. The internal structure of the fabric was characterized by micro-CT, and the fracture morphology of the sample was observed by scanning electron microscopy (SEM) to clarify the mechanism of interlayer strengthening. The DNS behavior of needled/stitched multi-scale interlocking composites was further investigated by cohesive zone model (CZM) and Abaqus software, and the ultimate failure strength was predicted. The results show that the introduction of stitch technology greatly improves the interlamellar properties of the composite, and the maximum failure load of DNS reaches 32.73 MPa, which is 86.46% higher than that of the needled composite. The main failure modes of multi-scale interlocking composite DNS are matrix cracking, brittle fracture and pulling out of fiber bundle. At the same time, the simulation results are in good agreement with the DNS experimental results of needled/stitched multi-scale interlocking composites, and the maximum error is less than 8%, which proves that the cohesion model established in this paper can effectively predict the interlaminar shear performance of needled/stitched multi-scale interlocking composites.
-
图 5 DNS数值模拟示意图:(a)针刺复合材料;(b)针刺/缝合多尺度联锁复合材料
Tmax—Maximum shear stress; KII—Cohesive stiffness; GII needling—Critical fracture energy of needling composite; GII stitching—Critical fracture energy of stitching composite; δ0—Displacement of the specimen damaged; δf—Displacement of the specimen failure
Figure 5. Schematic diagram of DNS numerical simulation: (a) Needled composite; (b) Needled/stitched composite
表 1 原材料属性
Table 1. Material parameters
Material Structure Density Thickness/mm Tensile strength/MPa Tensile modulus/GPa Quartz base cloth Satin 460 g/m2 0.5 217.57 26.71 Quartz half cut cloth Twill 285 g/m2 0.4 208.50 21.72 Quartz yarn — 50 tex — 600.00 78.00 表 2 实验参数
Table 2. Experimental parameters
Sample Fabric structure Volume of stitched fiber bundle/tex Stitch spacing/mm Stitch pattern/stitch 1# Needled — — — 2# Needled/Stitched 50×1 4 2×2 3# Needled/Stitched 50×2 4 1×2 4# Needled/Stitched 50×4 — 1×1 5# Needled/Stitched 50×8 — 1×1 表 3 材料力学性能参数
Table 3. Mechanical properties of material
Material TII/MPa KII/(N·mm−3) GII/(N·mm−1) TDE-86 resin 14 1700 1 Needled fiber 485 1729 50 Stitched fiber 762 1839 162 Notes: TII—Sheer stress; GII—Critical fracture energy. 表 4 实验与有限元的DNS最大破坏载荷对比
Table 4. Comparison of DNS maximum failure load between experiment and FEM
Sample EXP/N FEM/N Error rate/% 1# (Needled)
2# (Needled/Stitched 200 tex 2×2 stitches)1123.33
1254.641115.48
1300.540.70
3.663# (Needled/Stitched 200 tex 1×2 stitches) 1451.25 1512.00 4.18 4# (Needled/Stitched 200 tex 1×1 stitch) 1748.75 1887.07 7.91 5# (Needled/Stitched 400 tex 1×1 stitch) 2094.58 2194.91 4.79 -
[1] LIM H J, CHOI H, LEE M J, et al. An efficient multi-scale model for needle-punched Cf/SiCm composite materials with experimental validation[J]. Composites Part B: Engi-neering,2021,217:108890. doi: 10.1016/j.compositesb.2021.108890 [2] XIE W, YANG F, MENG S, et al. Perforation of needle-punched carbon-carbon composites during high-temperature and high-velocity ballistic impacts[J]. Composite Structures,2020,245:112224. [3] HAN M, ZHOU C, ZHANG H. A mesoscale beam-spring combined mechanical model of needle-punched carbon/carbon composite[J]. Composites Science and Technology,2018,168(10):371-380. [4] 陈小明, 李晨阳, 李皎, 等. 三维针刺技术研究进展[J]. 纺织学报, 2021, 42(5):185-192. doi: 10.13475/j.fzxb.20200503408CHEN Xiaoming, LI Chenyang, LI Jiao, et al. Research progress of 3D needling[J]. Journal of Textile Research,2021,42(5):185-192(in Chinese). doi: 10.13475/j.fzxb.20200503408 [5] SHARMA A, PATNAIK A. Experimental investigation on mechanical and thermal properties of marble dust particulate-filled needle-punched nonwoven jute fiber/epoxy composite[J]. Jom,2018,70(7):1284-1288. doi: 10.1007/s11837-018-2828-x [6] SHARMA A, CHOUDHARY M, AGARWAL P, et al. Effect of micro-sized marble dust on mechanical and thermo-mechanical properties of needle-punched nonwoven jute fiber reinforced polymer composites[J]. Polymer Composites,2021,42(2):881-898. doi: 10.1002/pc.25873 [7] CHEN X, CHEN L, ZHANG C, et al. Three-dimensional needle-punching for composites–A review[J]. Composites Part A: Applied Science and Manufacturing,2016,85:12-30. doi: 10.1016/j.compositesa.2016.03.004 [8] 焦浩文, 陈冰, 左彬. C/SiC复合材料的制备及加工技术研究进展[J]. 航空材料学报, 2021, 41(1):19-34. doi: 10.11868/j.issn.1005-5053.2020.000067JIAO Haowen, CHEN Bing, ZUO Bin. Research progress inpreparation and processing technology of C/SiC composites[J]. Journal of Aeronautical Materials,2021,41(1):19-34(in Chinese). doi: 10.11868/j.issn.1005-5053.2020.000067 [9] 张鹏飞, 张立同, 殷小玮, 等. 三维针刺碳毡增强碳/氮化硼复合材料的力学和介电性能[J]. 复合材料学报, 2010, 27(4):15-20. doi: 10.13801/j.cnki.fhclxb.2010.04.027ZHANG Pengfei, ZHANG Litong, YIN Xiaowei, et al. Mechanical and dielectric properties of carbon/boron nitride composites reinforced by three-dimensional needled carbon felt[J]. Acta Materiae Compositae Sinica,2010,27(4):15-20(in Chinese). doi: 10.13801/j.cnki.fhclxb.2010.04.027 [10] 陈国耀, 黄丰, 杨振宇, 等. 三维针刺复合材料参数化建模及力学性能仿真[J]. 复合材料学报, 2022, 39(9):4459-4470. doi: 10.13801/j.cnki.fhclxb.20220725.002CHEN Guoyao, HUANG Feng, YANG Zhenyu, et al. Parametric modeling and mechanical properties simulation of three-dimensional needled composites[J]. Acta Materiae Compositae Sinica,2022,39(9):4459-4470(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220725.002 [11] LU L, FAN W, MENG X, et al. Modal analysis of 3D needled waste cotton fiber/epoxy composites with experimental and numerical methods[J]. Textile Research Journal,2021,91(3-4):358-372. doi: 10.1177/0040517520944477 [12] ZHAO W, YU R, DONG W, et al. The influence of long carbon fiber and its orientation on the properties of three-dimensional needle-punched CF/PEEK composites[J]. Composites Science and Technology,2021,203:108565. doi: 10.1016/j.compscitech.2020.108565 [13] DONG Y, SHI X, ZHANG Z, et al. In-situ bending behavior and failure characterization of 3D needle-punched C/SiC composites[J]. Materials Today Communications,2017,13:378-385. doi: 10.1016/j.mtcomm.2017.11.002 [14] XIE J, CHEN X, ZHANG Y. Experimental and numerical investigation of the needling process for quartz fibers[J]. Composites Science and Technology,2018,165:115-123. doi: 10.1016/j.compscitech.2018.06.009 [15] JIN X C, HOU C, LI C L, et al. Strain rate effect on mechanical properties of 3D needle-punched C/C composites at different temperatures[J]. Composites Part B: Engineering,2019,160:140-146. doi: 10.1016/j.compositesb.2018.10.044 [16] JIA Y Z, LIAO D M, CUI H, et al. Modelling the needling effect on the stress concentrations of laminated C/C composites[J]. Materials & Design,2016,104:19-26. [17] SONG L, LI J, ZHAO Y, et al. Effect of prefabricated structure on thermal conductivity of acupuncture quartz fiber/epoxy composites[J]. Journal of Composites,2016,5:955-961. [18] ZHENG J, LI H, CUI H, et al. Study on the correlation between the tensile strength of C/C composites and the parameters of needle punching[J]. Journal of Inorganic Materials,2017,11:30-36. [19] 吴小军, 杨杰, 郑蕊, 等. 烧蚀型面结构对CVI+HPIC工艺制备针刺C/C喉衬等离子烧蚀性能的影响[J]. 无机材料学报, 2020, 35(6):654-660.WU Xiaojun, YANG Jie, ZHENG Rui, et al. Effect of ablative surface structure on plasma ablative properties of needled C/C throat lining prepared by CVI+HPIC process[J]. Journal of Inorganic Materials,2020,35(6):654-660(in Chinese). [20] YAO T, CHEN X, LI J, et al. Significantly improve the interlayer and in-plane properties of needled fabrics by novel none-felt needling technology[J]. Composite Structures,2021,274:114303. doi: 10.1016/j.compstruct.2021.114303 [21] YAO T, CHEN X, LI J, et al. Experimental and numerical study of interlaminar shear property and failure mechanism of none-felt needled composites[J]. Composite Structures,2022,290:115507. doi: 10.1016/j.compstruct.2022.115507 [22] XUE L, CHEN Z, LIAO J, et al. Compressive strength and damage mechanisms of 3D needle-punched Cf/SiC-Al composites[J]. Journal of Alloys and Compounds,2021,853:156934. doi: 10.1016/j.jallcom.2020.156934 [23] CHEN X M, ZHENG H W, WEI Y Y, et al. Effect of tufting on the interlaminar bonding behavior of needled composite[J]. Polymer Composites, 2022, 44(1): 229-240. [24] CHEN X, ZHAO Y, ZHANG C. Robot needle-punching for manufacturing composite preforms[J]. Robotics and Computer-Integrated Manufacturing, 2018, 50: 132-139. [25] CHEN X, ZHANG Y, XIE J. Robot needle-punching path planning for complex surface preforms[J]. Robotics and Computer-Integrated Manufacturing, 2018, 52: 24-34. [26] American Society for Testing and Materials. Standard test method for in-plane shear strength of reinforced plastics: ASTM D3846-08(2015)[S]. West Conshohocken: ASTM International, 2015. [27] ALMANSOUR F A, DHAKAL H N, ZHANG Z Y, et al. Effect of hybridization on the mode II fracture toughness properties of flax/vinyl ester composites[J]. Polymer Composites, 2017, 38(8): 1732-1740. [28] TAPULLIMA J, SONG S H, KWEON J H, et al. Characterization of mode II specimen using I-fiber stitching process[J]. Composite Structures, 2021, 255: 112863.